3 プレゼンテーション・マークアップ

概要: 数学用マークアップ言語 (MathML) バージョン 2.0
前: 2 MathML の基礎
次: 4 コンテンツ・マークアップ
 
3 プレゼンテーション・マークアップ
3.1 導入
   3.1.1 プレゼンテーション・マークアップで表現できるもの
   3.1.2 この章で使用する用語
   3.1.3 必要な引数
   3.1.4 扱いが特殊な要素
   3.1.5 双方向レイアウト
   3.1.6 プレゼンテーション要素のまとめ
3.2 トークン要素
   3.2.1 トークン要素における MathML 文字
   3.2.2 トークン要素に共通な数学用スタイル属性
   3.2.3 識別子 (mi)
   3.2.4 数 (mn)
   3.2.5 演算子、囲い文字、区切り文字、アクセント (mo)
   3.2.6 Text (mtext)
   3.2.7 Space (mspace)
   3.2.8 String Literal (ms)
   3.2.9 Adding new character glyphs to MathML (mglyph)
3.3 General Layout Schemata
   3.3.1 Horizontally Group Sub-Expressions (mrow)
   3.3.2 Fractions (mfrac)
   3.3.3 Radicals (msqrt, mroot)
   3.3.4 Style Change (mstyle)
   3.3.5 Error Message (merror)
   3.3.6 Adjust Space Around Content (mpadded)
   3.3.7 Making Sub-Expressions Invisible (mphantom)
   3.3.8 Expression Inside Pair of Fences (mfenced)
   3.3.9 Enclose Expression Inside Notation (menclose)
3.4 Script and Limit Schemata
   3.4.1 Subscript (msub)
   3.4.2 Superscript (msup)
   3.4.3 Subscript-superscript Pair (msubsup)
   3.4.4 Underscript (munder)
   3.4.5 Overscript (mover)
   3.4.6 Underscript-overscript Pair (munderover)
   3.4.7 Prescripts and Tensor Indices (mmultiscripts)
3.5 Tables and Matrices
   3.5.1 Table or Matrix (mtable)
   3.5.2 Row in Table or Matrix (mtr)
   3.5.3 Labeled Row in Table or Matrix (mlabeledtr)
   3.5.4 Entry in Table or Matrix (mtd)
   3.5.5 Alignment Markers
3.6 Enlivening Expressions
   3.6.1 Bind Action to Sub-Expression (maction)

3.1 導入

この章では、MathML の「プレゼンテーション」要素について定めています。 プレゼンテーション要素は、数学的な記法のレイアウト上の構造について記述することができます。

3.1.1 プレゼンテーション要素で表現できるもの

プレゼンテーション要素は、従来の数学表記における「コンストラクター」に対応します。つまり、従来の数学表記の中ですべての数式を構成する、記号と式による基本的な構造に対応しています。 従来の視覚上の表記は非常に大切ですから、ここで出てくる要素が表す表記上の構造については、視覚的な言葉で説明されます。 ただし、音声発話装置にも十分な情報を含むように設計されているという点では、要素は視覚的な構造に完全に従属しているわけではありません。 これらの要素の属性の中は、視覚的なメディアでしか意味をなさないものもありますが、ほとんどの属性は音声メディアでも同様の方法で扱うことができます (たとえば、時間的な「間」と水平方向の間隔を対応づけることによって)。

メディア依存のレンダリングや各自のスタイルの好みを可能にするため、MathML のプレゼンテーション要素はレンダリングの方法を示唆しているに過ぎません (つまり、必須ではありません)。 この仕様書では、視覚的なレンダリング規則を詳細に提案するところがありますが、しかし MathML レンダラーはわかりやすければ独自の規則を利用して構いません。

表題・セクション・段落がテキスト文書の高度な構文構造を表現するのと同様に、プレゼンテーション要素は式の構文構造を表現します。 従って、たとえば「x + a / b」のような変数と演算子の列も、必ずしもただ一つの mrow 要素 (引数を水平方向の列としてレンダリングする要素) によって表されるのではなく、式を構成する入れ子式の副式にそれぞれ対応した複数の mrow 要素によって表されます。 つまり、この場合は下のようになります:

<mrow>
  <mi> x </mi>
  <mo> + </mo>
  <mrow>
    <mi> a </mi>
    <mo> / </mo>
    <mi> b </mi>
  </mrow>
</mrow>

また、上付文字は、先行する単一の文字に付くのではなく、基底を構成する式全体に対して付きます。 この構造によって、文書制作者が表示幅などのレンダリング環境の詳細を把握できない時でも、より高画質な数学のレンダリングが可能となります。 また、表現された数学構造の機械的に解釈することも容易になります。

MathML の文字の中には、演算子や変数の名前に用いられる物があり、従来の数学表記の中で他の記号 &DifferentialD;&ExponentialE;&ImaginaryI; のような記号や、&InvisibleTimes;&ApplyFunction;&InvisibleComma; のように不可視な演算子と同様にレンダリングされていました。 これらは、それぞれ別の読み上げられ方をしたり、改行や空白の効果が異なる場合があるので、表記上の別々な記号やオブジェクトだと考えられ、従って、特別な実体参照によって適切に表現されるべきです。 たとえば、視覚的に「f(x)'」と表現される式は、英語では一般に、単に「f x」ではなく「f of x」と読まれます; これは MathML では &ApplyFunction; 演算子を「f」の後に用いることで表現可能で、この場合音声では「of」とレンダリングされるでしょう。

MathML の実体の完全なリストは 第6章「文字、実体とフォント」 で説明されています。

3.1.2 この章で使用する用語

この章を読む前に、MathML の構文と文法について 第2.4節「MathML の構文と文法」 を読むことを強く推奨します。 この第2.4節は、MathML の表記と規約について重要な情報を含んでいます。 この第3章では特に、読者が基本的な XML 用語について 第2.4.2節「XML 構文入門」を、属性値の表記と規約について述べられている 第2.4.4節「MathML の属性値」を、それぞれ読んでいることを前提としています。

この節の残りでは、この章で使用する MathML 独自の用語と規約について紹介しています。

3.1.2.1 プレゼンテーション要素の種類

プレゼンテーション要素は大きく 2 種類に分類することができます。 トークン要素は個々の記号、名前、数、ラベルなどを表現するものです。 トークン要素は、一般に、文字のみを本体として含むことができますが、例外として、垂直方向の位置揃えを表現する malignmark 要素、mglyph 要素と、実体参照があります。 レイアウトスキーマは、数式の部品をまとめて大きな数式に構成するもので、空白 (無視される) を除いては要素のみを本体として含みます。 その他に、他のレイアウトスキーマと共に用いられる空要素があります。

式中の個々の「記号」は MathML のトークン要素によって表現されます。 基本的な MathML のトークン要素は、識別子 (たとえば変数や関数名)、数、演算子 (括弧のような囲い文字や、カンマのような区切りも含む) を表すものです。 数学的な重要性というよりは審美的な重要性のためにテキストや空白を表現するトークン要素もありますし、自動数式システムとの互換性を持たせるために「文字列リテラル」を表現する要素もあります。 ただし、トークン要素は単一で意味を持つ「記号」(名前、数、ラベル、数学記号など) を表現するとは要っても、その記号が 1 つ以上の文字から成り立つことがあるということに注意して下さい。 たとえば、sin24 は、単一のトークン要素によって、それぞれ <mi>sin</mi><mi>24</mi> と表現されます。

従来の数学表記では、式は副式から再帰的に構築され、究極的には一つ一つの記号から構成されていました。 それぞれのパーツは、表記上の構造の小さな集合をグループ化ないし配置してできていました。 この方法は、「式のコンストラクター」として考えることができます。 MathML でも、式は同様に構築され、レイアウトスキーマが副式から式を構成する方法を指定します。 ここでは、従来の数学の植字において副式から式を形成していたレイアウト方法と、それぞれのレイアウトスキーマを対応づけて、用語が導入されています。

3.1.2.2 他の種類の要素に関する用語と、その関係

この章で出てくる特殊な要素、そして要素間の関係は、以下の通り: プレゼンテーション要素 は、MathML の要素で、この章で定義するものです。 この要素は 第3.1.6節「プレゼンテーション要素のサマリー」 に一覧を挙げています。 コンテンツ要素 は、MathML の要素で、第4章「コンテンツ・マークアップ」 で定義しています。 コンテンツ要素は、第4.4節「コンテンツ・マークアップ要素」 に一覧があります。

MathML の (expression) とは、空要素 nonemprescripts のような例外を含む、プレゼンテーション要素の単一のインスタンス、あるいは、プレゼンテーション要素の本体として許されているコンテンツ要素 (これについては 第5.2.4章「プレゼンテーション・マークアップ中のコンテンツ・マークアップ」 で述べられています) の単一のインスタンスです。 式 E副式(sub-expression) とは、E の本体の一部を構成するすべての MathML の表現のことで、それは 直接的 あるいは 間接的、すなわちそれが E の「子」であるかどうかに依りません。

レイアウト・スキーマは、その子の数や位置に特別な意味を与えますので、レイアウト・スキーマの子も要素の 引数 と呼ばれます。 上記のように定義した結果として、レイアウト・スキーマの本体には、その子となる0個以上の要素の列が含まれることになります。

3.1.3 必要な引数

ここで説明する要素のほとんどは、特定の数の引数 (常に 1, 2, ないし 3) を必要とします。 下にある要素の構文に関しての詳しい説明の中では、必要とされる引数の数は引数の位置や名前から暗に知ることができます。 引数の数や種類にそれ以上の要請をする要素はそれほど多くはありません (それぞれの要素について説明されています) 。 0 個以上の引数を受け付ける要素がありますが、それは、全く引数が無くても構わないということです。

空白を描画するための MathML の要素が、含まれる要素の引数として見なされることに注意してください。 このような空白を扱う要素の正しい利用法については、第3.2.7節「空白 (mspace)」 を参照してください。

3.1.3.1 推定の mrow

下の表に挙げた要素で、必要な引数が 1* とされているもの (msqrt, mstyle, merror, menclose, mpadded, mphantom, mtdmath) は、実際には引数がいくつあっても構いません。 しかし、引数が 0 個の時、あるいは 1 個より多い時 (i.e. 2個以上の時)、その引数すべてから形成される mrow 要素を一つ含むものと推定 (inferred) して扱われます。 なお、math 要素はプレゼンテーション要素ではありませんが、下の一覧では完全を期すために追加されています。

たとえば

<mtd>
</mtd>

というコードは、以下のように扱われます:

<mtd>
  <mrow>
  </mrow>
</mtd>

また、

<msqrt>
  <mo> - </mo>
  <mn> 1 </mn>
</msqrt>

というコードは、以下のようになります:

<msqrt>
  <mrow>
    <mo> - </mo>
    <mn> 1 </mn>
  </mrow>
</msqrt>

この機能のおかげで、MathML データは多くの mrow 要素を含む必要が無く、データ制作者は本来必要なこの要素を省略することができるのです。

レンダリングの方法を考える際、上で挙げた要素については、この方法で引数全体から形成される mrow 要素をただ一つの式として本体に持つ、と考えることができます。 ただし、これらの要素は、通常は一つの式を処理する考えられるので、下の表では引数の数は 1* と記述してあります。

3.1.3.2 必要な引数の表

ここで、便利のために、それぞれの要素で必要な引数の数を表に纏めてあります。 それぞれの引数の役割が決まっている場合は、その役割も書いてあります。 引数の数が 1* となっているものは、既に述べたように mrow 要素を推定するということを意味しています。

要素 必要な引数の数 引数の意味 (位置によって意味が変わる場合)
mrow 0 以上  
mfrac 2 分子 分母
msqrt 1*  
mroot 2 基底 index
mstyle 1*  
merror 1*  
mpadded 1*  
mphantom 1*  
mfenced 0 以上  
menclose 1*  
msub 2 基底 下付き文字
msup 2 基底 上付文字
msubsup 3 基底 下付文字 上付文字
munder 2 基底 下ルビ (underscript)
mover 2 基底 上ルビ (overscript)
munderover 3 基底 下ルビ 上ルビ
mmultiscripts 1 以上 base (subscript superscript)* [<mprescripts/> (presubscript presuperscript)*]
mtable 0 or more rows 0 個以上の mtr 要素または mlabeledtr 要素
mlabeledtr 1 以上 ラベルと 0 個以上の mtd 要素
mtr 0 以上 0 個以上の mtd 要素
mtd 1*  
maction 1 以上 actiontype 属性に依存
math 1*  

3.1.4 扱いが特殊な要素

MathML のプレゼンテーション要素の中には、文脈によっては特別な役目を果たすものがあります。 そういった特別な動作については、下の詳しい要素の説明の中で述べていますが、 便利のために、ここで特別な動作のうち重要な種類について挙げておきます。

要素の中には空白と考えて良いものがあり、第3.2.7節「空白 (mspace)」 で定義されています。 この定義は、mo 要素 (第3.2.5節「演算子、囲い文字、区切り文字、アクセント (mo)」) についてのレンダリング規則に影響があります。

msup のような要素では、1番目の引数となる演算子を修飾することができます。 このような要素は 第3.2.5節「演算子、囲い文字、区切り、アクセント (mo)」 に一覧で挙げ、明確に「修飾される演算子」(embellished operator)を定義し、これが伸縮可能な演算子のレンダリング規則にどう影響するか説明しています。

要素の中には、1つ以上の引数を指定すると、その引数を「推定の mrow(inferred mrow) の引数とみなすものがあります。 これについては 第3.1.3節「必要な引数」 を参照してください。

MathML 1.x では、mtable 要素は mtr 要素をその引数の親として推定し、mtr 要素は mtd 要素をその引数の親として推定していました。 MathML 2.0 では、mtr 要素と mtd 要素は必ず明示的に書かねばなりません。 ただし、過去との互換性のため、レンダラーは mtr 要素と mtd 要素を推定することが望まれます。

3.1.5 双方向レイアウト

「双方向レイアウト」という用語は、アラビア語やヘブライ語のような一部の言語では文字が右から左に向かって書かれ、これらの言語の中に左から右に向かって書かれた数字やアルファベットを混ぜると 1 つの行ないし段落の中に 2 種類の方向が生じてしまうという状況を示しています。

一般的なテキストに関して言えば、Unicode の仕様によって双方向アルゴリズムが定められています [Bidi]。 このアルゴリズムは、「バッキングストア」(訳注: バッファの一種) 中の文字の順番が論理順序 (つまり、発音ないしタイプされる順) にあるとみなし、 文字属性や他のディレクティブに従って表示の際に文字がどのように記録されるかを決定します。 HTML, CSS, XSL, SVG ではこのアルゴリズムを採用し、マークアップやスタイルシートによって表示順を制御します。

数式中の双方向レイアウトは、テキスト中のそれに比べてより複雑になります。 これは、数学のレイアウトが2次元的な性質を持っていることや、 空間的な位置関係で表記の意味を伝えることが原因です。 また、右から左へ書く言語の中でもあまり双方向レイアウトを利用しないため、 双方的なレイアウトに関する約束事が確立していないことも原因となっています。

こうした状況を踏まえ、MathML 2.0 では Unicode 双方向アルゴリズムのうち、 限られたもののみを採用しました。 この節の残りでは、このアルゴリズムについて説明します。

3.1.5.1 トークン要素での双方向レイアウト

MathML のテキストを含むことができるトークン要素 (mtext, mo, mi, mn and ms) では、 その内容が視覚的にレンダリングされる際には Unicode 双方向アルゴリズムの implicit part が採用されます (つまり文字属性に基づいて並べ替えられます) [Bidi]。 ここで、基本となる方向は left-to-right です。

Unicode 双方向アルゴリズムの implicit part は、1文字のみしかない場合や、right-to-left の指向性の強い文字 (つまりアラビア語やヘブライ語などの文字) がない場合、left-to-right レイアウトと同一です。

right-to-left の指向性の強い文字をレンダリングする必要がない場合、 アプリケーションは Unicode 双方向アルゴリズムの適用が要請されません。

超限濃度 (transfinite cardinal) を表現するヘブライ文字に、コード番号 U+2135 から U+2138 (ALEF SYMBOL, BET SYMBOL, GIMEL SYMBOL, DALET SYMBOL) が使われることに注意してください。 これらは、左から右への強い指向性を持ちます。

3.1.5.2 数式の双方向レイアウト

MathML 2.0 は、数式において、右から左へ記述するレイアウトや、 双方向レイアウトについては扱っていません。 サポートされるのは、左から右へのレイアウトのみです。 数式の右から左へのレイアウトについては、 MathML の将来的なバージョンで扱われることでしょう。

3.1.6 プレゼンテーション要素のまとめ

3.1.6.1 トークン要素

mi 識別子
mn
mo 演算子、囲い文字、区切り文字
mtext テキスト
mspace 空白
ms 文字列リテラル
mglyph MathML に新しい文字グリフを加える

3.1.6.2 一般的なレイアウトスキーマ

mrow 任意の数の副式を水平方向にグループ化する
mfrac 2つの副式から1つの分数を作成する
msqrt 2乗根を作る (radical without an index)
mroot form a radical with specified index
mstyle スタイルを変更する
merror プリプロセッサからの構文エラーメッセージを enclose する
mpadded 本体の周囲の空白を調整する
mphantom 場所を確保し、しかし本体を不可視にする
mfenced 1対の囲い文字で本体を囲む
menclose enclose content with a stretching symbol such as a long division sign.

3.1.6.3 スクリプトと限定スキーマ

msub 下付き文字を設定する
msup 上付文字を設定する
msubsup 下付・上付文字の組を設定する
munder 下ルビ(underscript)を設定する
mover 上ルビ(overscript)を設定する
munderover 下ルビ・上ルビの組を設定する
mmultiscripts attach prescripts and tensor indices to a base

3.1.6.4 表と行列

mtable 表、あるいは行列
mlabeledtr 表ないし行列のラベルや式番号のついた行
mtr 表ないし行列の行
mtd 表ないし行列の1つのエントリー
maligngroup および malignmark 字寄せのマーカー

3.1.6.5 Enlivening Expressions

maction bind actions to a sub-expression

3.2 トークン要素

プレゼンテーション・マークアップにおけるトークン要素は、 数学表記の最小の単位に対応し、意味を伝えるためのものです。 トークンとは、テキストにおける単語に類似していると言えます。 しかし、数学表記は正確かつ記号的な性質を持っているため、 テキストデータでは個々の単語を特別にマークアップしたりスタイルを付けたりする必要はありませんが、 MathML マークアップにおいてはトークン要素の種類やプロパティがとても重要です。

トークンは、一般に一つの数学記号を表現する単一の文字から構成されますが、 その他にも、関数名など、複数の文字からなるトークンもあります。 さらに、従来の数学表記では植字上のプロパティによって記号を区別して使ってきた (e.g. リー代数には Fraktur 書体の 'g' を用いたり、ベクトルの表記には太字の 'x' を用いたりします) ので、スタイル・メカニズムが植字上のプロパティを遵守して意味が損なわれないように注意しなければなりません。 従って MathML においては、文字、トークン、記号の植字上のプロパティは、 それぞれ密接な関係があります。

3.2.1 トークン要素における MathML 文字

MathML マークアップの中では、文字データはトークン要素の本体としてのみ存在できます。 唯一の例外は、要素間のホワイトスペースで、これは無視されます。 トークン要素は、任意の 0個以上の Unicode 文字列を含むことができます。 特に、本体が空のトークンが許されており、一般には不可視に、つまり通常のトークン要素の周囲の空白以外に幅を持たずに、描画する際に用います。 空要素 mspacemglyph は、この限りではありません。 mspace 要素の幅は、属性値に依存しています。 mglyph 要素は、その属性が表現する文字を用いて描画します。

すべての Unicode 文字データはトークン要素の本体として有効ですが、 MathML 2.0 は、名前突きの Unicode 3.2 文字からなる特別なサブセットを区別し、 これを文書中で〈MathML 文字〉と呼んでいます。 MathML 文字の完全な一覧は、第6章「文字、実体とフォント」 で定義しています。 MathML 文字は、直接 Unicode 文字データで表現されることもありますし、 数値文字参照ないし文字実体参照の形で間接的に表現されることもあります。 数値文字参照と文字実体参照の利点と欠点についての議論に関しては、第6章「文字、実体とフォント」 を参照してください。 新しい数学用の文字、つまり既存の MathML 文字の非標準的なグリフは、mglyph 要素によって表現されます。

mglyph 要素以外には、malignmark 要素がそれ以外で唯一トークンの本体として認められます。 詳しくは 第3.5.5節「アラインメント・マーカー」 を参照してください。

mspace および mglyph 以外のトークン要素は、 この2要素の本体としてレンダリングされるべき (i.e. 視覚的な場合で言えば、本体における文字中で、 密接した標準的なグリフの水平方向の列として描画されるべき) です。 レンダリングのアルゴリズムは、 後述の数学スタイル属性によって実現されるべきで、 それぞれのトークン要素の種類によって異なる規則ないし属性によって 周囲の空白を調整するべきです。

3.2.1.1 英数字による記号

数学で用いられる記号の大部分は、1文字の識別子で、 主に数式中で変数名として使われます。 異なった書体の文字は、それぞれ異なった記号として扱われます。 たとえば、Fraktur書体の 'g' という記号はリー代数を表し、 ローマン体での 'g' は、それに対応する リー群を表します。 このような文字主体の記号は、字間や線種など、 テキスト本文中の文字とは変えて植字されます。 どんな些細なスタイルの変換でも数式中における意味を変えてしまうおそれがあるため、 これらの文字のスタイル・メカニズムは特別に扱う必要があります。

このような理由から、Unicode 3.1 では、900以上もの数学用の記号文字が導入されました。 この新しい文字は、SMP (Secondary Multilingual Plane) に格納されています。 詳しくは、第6章「文字、実体、フォント」 を参照してください。 MathML 2.0 で許容される文字は、この正式な Unicode データですので、ツールやフォントが広く利用されるようになります。私たちは、これこそが文字用の記号を記述する最も優れた方法だと考えています。

SMP文字のサポートは広く用いられるでしょう。しかし、マークアップによって BMP (Basic Multilingual Plane) 文字のみを使う代替的なエンコーディングもまた提供される必要があります。 MathML 2.0 では、BMP 文字データの組み合わせによるトークン要素、mathvariant属性、そして SMP Math Alphanumeric Symbol 文字を含むトークンの間の対応付けを定義しています。 SMP 文字を受け付けるプロセッサー・アプリケーションは、対応するBMPや属性の組み合わせも同様に扱わねばなりません。 次の節では mathvariant 属性についてより詳しく述べています。また、完全な技術説明は 第6.2.3節「数学用英数字記号の文字」 で提供されています。

3.2.2 トークン要素に共通な数学用スタイル属性

MathML 2.0 には、新しく4つの 数学用スタイル mathematics style 属性が導入されました。 これらの属性は、mspacemglyph を除くすべてのプレゼンテーショントークン要素で有効です。これは mstyle 要素も例外ではありません。 4つの属性は以下の通りです:

名前 標準値
mathvariant normal | bold | italic | bold-italic | double-struck | bold-fraktur | script | bold-script | fraktur | sans-serif | bold-sans-serif | sans-serif-italic | sans-serif-bold-italic | monospace normal (<mi>)
mathsize small | normal | big | number v-unit 継承される
mathcolor #rgb | #rrggbb | html-color-name 継承される
mathbackground #rgb | #rrggbb | html-color-name 継承される

(属性値の表記についての用語と表記については、第2.4.4節「MathML 属性値」 を参照のこと)

数学用スタイル属性では、トークン要素の論理クラスが定められます。 それぞれのクラスは、与えられた数式の中で意味を持つ印刷関係の記号トークンの集合に対応させるするものです。 従って、他のスタイルとは視覚的に区別され、文書全体のスタイルの変更によってうっかり意味が変わってしまうことがないよう保護される必要があります。

CSS が利用できる環境で MathML がレンダリングされる際、 数学用スタイル属性はCSSスタイル規則用のあらかじめ定められたセレクターとして 見ることができます。 より詳しい議論とCSSスタイルシートの例については、第7.1.5節「CSSとMathMLの共用」 および 付録G「MathML用CSSスタイルシートの例」 を参照してください。 CSS が利用できない場合、他の論理クラスとの視覚的な区別は、描画アプリケーション内部のスタイル機構に依存します。

理論的には、レンダラーは数学用のスタイル属性と特定の描画プロパティとのマッピングを自由に行うことができます。しかしながら、実際には、数学用スタイル属性名とその値は、植字上のプロパティを示唆するものであり、レンダラーはそれらの自然な解釈をできる限り尊重すべきです。たとえば、mathvariant 属性をもつトークンを Helvetica や Arial のような sans-serif 書体に設定することは合理的ですが、Times Roman フォントでレンダリングすることは非常に誤解を招きやすいので、そのような実装は避けるべきです。

ただし、mathvariant 属性値の自然な解釈は特定の文字に対してのみ有意義である、という問題があります。たとえば、'fraktur'書体のαや、太斜体の漢字は明瞭でわかりやすいレンダリングができません。一般的に、明確に解釈できるのは、SMP Math Alphanumeric Symbol の文字に限定されます。

従って、mathvariant 属性を SMP Math Alphanumeric Symbol 対応する文字に適用する場合は、スタイルシート制作者やプリケーション開発者は、その明確な植字上の解釈をできる限り尊重することが求められますが、それ以外の場合に mathvariant 属性の及ぼす効果については、レンダラーに依存します。 たとえばレンダラーは &sum; (非 SMP 対応文字) を含むトークンについて、mathvariant 属性が bold ないし bold-fraktur に設定される時に太字フォントで表示し、fraktur に設定された時に標準の Roman 書体で表示することができます。 この例からわかるように、制作者は mathvariant 属性を非 SMP 対応文字に対して用いるべきではありません。なぜなら、それは意味がない上に、どのようにレンダリングされるか予想不可能だからです。

最後に、特殊な例として扱われなければならない mathvariant 属性についての冗長性の問題があります。 BMP 文字データ (詳細は 第6.2.3節「Mathematical Alphanumeric Symbols Characters」を参照のこと) の一部の文字を含む mi 要素に mathvariant 属性を用いる場合、レンダリングの結果が SMP 文字を含む mi 要素に mathvariant 属性をもたないものと視覚的に区別できなくなることがあります。 そこで、MathML 2.0 では、これらの2つの表示を等価なものとして扱うよう処理アプリケーションに要求します。 これは、検索や等価性の試験をサポートするアプリケーションための問題を念頭に置いたものです。

第 2.4.5 節「すべての MathML 要素に共通する属性」で述べられているとおり、トークン要素にはスタイルシート機構との互換性のために id, xref, class および style 属性が許容されています。 しかし、CSS を用いる場合には若干の注意が必要です。 式の意味を変えてしまうような視覚的な効果を生むために CSS を用いることは、特に避けるべきです。というのも、MathML は非 CSS 環境で用いられることがあるからです。 同様に、任意の文書全体にわたるスタイルの変換によって、数式に対し意味が変わるなどの影響が及ばないことが保証されるよう注意されるべきです。

しばしば MathML 式は XHTML のようなテキストデータ形式の中に埋め込まれますので、 周囲の文字とMathMLは、レンダリングが互換になるよう、フォントの大きさといったレンダリング属性を共有しなければなりません。 この理由のために、テキストのレンダリングに影響を及ぼすほとんどの属性値は、周囲のレンダリング環境を継承します。これは上記の表の「標準値」の列に示されています。 (周囲のテキストと MathML がブラウザーとプラグインのように 別々のソフトウェアによってレンダリングされる場合も、周囲の文字のベースラインの高さなどといった MathML 属性として定義されていない付加情報とともに MathML レンダラーにレンダリング環境が提供されることが重要です。) ただし、MathML 2.0 はスタイル情報がレンダリング環境から継承されるメカニズムについては定めていないことに注意してください。 たとえば、あるブラウザーのプラグインは CSS 継承メカニズムを完全に利用して CSS プロパティーを完全に解析してレンダリングするかも知れませんし、他のアプリケーションではルートノードのスタイル環境のみを考慮して内部のスタイル継承ルールを利用するかも知れません。

ほとんどの MathML レンダラーは、おそらく付加的な内部スタイル処理アルゴリズムが必要となるでしょう。 特に、mathvariant 属性の継承は CSS モデルとは異なります。 この属性の標準値は mi 以外のすべてのトークンに対して normal (非斜体) であり、mi トークンについて、標準値はトークンの中身の文字数に依存します。 (廃止された fontslant 属性もまたこのような挙動を示しました。) 詳しくは 第3.2.3節「識別子 (mi)」 を参照してください。

3.2.2.1 トークン要素において廃止されたスタイル属性

下に挙げる MathML 1.01 のスタイル属性は、MathML 2.0 では廃止されました。CSS をサポートするレンダリング環境では、これらの属性に対応する描画プロパティは CSS を用いて制御することが望ましいです。しかし通常は、上で述べたように、これらの描画プロパティをどんな方法であれ直接的に操作することは避けるべきです。

もしも新しい数学用スタイル属性と、それに競合する廃止属性の両方が同時に指定される場合、新しい数学用スタイル属性の値が使われるべきです。たとえば

<mi fontweight='bold' mathvariant='normal'> a </mi>

という指定は、通常の太さのフォントで描画され、

<mi fontweight='bold' mathvariant='sans-serif'> a </mi>

というマークアップは、通常の太さの sans serif 書体で描画されるべきです。

<mi fontweight='bold' mathvariant='fraktur'> a1 </mi>

一般に SMP Math Alphanumeric Symbol 文字ではない '1' には fraktur が適応されませんが、この例では mathvariant 属性によって fontweight 属性がオーバーライドされています。 数字の Fraktur 書体のない環境では、これを Fraktur 書体の 'a' と Roman 書体の '1' で描画するレンダラーが多いでしょう。

廃止された 1.01 のスタイルの属性値は、継承関係についても、新しい数学用スタイル属性によってオーバーライドされます。従って

<mstyle fontstyle='italic'>
  <mi mathvariant='bold'> a </mi>
</mstyle>

というマークアップは、太字の直立な (イタリックではない) フォントで描画されるでしょう。

しかし一方で、MathML 1.01 の属性は依然として役に立ちます。 MathML 1.01 属性は、数学レイアウトに必要な直接描画プロパティに対応するので、 MathML のレイアウト規則とアルゴリズムを記述するのにとても便利だからです。 この理由から、そして後方互換性のために、この章で説明している MathML のレンダリング規則は、引き続き MathML 1.01 のスタイル属性を用いた描画プロパティの用語で記述されています。

廃止された属性は以下の通り:

標準値
fontsize number v-unit inherited
fontweight normal | bold inherited
fontstyle normal | italic normal (except on <mi>)
fontfamily string | css-fontfamily inherited
color #rgb | #rrggbb | html-color-name inherited

fontsize 属性は、望み通りのフォントサイズを定めます。 v-unit は、垂直長さの単位です (第2.4.4.3節「CSS互換の属性」を参照してください)。 植字の世界では、フォントサイズを指定するための単位として、一般に pt (ポイント) が用いられます。

もし表示中のフォントでは表示できないフォントサイズが要求された時、レンダラーはもっとも可読性が高く、できうる限り高品質なレンダリングを実現できる方法を選んで、近づけるべきです。

MathML 要素の多くは、子要素について自動的に fontsize を調節します; mstyle の節の scriptlevel の議論を参照してください。→第3.3.4節「スタイルの変更 (mstyle)」

fontfamily 属性の値は、MathML のレンダラーが利用できるフォントの名前であって、レンダラーがそれぞれの方法でフォントを選ぶことができます; この属性に指定できる値とその意味は、レンダラーやその使用される環境に依存し、MathML によって特定されるものではありません。 (ただし下の css-fontfamily についての注意書きを参照してください) (レンダラーがフォントを名前で検索するメカニズムは、大文字小文字を区別することがある、ということに注意しましょう)

もし fontfamily の値がレンダラーによって認識できないものであっても、それは MathML のエラーと解釈してはいけません。 むしろレンダラーは、要求されたフォントに最も近い適切なフォントを使用するか、その属性を無視して値の設定をなかったことにするべきです。

fontfamily 属性の使用は、必ずしもすべての MathML のレンダラーで利用可能ではありません。 特に、ASCII 文字ではない MathML 文字への参照を実現する目的で fontname 属性を使ってはいけません (例えば、一般の文字を非ASCIIグリフに対応させているような Symbol フォントの文字への参照を用いる、など (訳注: 記号フォントを使った ゥ → ハート のような表示はやめろ、と。))。 この方針の結果として、MathML レンダラーは、第 6 章「文字、実体とフォント」に挙げられた MathML 文字は、指定されたフォントで利用できない場合でも、適切にレンダリングするよう心がけるべきです。 そうした描画ができないはずはありません - 最新のレポートによれば、どの文字も、第 6 章「文字、実体とフォント」中の同じ文字に割り当てられた実体名を用いれば XML 風の実体参照 として表現可能、とされているからです。

シンボル css-fontfamily は、CSS の font-family プロパティの legal な値を参照します。 CSS の font-family は、カンマで区切られた代替フォント名ないし一般フォントタイプの優先順位付きリストで、CSS [CSS2] で詳細に記述されています。 MathML レンダラーは、たとえ CSS をサポートしていなくても、レンダリング環境において現実的であればフォント指定に CSS 構文が利用できることが期待されます (第2.4.4.3節「CSS-互換属性」中のCSS-互換属性についての項目も参照してください)。

3.2.2.2 色関係の属性

mathcolor 属性 (および廃止された color 属性) は、トークンの本体の描画に使われる色を制御します。 さらに、mstyle や MathML 式のレンダリング環境から継承する場合は、他のすべての MathML 要素の描画色を制御します。これには、各種の線や、frac, mtable, msqrt によって指定される記号のたぐいを含みます。

mathcolor, color, mathbackground, background の値は、'#'の後に空白を挟まずに 1 桁ないし 2 桁の 16 進の値で赤、緑、青の色素をそれぞれ指定することで、任意の色を表現することができます ( background に対しては `transparent'というキーワードを用いることができます)。16 進の値は、大文字・小文字を区別しません。 それぞれの色素の値は、1 桁なら 0 (色素が存在しない) から F (色素が100%含まれる) まで、2 桁なら 00 (色素が存在しない) から FF (色素が100%含まれる) まで指定することができます。なお、1 桁の x という値は 2 桁の xx という値 (x0 ではありません) と等価です。% x0 という表記の方がより厳密ですが、ブラウザーによってはレンダリングが崩れることがあります。

これらの属性は、後に説明する html-color-name によって指定することもできます。

上で説明した色の構文は、CSS の color および background-color プロパティの構文のサブセットです。 つまり、background-color 構文もまた CSS の background プロパティの構文の完全なサブセットです。background プロパティを用いれば、たとえば背景画像をタイル状に並べるといった指定もできます。一般的な属性名としての background は、MathML では将来的に属性のスコープの拡張を可能にするために用いられています。

それぞれの属性における色の値は、html-color-name で指定することもできます。これは、[HTML4] で定義されている、色名のキーワード (aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white, yellow) のいずれかです。 色名キーワードは、多くのMathML属性値と異なり、CSSおよびHTMLの互換性のために、大文字小文字を区別しないことに注意してください。

The suggested MathML visual rendering rules do not define the precise extent of the region whose background is affected by using the background attribute on mstyle, except that, when mstyle's content does not have negative dimensions and its drawing region is not overlapped by other drawing due to surrounding negative spacing, this region should lie behind all the drawing done to render the content of the mstyle, but should not lie behind any of the drawing done to render surrounding expressions. The effect of overlap of drawing regions caused by negative spacing on the extent of the region affected by the background attribute is not defined by these rules. (訳注: この部分は原文の誤植のようで、のちに出てくるPrecise background region not specifiedが混入してしまったようです)

3.2.3 識別子 (mi)

3.2.3.1 解説

mi 要素は、識別子(identifier)として描画されるシンボル名や任意のテキストを表現するためのものです。識別子には、変数、関数名、およびシンボル定数を含みます。

必ずしもすべての「数学識別子」(mathematical identifiers)mi によって表現されるわけではありません - たとえば、下付文字やプライムを伴う変数は、それぞれ msubmsup によって表現されます。 逆に、級数の合計における省略記号のような、「ターム」としての意味を持つ任意のテキストは、mi で表現することができます。この例は 第3.2.6.4節「Mixing text and mathematics」 に挙げられています。

ここで強調しておきたいのは、miは、プレゼンテーション要素であり、従って、その本体が識別子としてレンダリングされるという意味のみをもつ、ということです。 多くの場合、mi 要素の本体は、実際に変数や関数名といった数学識別子を表現します。 しかし、次の段落で説明されるように、識別子であるかのようにレンダリングされる表記と、実際に数学識別子を表現するべき表記の対応は完全ではありません。 その意味が識別子として保証されている要素については、第4章「コンテンツ・マークアップ」 中の ci の説明を参照してください。

3.2.3.2 属性

mi 要素は、第3.2.2節「トークン要素に共通な数学用スタイル属性」 で挙げられる属性をもつことができますが、 デフォルトの属性値が異なるものがあります:

名前 デフォルト
mathvariant normal | bold | italic | bold-italic | double-struck | bold-fraktur | script | bold-script | fraktur | sans-serif | bold-sans-serif | sans-serif-italic | sans-serif-bold-italic | monospace (本体に依存; 下で説明します)
fontstyle (廃止属性) normal | italic (本体に依存; 下で説明します)

典型的なグラフィカルレンダラーは、mi 要素を描画する際、その周囲に余分な空白をもたないように(周辺要素との間の空白を除く)、要素の本体として含まれる文字を描画するでしょう。 mathvariant および fontstyle のデフォルト値は、要素の本体が一文字でなければ、通常 normal (non-slanted) になりますが、一文字の場合には italic になります。 この規則は mi 要素のみの mathvariant および fontstyle 属性のものである、ということに注意してください; その他の要素に対する mathvariant および fontstyle 属性のデフォルト値は、(常に) normal です。

数学用英数字記号の文字 (第6.2.3節「数学用英数字記号の文字」 および 第3.2.1.1節「英数字記号の文字」 をご覧下さい) の対応文字を決定する目的のために、上で述べた特殊なデフォルト値に対する挙動を含め、mathvariant 属性の値が最初に解決されることに注意してください。

3.2.3.3 例

<mi> x </mi>
<mi> D </mi>
<mi> sin </mi>
<mi mathvariant='script'> L </mi>
<mi></mi>

本体を含まない mi 要素もありえます; たとえば、<mi></mi> という表記は、 (従来の数学構文に従えば) 必要とされる「ターム」をまだ含んでいない MathML 式において、タームの位置を表すために「式エディター」が用いることがあります。

識別子には、「sin」のような関数名が含まれます。 「sin x」のような式は、次のように &ApplyFunction; 演算子 (省略名 &af; もあります) を用いて書かれるべきです; 第3.2.5節「演算子、囲い文字、区切り文字、アクセント (mo)」 の不可視の演算子についての議論も参照してください。

<mrow>
  <mi> sin </mi>
  <mo> &ApplyFunction; </mo>
  <mi> x </mi>
</mrow>

「ターム」として扱われるべきその他のテキストは、mi 要素を用いて表現することができます。たとえば:

<mrow>
  <mn> 1 </mn>
  <mo> + </mo>
  <mi> ... </mi>
  <mo> + </mo>
  <mi> n </mi>
</mrow>

このような例外的な状況で mi が用いられる場合には、 明示的に fontstyle 属性を指定することにより、一部のブラウザーでデフォルトの挙動よりもよい結果が得られることがあります。

シンボル定数名は、mi 要素によって表現されます:

<mi> &pi; </mi>
<mi> &ImaginaryI; </mi>
<mi> &ExponentialE; </mi>

このような定数を表す特別な実体参照を用いることで、MathML のプレゼンテーション要素の解釈が簡単になります。 See Chapter 6 [Characters, Entities and Fonts] for a complete list of character entity references in MathML.

3.2.4 数 (mn)

3.2.4.1 解説

mn 要素は、「数リテラル」や、数リテラルとしてとして描画されるべきその他のデータを表します。一般的に数リテラルは、符号なし整数や実数を表現し、小数点を含みうる数字の連続のことです。

数学における「数」の概念は、非常に微妙で複雑であり、文脈によって異なります。 従って、必ずしも数学上のすべての数が mn を用いて表現されるべきというわけではありません; 数学上の数の異なる表現方法の例を以下に示します。複素数、分数で表される割合、数定数の名前、などを含みます。

数を文字列としてエンコーディングする標準的な方法を用いると、mn 本体の数としての解釈が曖昧になってしまうことがあります。 そのような場合においても、mn はプレゼンテーション要素なので、数リテラルとして描画されることのないその他一般のテキストを mn の本体の中に含むことが望ましい場合がごくまれにあり得ます。 しかし原則的には、mn 要素は、 その本体が実際になんらかの方法で数量を表す場合に用いられるべきです。 何らかの形で数学的な数としての意味が保証されている要素については、 第4章「コンテンツ・マークアップ」 中の cn についての説明を参照してください。

3.2.4.2 属性

mn 要素は、第3.2.2節「トークン要素に共通な数学用のスタイル属性」 で挙げられた属性を受け付けます。

典型的なグラフィカル・レンダラーは、mn 要素の本体の文字を、その周囲に特別な空白をつけず、そのまま描画するでしょう (ただし、mo のような要素と隣接する場合には空白をおきます)。 mi とは異なり、mn 要素は、(通常) その本体に拘わらず標準で直立な (unslanted) フォントで描画されます。

3.2.4.3 例

<mn> 2 </mn>
<mn> 0.123 </mn>
<mn> 1,000,000 </mn>
<mn> 2.1e10 </mn>
<mn> 0xFFEF </mn>
<mn> MCMLXIX </mn>
<mn> twenty one </mn>

3.2.4.4 mn のみを用いて記述されるべきではない

多くの数学上の数は、mn だけではなく、他のプレゼンテーション要素を用いて表されるべきです; これには、複素数や、分数で表される割合、数定数の名前などが含まれます。このような MathML 表現の例は、以下のようになります:

<mrow>
  <mn> 2 </mn>
  <mo> + </mo>
  <mrow>
    <mn> 3 </mn>
    <mo> &InvisibleTimes; </mo>
    <mi> &ImaginaryI; </mi>
  </mrow>
</mrow>
<mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>
<mi> &pi; </mi>
<mi> &ExponentialE; </mi>

3.2.5 演算子、囲い文字、区切り文字、アクセント (mo)

3.2.5.1 解説

mo要素は、演算子もしくは演算子として描画されるべきその他のものを表します。 一般的に、数学で用いられる演算子の表記に関する慣習はとても複雑で、ゆえに MathML では mo 要素のレンダリングの挙動について、やや洗練されたメカニズムを採用しています。 その結果、MathML では従来は数学的な演算子として扱われなかった多くの表記を「演算子として描画される」べきものに含めるようになりました。 これらには、挿入辞・接頭辞・接尾辞の形式をを含めた従来の演算子以外に、大括弧・丸括弧・絶対値記号のような囲い文字、カンマやセミコロンのような区切り文字、そして記号の上部に付けるバーやチルダなどのような数学的なアクセントが含まれます。

用語「演算子」は、この章では演算子として描画されるべき記号ないし表記のことを意味します。従って演算子は、mo によって表されます。つまり、特に指定がなく文脈からも明らかではない場合には、用語「演算子」に既存の演算子、囲い文字、区切り文字、アクセントを含むということです。

このような記号は、基本的に同じレンダリング属性・レンダリング規則に属しているため、MathML ではすべて mo 要素で表されます; レンダリングにおいて記号の種類による些細な区別があれば、ブール (boolean) 属性である fenceseparatoraccent を用いてその区別を行います。

mo 要素のもっとも大切な特徴は、そのデフォルト値が次に説明するように「演算子辞書」から場合に応じて決定されるということです。特に、fenceseparatoraccent のデフォルト値は一般に演算子辞書から選ばれ、従って、それぞれの mo 要素に対して個別に指定する必要がありません。

数学演算子の中には、mo 要素のみではなく、(たとえば)周囲の上付き文字によって修飾された mo 要素によって表されるものもあることに注意してください (このことについては後にさらに記述しています)。一方、mo 要素はプレゼンテーション要素なので、 テキストが一般には演算子として扱われない場合でも一般的なテキストを mo 要素に含むことができます。 たとえば、第3.2.6節「テキスト (mtext)」中の「テキストと数学の混合」の議論をご覧下さい。MathML で特定の数学演算子としての意味を含むことが保証されたコンテンツ要素の定義については第4章「コンテンツ・マークアップ」も参照してください。

3.2.5.2 属性
3.2.5.2 Attributes

mo 要素は、 第3.2.2節「トークン要素に共通な数学スタイル属性」 で挙げられた属性と、ここで挙げる追加的な属性ををとることができます。 多くの属性のデフォルト値は、この節の後で述べるとおり 第3.2.5.7.1節「演算子辞書」 にあります。 与えられた mo 要素が辞書のエントリーとして見つからない場合は、ここで括弧付きで示されるデフォルト値が用いられます。
mo elements accept the attributes listed in Section 3.2.2 [Mathematics style attributes common to token elements], and the additional attributes listed here. Most attributes get their default values from the Section 3.2.5.7.1 [The operator dictionary], as described later in this section. When a dictionary entry is not found for a given mo element, the default value shown here in parentheses is used.

属性名
Name

values
デフォルト
default
form prefix | infix | postfix mrow の中での演算子の位置による (規則は後述); mo の本体とともに演算子辞書をインデックス付けするために用いられる
set by position of operator in an mrow (rule given below); used with mo content to index operator dictionary
fence true | false 辞書によって決定 (false)
set by dictionary (false)
separator true | false 辞書によって決定 (false)
set by dictionary (false)
lspace number h-unit | namedspace 辞書によって決定 (thickmathspace)
set by dictionary (thickmathspace)
rspace number h-unit | namedspace 辞書によって決定 (thickmathspace)
set by dictionary (thickmathspace)
stretchy true | false 辞書によって決定 (false)
set by dictionary (false)
symmetric true | false 辞書によって決定 (true)
set by dictionary (true)
maxsize number [ v-unit | h-unit ] | namedspace | infinity 辞書によって決定 (infinity)
set by dictionary (infinity)
minsize number [ v-unit | h-unit ] | namedspace 辞書によって決定 (1)
set by dictionary (1)
largeop true | false 辞書によって決定 (false)
set by dictionary (false)
movablelimits true | false 辞書によって決定 (false)
set by dictionary (false)
accent true | false 辞書によって決定 (false)
set by dictionary (false)

h-unit represents a unit of horizontal length, and v-unit represents a unit of vertical length (see Section 2.4.4.2 [Attributes with units]). namedspace is one of veryverythinmathspace, verythinmathspace, thinmathspace, mediummathspace, thickmathspace, verythickmathspace, or veryverythickmathspace. These values can be set by using the mstyle element as is further discussed in Section 3.3.4 [Style Change (mstyle)].

If no unit is given with maxsize or minsize, the number is a multiplier of the normal size of the operator in the direction (or directions) in which it stretches. These attributes are further explained below.

Typical graphical renderers show all mo elements as the characters of their content, with additional spacing around the element determined from the attributes listed above. Detailed rules for determining operator spacing in visual renderings are described in a subsection below. As always, MathML does not require a specific rendering, and these rules are provided as suggestions for the convenience of implementors.

Renderers without access to complete fonts for the MathML character set may choose not to render an mo element as precisely the characters in its content in some cases. For example, <mo> &le; </mo> might be rendered as <= to a terminal. However, as a general rule, renderers should attempt to render the content of an mo element as literally as possible. That is, <mo> &le; </mo> and <mo> &lt;= </mo> should render differently. (The first one should render as a single character representing a less-than-or-equal-to sign, and the second one as the two-character sequence <=.)

3.2.5.3 Examples with ordinary operators

<mo> + </mo>
<mo> &lt; </mo>
<mo> &le; </mo>
<mo> &lt;= </mo>
<mo> ++ </mo>
<mo> &sum; </mo>
<mo> .NOT. </mo>
<mo> and </mo>
<mo> &InvisibleTimes; </mo>
<mo mathvariant='bold'> + </mo>

3.2.5.4 Examples with fences and separators

Note that the mo elements in these examples don't need explicit fence or separator attributes, since these can be found using the operator dictionary as described below. Some of these examples could also be encoded using the mfenced element described in Section 3.3.8 [Expression Inside Pair of Fences (mfenced)].

(a+b)

<mrow>
  <mo> ( </mo>
  <mrow>
    <mi> a </mi>
    <mo> + </mo>
    <mi> b </mi>
  </mrow>
  <mo> ) </mo>
</mrow>

[0,1)

<mrow>
  <mo> [ </mo>
  <mrow>
    <mn> 0 </mn>
    <mo> , </mo>
    <mn> 1 </mn>
  </mrow>
  <mo> ) </mo>
</mrow>

f(x,y)

<mrow>
  <mi> f </mi>
  <mo> &ApplyFunction; </mo>
  <mrow>
    <mo> ( </mo>
    <mrow>
      <mi> x </mi>
      <mo> , </mo>
      <mi> y </mi>
    </mrow>
    <mo> ) </mo>
  </mrow>
</mrow>

3.2.5.5 Invisible operators

Certain operators that are `invisible' in traditional mathematical notation should be represented using specific entity references within mo elements, rather than simply by nothing. The entity references used for these `invisible operators' are:

Full name Short name Examples of use
&InvisibleTimes; &it; xy
&ApplyFunction; &af; f(x) sin x
&InvisibleComma; &ic; m12

The MathML representations of the examples in the above table are:

<mrow>
  <mi> x </mi>
  <mo> &InvisibleTimes; </mo>
  <mi> y </mi>
</mrow>

<mrow>
  <mi> f </mi>
  <mo> &ApplyFunction; </mo>
  <mrow>
    <mo> ( </mo>
    <mi> x </mi>
    <mo> ) </mo>
  </mrow>
</mrow>

<mrow>
  <mi> sin </mi>
  <mo> &ApplyFunction; </mo>
  <mi> x </mi>
</mrow>

<msub>
  <mi> m </mi>
  <mrow>
    <mn> 1 </mn>
    <mo> &InvisibleComma; </mo>
    <mn> 2 </mn>
  </mrow>
</msub>

The reasons for using specific mo elements for invisible operators include:

For example, an audio renderer might render f(x) (represented as in the above examples) by speaking `f of x', but use the word `times' in its rendering of xy. Although its rendering must still be different depending on the structure of neighboring elements (sometimes leaving out `of' or `times' entirely), its task is made much easier by the use of a different mo element for each invisible operator.

3.2.5.6 Names for other special operators

MathML also includes &DifferentialD; for use in an mo element representing the differential operator symbol usually denoted by `d'. The reasons for explicitly using this special entity are similar to those for using the special entities for invisible operators described in the preceding section.

3.2.5.7 Detailed rendering rules for mo elements

Typical visual rendering behaviors for mo elements are more complex than for the other MathML token elements, so the rules for rendering them are described in this separate subsection.

Note that, like all rendering rules in MathML, these rules are suggestions rather than requirements. Furthermore, no attempt is made to specify the rendering completely; rather, enough information is given to make the intended effect of the various rendering attributes as clear as possible.

The operator dictionary

Many mathematical symbols, such as an integral sign, a plus sign, or a parenthesis, have a well-established, predictable, traditional notational usage. Typically, this usage amounts to certain default attribute values for mo elements with specific contents and a specific form attribute. Since these defaults vary from symbol to symbol, MathML anticipates that renderers will have an `operator dictionary' of default attributes for mo elements (see Appendix F [Operator Dictionary]) indexed by each mo element's content and form attribute. If an mo element is not listed in the dictionary, the default values shown in parentheses in the table of attributes for mo should be used, since these values are typically acceptable for a generic operator.

Some operators are `overloaded', in the sense that they can occur in more than one form (prefix, infix, or postfix), with possibly different rendering properties for each form. For example, `+' can be either a prefix or an infix operator. Typically, a visual renderer would add space around both sides of an infix operator, while only on the left of a prefix operator. The form attribute allows specification of which form to use, in case more than one form is possible according to the operator dictionary and the default value described below is not suitable.

Default value of the form attribute

The form attribute does not usually have to be specified explicitly, since there are effective heuristic rules for inferring the value of the form attribute from the context. If it is not specified, and there is more than one possible form in the dictionary for an mo element with given content, the renderer should choose which form to use as follows (but see the exception for embellished operators, described later):

Note that these rules make reference to the mrow in which the mo element lies. In some situations, this mrow might be an inferred mrow implicitly present around the arguments of an element such as msqrt or mtd.

Opening (left) fences should have form="prefix", and closing (right) fences should have form="postfix"; separators are usually `infix', but not always, depending on their surroundings. As with ordinary operators, these values do not usually need to be specified explicitly.

If the operator does not occur in the dictionary with the specified form, the renderer should use one of the forms that is available there, in the order of preference: infix, postfix, prefix; if no forms are available for the given mo element content, the renderer should use the defaults given in parentheses in the table of attributes for mo.

Exception for embellished operators

There is one exception to the above rules for choosing an mo element's default form attribute. An mo element that is `embellished' by one or more nested subscripts, superscripts, surrounding text or whitespace, or style changes behaves differently. It is the embellished operator as a whole (this is defined precisely, below) whose position in an mrow is examined by the above rules and whose surrounding spacing is affected by its form, not the mo element at its core; however, the attributes influencing this surrounding spacing are taken from the mo element at the core (or from that element's dictionary entry).

For example, the `+4' in a+4b should be considered an infix operator as a whole, due to its position in the middle of an mrow, but its rendering attributes should be taken from the mo element representing the `+', or when those are not specified explicitly, from the operator dictionary entry for <mo form="infix"> + </mo>. The precise definition of an `embellished operator' is:

Note that this definition permits nested embellishment only when there are no intervening enclosing elements not in the above list.

The above rules for choosing operator forms and defining embellished operators are chosen so that in all ordinary cases it will not be necessary for the author to specify a form attribute.

Rationale for definition of embellished operators

The following notes are included as a rationale for certain aspects of the above definitions, but should not be important for most users of MathML.

An mfrac is included as an `embellisher' because of the common notation for a differential operator:

<mfrac>
  <mo> &DifferentialD; </mo>
  <mrow>
    <mo> &DifferentialD; </mo>
    <mi> x </mi>
  </mrow>
</mfrac>

Since the definition of embellished operator affects the use of the attributes related to stretching, it is important that it includes embellished fences as well as ordinary operators; thus it applies to any mo element.

Note that an mrow containing a single argument is an embellished operator if and only if its argument is an embellished operator. This is because an mrow with a single argument must be equivalent in all respects to that argument alone (as discussed in Section 3.3.1 [Horizontally Group Sub-Expressions (mrow)]). This means that an mo element that is the sole argument of an mrow will determine its default form attribute based on that mrow's position in a surrounding, perhaps inferred, mrow (if there is one), rather than based on its own position in the mrow in which it is the sole argument.

Note that the above definition defines every mo element to be `embellished' - that is, `embellished operator' can be considered (and implemented in renderers) as a special class of MathML expressions, of which mo is a specific case.

Spacing around an operator

The amount of space added around an operator (or embellished operator), when it occurs in an mrow, can be directly specified by the lspace and rspace attributes. These values are in ems if no units are given. By convention, operators that tend to bind tightly to their arguments have smaller values for spacing than operators that tend to bind less tightly. This convention should be followed in the operator dictionary included with a MathML renderer. In TEX, these values can only be one of three values; typically they are 3/18em, 4/18em, and 5/18em. MathML does not impose this limit.

Some renderers may choose to use no space around most operators appearing within subscripts or superscripts, as is done in TEX.

Non-graphical renderers should treat spacing attributes, and other rendering attributes described here, in analogous ways for their rendering medium. For example, more space might translate into a longer pause in an audio rendering.

3.2.5.8 Stretching of operators, fences and accents

Four attributes govern whether and how an operator (perhaps embellished) stretches so that it matches the size of other elements: stretchy, symmetric, maxsize, and minsize. If an operator has the attribute stretchy=true, then it (that is, each character in its content) obeys the stretching rules listed below, given the constraints imposed by the fonts and font rendering system. In practice, typical renderers will only be able to stretch a small set of characters, and quite possibly will only be able to generate a discrete set of character sizes.

There is no provision in MathML for specifying in which direction (horizontal or vertical) to stretch a specific character or operator; rather, when stretchy=true it should be stretched in each direction for which stretching is possible. It is up to the renderer to know in which directions it is able to stretch each character. (Most characters can be stretched in at most one direction by typical renderers, but some renderers may be able to stretch certain characters, such as diagonal arrows, in both directions independently.)

The minsize and maxsize attributes limit the amount of stretching (in either direction). These two attributes are given as multipliers of the operator's normal size in the direction or directions of stretching, or as absolute sizes using units. For example, if a character has maxsize="3", then it can grow to be no more than three times its normal (unstretched) size.

The symmetric attribute governs whether the height and depth above and below the axis of the character are forced to be equal (by forcing both height and depth to become the maximum of the two). An example of a situation where one might set symmetric=false arises with parentheses around a matrix not aligned on the axis, which frequently occurs when multiplying non-square matrices. In this case, one wants the parentheses to stretch to cover the matrix, whereas stretching the parentheses symmetrically would cause them to protrude beyond one edge of the matrix. The symmetric attribute only applies to characters that stretch vertically (otherwise it is ignored).

If a stretchy mo element is embellished (as defined earlier in this section), the mo element at its core is stretched to a size based on the context of the embellished operator as a whole, i.e. to the same size as if the embellishments were not present. For example, the parentheses in the following example (which would typically be set to be stretchy by the operator dictionary) will be stretched to the same size as each other, and the same size they would have if they were not underlined and overlined, and furthermore will cover the same vertical interval:

<mrow>
  <munder>
    <mo> ( </mo>
    <mo> &UnderBar; </mo>
  </munder>
  <mfrac>
    <mi> a </mi>
    <mi> b </mi>
  </mfrac>
  <mover>
    <mo> ) </mo>
    <mo> &OverBar; </mo>
  </mover>
</mrow>

Note that this means that the stretching rules given below must refer to the context of the embellished operator as a whole, not just to the mo element itself.

Example of stretchy attributes

This shows one way to set the maximum size of a parenthesis so that it does not grow, even though its default value is stretchy=true.

<mrow>
  <mo maxsize="1"> ( </mo>
  <mfrac>
    <mi> a </mi> <mi> b </mi>
  </mfrac>
  <mo maxsize="1"> ) </mo>
</mrow>

The above should render as (\frac{a}{b}) as opposed to the default rendering \left(\frac{a}{b}\right).

Note that each parenthesis is sized independently; if only one of them had maxsize="1", they would render with different sizes.

Vertical Stretching Rules

Most common opening and closing fences are defined in the operator dictionary to stretch by default; and they stretch vertically. Also, operators such as &sum;, &int;, /, and vertical arrows stretch vertically by default.

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume each cell of the table row containing the stretchy operator covers exactly one row. (Equivalently, the value of the rowspan attribute is assumed to be 1 for all the table cells in the table row, including the cell containing the operator.) When this is not the case, the operator should only be stretched vertically to cover those table cells that are entirely within the set of table rows that the operator's cell covers. Table cells that extend into rows not covered by the stretchy operator's table cell should be ignored. See Section 3.5.4.2 [Attributes] for details about the rowspan attribute.

Horizontal Stretching Rules

By default, most horizontal arrows and some accents stretch horizontally.

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume each cell of the table column containing the stretchy operator covers exactly one column. (Equivalently, the value of the columnspan attribute is assumed to be 1 for all the table cells in the table row, including the cell containing the operator.) When this is not the case, the operator should only be stretched horizontally to cover those table cells that are entirely within the set of table columns that the operator's cell covers. Table cells that extend into columns not covered by the stretchy operator's table cell should be ignored. See Section 3.5.4.2 [Attributes] for details about the rowspan attribute.

The rules for horizontal stretching include mtd elements to allow arrows to stretch for use in commutative diagrams laid out using mtable. The rules for the horizontal stretchiness include scripts to make examples such as the following work:

<mrow>
  <mi> x </mi>
  <munder>
    <mo> &RightArrow; </mo>
    <mtext> maps to </mtext>
  </munder>
  <mi> y </mi>
</mrow>

This displays as x \widearrow{\mathrm{maps~to}} y.

Rules Common to both Vertical and Horizontal Stretching

If a stretchy operator is not required to stretch (i.e. if it is not in one of the locations mentioned above, or if there are no other expressions whose size it should stretch to match), then it has the standard (unstretched) size determined by the font and current fontsize.

If a stretchy operator is required to stretch, but all other expressions in the containing element (as described above) are also stretchy, all elements that can stretch should grow to the maximum of the normal unstretched sizes of all elements in the containing object, if they can grow that large. If the value of minsize or maxsize prevents this then that (min or max) size is used.

For example, in an mrow containing nothing but vertically stretchy operators, each of the operators should stretch to the maximum of all of their normal unstretched sizes, provided no other attributes are set that override this behavior. Of course, limitations in fonts or font rendering may result in the final, stretched sizes being only approximately the same.

3.2.5.9 Other attributes of mo

The largeop attribute specifies whether the operator should be drawn larger than normal if displaystyle=true in the current rendering environment. This roughly corresponds to TEX's \displaystyle style setting. MathML uses two attributes, displaystyle and scriptlevel, to control orthogonal presentation features that TEX encodes into one `style' attribute with values \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle. These attributes are discussed further in Section 3.3.4 [Style Change (mstyle)] describing the mstyle element. Note that these attributes can be specified directly on an mstyle element's start tag, but not on most other elements. Examples of large operators include &int; and &prod;.

The movablelimits attribute specifies whether underscripts and overscripts attached to this mo element should be drawn as subscripts and superscripts when displaystyle=false. movablelimits=false means that underscripts and overscripts should never be drawn as subscripts and superscripts. In general, displaystyle is true for displayed mathematics and false for inline mathematics. Also, displaystyle is false by default within tables, scripts and fractions, and a few other exceptional situations detailed in Section 3.3.4 [Style Change (mstyle)]. Thus, operators with movablelimits=true will display with limits (i.e. underscripts and overscripts) in displayed mathematics, and with subscripts and superscripts in inline mathematics, tables, scripts and so on. Examples of operators that typically have movablelimits=true are sum, prod, and lim.

The accent attribute determines whether this operator should be treated by default as an accent (diacritical mark) when used as an underscript or overscript; see munder, mover, and munderover (Section 3.4.4 [Underscript (munder)], Section 3.4.5 [Overscript (mover)] and Section 3.4.6 [Underscript-overscript Pair (munderover)]).

The separator attribute may affect automatic linebreaking in renderers that position ordinary infix operators at the beginnings of broken lines rather than at the ends (that is, which avoid linebreaking just after such operators), since linebreaking should be avoided just before separators, but is acceptable just after them.

The fence attribute has no effect in the suggested visual rendering rules given here; it is not needed for properly rendering traditional notation using these rules. It is provided so that specific MathML renderers, especially non-visual renderers, have the option of using this information.

3.2.6 Text (mtext)

3.2.6.1 Description

An mtext element is used to represent arbitrary text that should be rendered as itself. In general, the mtext element is intended to denote commentary text.

Note that some text with a clearly defined notational role might be more appropriately marked up using mi or mo; this is discussed further below.

An mtext element can be used to contain `renderable whitespace', i.e. invisible characters that are intended to alter the positioning of surrounding elements. In non-graphical media, such characters are intended to have an analogous effect, such as introducing positive or negative time delays or affecting rhythm in an audio renderer. This is not related to any whitespace in the source MathML consisting of blanks, newlines, tabs, or carriage returns; whitespace present directly in the source is trimmed and collapsed, as described in Section 2.4.6 [Collapsing Whitespace in Input]. Whitespace that is intended to be rendered as part of an element's content must be represented by entity references or mspace elements (unless it consists only of single blanks between non-whitespace characters).

Renderable whitespace can have a positive or negative width, as in &ThinSpace; and &NegativeThinSpace;, or zero width, as in &ZeroWidthSpace;. The complete list of such characters is given in Chapter 6 [Characters, Entities and Fonts]. Note that there is no formal distinction in MathML between renderable whitespace characters and any other class of characters, in mtext or in any other element.

Renderable whitespace can also include characters that affect alignment or linebreaking. Some of these characters are:

Entity name Purpose (rough description)
&NewLine; start a new line and do not indent
&IndentingNewLine; start a new line and do indent
&NoBreak; do not allow a linebreak here
&GoodBreak; if a linebreak is needed on the line, here is a good spot
&BadBreak; if a linebreak is needed on the line, try to avoid breaking here

For the complete list of MathML entities, consult Chapter 6 [Characters, Entities and Fonts].

3.2.6.2 Attributes

mtext elements accept the attributes listed in Section 3.2.2 [Mathematics style attributes common to token elements].

See also the warnings about the legal grouping of `space-like elements' in Section 3.2.7 [Space (mspace)], and about the use of such elements for `tweaking' or conveying meaning in Section 3.3.6 [Adjust Space Around Content (mpadded)].

3.2.6.3 Examples

<mtext> Theorem 1: </mtext>
<mtext> &ThinSpace; </mtext>
<mtext> &ThickSpace;&ThickSpace; </mtext>
<mtext> /* a comment */ </mtext>

3.2.6.4 Mixing text and mathematics

In some cases, text embedded in mathematics could be more appropriately represented using mo or mi elements. For example, the expression `there exists \delta>0 such that f(x) <1' is equivalent to \exists \delta>0 \backepsilon f(x)<1 and could be represented as:

<mrow>
  <mo> there exists </mo>
  <mrow>
    <mrow>
      <mi> &delta; </mi>
      <mo> &gt; </mo>
      <mn> 0 </mn>
    </mrow>
    <mo> such that </mo>
    <mrow>
      <mrow>
        <mi> f </mi>
        <mo> &ApplyFunction; </mo>
        <mrow>
          <mo> ( </mo>
          <mi> x </mi>
          <mo> ) </mo>
        </mrow>
      </mrow>
      <mo> &lt; </mo>
      <mn> 1 </mn>
    </mrow>
  </mrow>
</mrow>

An example involving an mi element is: x+x2+···+xn. In this example, ellipsis should be represented using an mi element, since it takes the place of a term in the sum; (see Section 3.2.3 [Identifier (mi)]).

On the other hand, expository text within MathML is best represented with an mtext element. An example of this is:

Theorem 1: if x > 1, then x2 > x.

However, when MathML is embedded in HTML, or another document markup language, the example is probably best rendered with only the two inequalities represented as MathML at all, letting the text be part of the surrounding HTML.

Another factor to consider in deciding how to mark up text is the effect on rendering. Text enclosed in an mo element is unlikely to be found in a renderer's operator dictionary, so it will be rendered with the format and spacing appropriate for an `unrecognized operator', which may or may not be better than the format and spacing for `text' obtained by using an mtext element. An ellipsis entity in an mi element is apt to be spaced more appropriately for taking the place of a term within a series than if it appeared in an mtext element.

3.2.7 Space (mspace)

3.2.7.1 Description

An mspace empty element represents a blank space of any desired size, as set by its attributes. It can also be used to make linebreaking suggestions to a visual renderer. Note that the default values for attributes have been chosen so that they typically will have no effect on rendering. Thus, the mspace element is generally used with one or more attribute values explicitly specified.

3.2.7.2 Attributes

In addition to the attributes listed below, mspace permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
width number h-unit | namedspace 0em
height number v-unit 0ex
depth number v-unit 0ex
linebreak auto | newline | indentingnewline | nobreak | goodbreak | badbreak auto

h-unit and v-unit represent units of horizontal or vertical length, respectively (see Section 2.4.4.2 [Attributes with units]).

The linebreak attribute is used to give a linebreaking hint to a visual renderer. The default value is auto, which indicates that a renderer should use whatever default linebreaking algorithm it would normally use. The meaning of the other possible values for the linebreak attribute are described above in the discussion on renderable whitespace in the mtext element. See Section 3.2.6 [Text (mtext)] for details.

In the case when both dimensional attributes and a linebreaking attribute are set, the linebreaking attribute is ignored.

Note the warning about the legal grouping of `space-like elements' given below, and the warning about the use of such elements for `tweaking' or conveying meaning in Section 3.3.6 [Adjust Space Around Content (mpadded)]. See also the other elements that can render as whitespace, namely mtext, mphantom, and maligngroup.

3.2.7.3 Definition of space-like elements

A number of MathML presentation elements are `space-like' in the sense that they typically render as whitespace, and do not affect the mathematical meaning of the expressions in which they appear. As a consequence, these elements often function in somewhat exceptional ways in other MathML expressions. For example, space-like elements are handled specially in the suggested rendering rules for mo given in Section 3.2.5 [Operator, Fence, Separator or Accent (mo)]. The following MathML elements are defined to be `space-like':

Note that an mphantom is not automatically defined to be space-like, unless its content is space-like. This is because operator spacing is affected by whether adjacent elements are space-like. Since the mphantom element is primarily intended as an aid in aligning expressions, operators adjacent to an mphantom should behave as if they were adjacent to the contents of the mphantom, rather than to an equivalently sized area of whitespace.

3.2.7.4 Legal grouping of space-like elements

Authors who insert space-like elements or mphantom elements into an existing MathML expression should note that such elements are counted as arguments, in elements that require a specific number of arguments, or that interpret different argument positions differently.

Therefore, space-like elements inserted into such a MathML element should be grouped with a neighboring argument of that element by introducing an mrow for that purpose. For example, to allow for vertical alignment on the right edge of the base of a superscript, the expression

<msup>
  <mi> x </mi>
  <malignmark edge="right"/>
  <mn> 2 </mn>
</msup>

is illegal, because msup must have exactly 2 arguments; the correct expression would be:

<msup>
  <mrow>
    <mi> x </mi>
    <malignmark edge="right"/>
  </mrow>
  <mn> 2 </mn>
</msup>

See also the warning about `tweaking' in Section 3.3.6 [Adjust Space Around Content (mpadded)].

3.2.8 String Literal (ms)

3.2.8.1 Description

The ms element is used to represent `string literals' in expressions meant to be interpreted by computer algebra systems or other systems containing `programming languages'. By default, string literals are displayed surrounded by double quotes. As explained in Section 3.2.6 [Text (mtext)], ordinary text embedded in a mathematical expression should be marked up with mtext, or in some cases mo or mi, but never with ms.

Note that the string literals encoded by ms are `Unicode strings' rather than `ASCII strings'. In practice, non-ASCII characters will typically be represented by entity references. For example, <ms>&amp</ms> represents a string literal containing a single character, &, and <ms>&amp;amp;</ms> represents a string literal containing 5 characters, the first one of which is &.

Like all token elements, ms does trim and collapse whitespace in its content according to the rules of Section 2.4.6 [Collapsing Whitespace in Input], so whitespace intended to remain in the content should be encoded as described in that section.

3.2.8.2 Attributes

ms elements accept the attributes listed in Section 3.2.2 [Mathematics style attributes common to token elements], and additionally:

Name values default
lquote string &quot;
rquote string &quot;

In visual renderers, the content of an ms element is typically rendered with no extra spacing added around the string, and a quote character at the beginning and the end of the string. By default, the left and right quote characters are both the standard double quote character &quot;. However, these characters can be changed with the lquote and rquote attributes respectively.

The content of ms elements should be rendered with visible `escaping' of certain characters in the content, including at least `double quote' itself, and preferably whitespace other than individual space characters. The intent is for the viewer to see that the expression is a string literal, and to see exactly which characters form its content. For example, <ms>double quote is "</ms> might be rendered as "double quote is \"".

3.2.9 Adding new character glyphs to MathML (mglyph)

3.2.9.1 Description

Unicode defines a large number of characters used in mathematics, and in most cases, glyphs representing these characters are widely available in a variety of fonts. Although these characters should meet almost all users needs, MathML recognizes that mathematics is not static and that new characters are added when convenient. Characters that become well accepted will likely be eventually incorporated by the Unicode Consortium or other standards bodies, but that is often a lengthy process. In the meantime, a mechanism is necessary for accessing glyphs from non-standard fonts representing these characters.

The mglyph element is the means by which users can directly access glyphs for characters that are not defined by Unicode, or not known to the renderer. Similarly, the mglyph element can also be used to select glyph variants for existing Unicode characters, as might be desirable when a glyph variant has begun to differentiate itself as a new character by taking on a distinguished mathematical meaning.

The mglyph element names a specific character glyph, and is valid inside any MathML leaf content listed in Section 3.1.6 [Summary of Presentation Elements] (mi, etc.) or Section 4.2.2 [Containers] (ci, etc.) unless otherwise restricted by an attribute (e.g. base=2 to <cn>). In order for a visually-oriented renderer to render the character, the renderer must be told what font to use and what index within that font to use.

3.2.9.2 Attributes

mglyph elements accept the attributes listed in Section 3.2.2 [Mathematics style attributes common to token elements], and the additional attributes listed here.

Name values default
alt string required
fontfamily string | css-fontfamily required
index integer required

The alt attribute provides an alternate name for the glyph. If the specified font can't be found, the renderer may use this name in a warning message or some unknown glyph notation. The name might also be used by an audio renderer or symbol processing system and should be chosen to be descriptive. The fontfamily and index uniquely identify the mglyph; two mglyphs with the same values for fontfamily and index should be considered identical by applications that must determine whether two characters/glyphs are identical. The alt attribute should not be part of the identity test.

The fontfamily and index attributes name a font and position within that font. All font properties apart from fontfamily are inherited. Variants of the font (e.g., bold) that may be inherited may be ignored if the variant of the font is not present.

Authors should be aware that rendering requires the fonts referenced by mglyph, which the MathML renderer may not have access to or may be not be supported by the system on which the renderer runs. For these reasons, authors are encouraged to use mglyph only when absolutely necessary, and not for stylistic purposes.

3.2.9.3 Example

The following example illustrates how a researcher might use the mglyph construct with an experimental font to work with braid group notation.

<mrow>
  <mi><mglyph fontfamily="my-braid-font" index="2" alt="23braid"/></mi>
  <mo>+</mo>
  <mi><mglyph fontfamily="my-braid-font" index="5" alt="132braid"/></mi>
  <mo>=</mo>
  <mi><mglyph fontfamily="my-braid-font" index="3" alt="13braid"/></mi>
</mrow>

This might render as:

\includegraphics{braids}

3.3 General Layout Schemata

Besides tokens there are several families of MathML presentation elements. One family of elements deals with various `scripting' notations, such as subscript and superscript. Another family is concerned with matrices and tables. The remainder of the elements, discussed in this section, describe other basic notations such as fractions and radicals, or deal with general functions such as setting style properties and error handling.

3.3.1 Horizontally Group Sub-Expressions (mrow)

3.3.1.1 Description

An mrow element is used to group together any number of sub-expressions, usually consisting of one or more mo elements acting as `operators' on one or more other expressions that are their `operands'.

Several elements automatically treat their arguments as if they were contained in an mrow element. See the discussion of inferred mrows in Section 3.1.3 [Required Arguments]. See also mfenced (Section 3.3.8 [Expression Inside Pair of Fences (mfenced)]), which can effectively form an mrow containing its arguments separated by commas.

3.3.1.2 Attributes

This element only permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

mrow elements are typically rendered visually as a horizontal row of their arguments, left to right in the order in which the arguments occur, or audibly as a sequence of renderings of the arguments. The description in Section 3.2.5 [Operator, Fence, Separator or Accent (mo)] of suggested rendering rules for mo elements assumes that all horizontal spacing between operators and their operands is added by the rendering of mo elements (or, more generally, embellished operators), not by the rendering of the mrows they are contained in.

MathML is designed to allow renderers to automatically linebreak expressions (that is, to break excessively long expressions into several lines), without requiring authors to specify explicitly how this should be done. This is because linebreaking positions can't be chosen well without knowing the width of the display device and the current font size, which for many uses of MathML will not be known except by the renderer at the time of each rendering.

Determining good positions for linebreaks is complex, and rules for this are not described here; whether and how it is done is up to each MathML renderer. Typically, linebreaking will involve selection of `good' points for insertion of linebreaks between successive arguments of mrow elements.

Although MathML does not require linebreaking or specify a particular linebreaking algorithm, it has several features designed to allow such algorithms to produce good results. These include the use of special entities for certain operators, including invisible operators (see Section 3.2.5 [Operator, Fence, Separator or Accent (mo)]), or for providing hints related to linebreaking when necessary (see Section 3.2.6 [Text (mtext)]), and the ability to use nested mrows to describe sub-expression structure (see below).

mrow of one argument

MathML renderers are required to treat an mrow element containing exactly one argument as equivalent in all ways to the single argument occurring alone, provided there are no attributes on the mrow element's start tag. If there are attributes on the mrow element's start tag, no requirement of equivalence is imposed. This equivalence condition is intended to simplify the implementation of MathML-generating software such as template-based authoring tools. It directly affects the definitions of embellished operator and space-like element and the rules for determining the default value of the form attribute of an mo element; see Section 3.2.5 [Operator, Fence, Separator or Accent (mo)] and Section 3.2.7 [Space (mspace)]. See also the discussion of equivalence of MathML expressions in Chapter 7 [The MathML Interface].

3.3.1.3 Proper grouping of sub-expressions using mrow

Sub-expressions should be grouped by the document author in the same way as they are grouped in the mathematical interpretation of the expression; that is, according to the underlying `syntax tree' of the expression. Specifically, operators and their mathematical arguments should occur in a single mrow; more than one operator should occur directly in one mrow only when they can be considered (in a syntactic sense) to act together on the interleaved arguments, e.g. for a single parenthesized term and its parentheses, for chains of relational operators, or for sequences of terms separated by + and -. A precise rule is given below.

Proper grouping has several purposes: it improves display by possibly affecting spacing; it allows for more intelligent linebreaking and indentation; and it simplifies possible semantic interpretation of presentation elements by computer algebra systems, and audio renderers.

Although improper grouping will sometimes result in suboptimal renderings, and will often make interpretation other than pure visual rendering difficult or impossible, any grouping of expressions using mrow is allowed in MathML syntax; that is, renderers should not assume the rules for proper grouping will be followed.

Precise rule for proper grouping

A precise rule for when and how to nest sub-expressions using mrow is especially desirable when generating MathML automatically by conversion from other formats for displayed mathematics, such as TEX, which don't always specify how sub-expressions nest. When a precise rule for grouping is desired, the following rule should be used:

Two adjacent operators (i.e. mo elements, possibly embellished), possibly separated by operands (i.e. anything other than operators), should occur in the same mrow only when the left operator has an infix or prefix form (perhaps inferred), the right operator has an infix or postfix form, and the operators are listed in the same group of entries in the operator dictionary provided in Appendix F [Operator Dictionary]. In all other cases, nested mrows should be used.

When forming a nested mrow (during generation of MathML) that includes just one of two successive operators with the forms mentioned above (which mean that either operator could in principle act on the intervening operand or operands), it is necessary to decide which operator acts on those operands directly (or would do so, if they were present). Ideally, this should be determined from the original expression; for example, in conversion from an operator-precedence-based format, it would be the operator with the higher precedence. If this cannot be determined directly from the original expression, the operator that occurs later in the suggested operator dictionary (Appendix F [Operator Dictionary]) can be assumed to have a higher precedence for this purpose.

Note that the above rule has no effect on whether any MathML expression is valid, only on the recommended way of generating MathML from other formats for displayed mathematics or directly from written notation.

(Some of the terminology used in stating the above rule in defined in Section 3.2.5 [Operator, Fence, Separator or Accent (mo)].)

3.3.1.4 Examples

As an example, 2x+y-z should be written as:

<mrow>
  <mrow>
    <mn> 2 </mn>
    <mo> &InvisibleTimes; </mo>
    <mi> x </mi>
  </mrow>
  <mo> + </mo>
  <mi> y </mi>
  <mo> - </mo>
  <mi> z </mi>
</mrow>

The proper encoding of (x, y) furnishes a less obvious example of nesting mrows:

<mrow>
  <mo> ( </mo>
  <mrow>
    <mi> x </mi>
    <mo> , </mo>
    <mi> y </mi>
  </mrow>
  <mo> ) </mo>
</mrow>

In this case, a nested mrow is required inside the parentheses, since parentheses and commas, thought of as fence and separator `operators', do not act together on their arguments.

3.3.2 Fractions (mfrac)

3.3.2.1 Description

The mfrac element is used for fractions. It can also be used to mark up fraction-like objects such as binomial coefficients and Legendre symbols. The syntax for mfrac is

<mfrac> numerator denominator </mfrac>

3.3.2.2 Attributes of mfrac

In addition to the attributes listed below, this element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
linethickness number [ v-unit ] | thin | medium | thick 1 (rule thickness)
numalign left | center | right center
denomalign left | center | right center
bevelled true | false false

The linethickness attribute indicates the thickness of the horizontal `fraction bar', or `rule', typically used to render fractions. A fraction with linethickness="0" renders without the bar, and might be used within binomial coefficients. A linethickness greater than one might be used with nested fractions. These cases are shown below:

{a \choose b} \quad {a \over b} \above1pt {c \over d}

In general, the value of linethickness can be a number, as a multiplier of the default thickness of the fraction bar (the default thickness is not specified by MathML), or a number with a unit of vertical length (see Section 2.4.4.2 [Attributes with units]), or one of the keywords medium (same as 1), thin (thinner than 1, otherwise up to the renderer), or thick (thicker than 1, otherwise up to the renderer).

The numalign and denomalign attributes control the horizontal alignment of the numerator and denominator respectively. Typically, numerators and denominators are centered, but a very long numerator or denominator might be displayed on several lines and a left alignment might be more appropriate for displaying them.

The bevelled attribute determines whether the fraction is displayed with the numerator above the denominator separated by a horizontal line or whether a diagonal line is used to separate a slightly raised numerator from a slightly lowered denominator. The latter form corresponds to the attribute value being true and provides for a more compact form for simple numerator and denominators. An example illustrating the bevelled form is show below:

\frac{1}{x^3 + \frac{x}{3}} = \raisebox{1ex}{$1$}\!        \left/ \!\raisebox{-1ex}{$x^3+\frac{x}{3}$} \right.

The mfrac element sets displaystyle to false, or if it was already false increments scriptlevel by 1, within numerator and denominator. These attributes are inherited by every element from its rendering environment, but can be set explicitly only on the mstyle element. (See Section 3.3.4 [Style Change (mstyle)].)

3.3.2.3 Examples

The examples shown above can be represented in MathML as:

<mrow>
   <mo> ( </mo>
   <mfrac linethickness="0">
      <mi> a </mi>
      <mi> b </mi>
   </mfrac>
   <mo> ) </mo>
</mrow>
<mfrac linethickness="2">
   <mfrac>
      <mi> a </mi>
      <mi> b </mi>
   </mfrac>
   <mfrac>
      <mi> c </mi>
      <mi> d </mi>
   </mfrac>
</mfrac>

<mfrac>
   <mn> 1 </mn>
   <mrow>
      <msup>
         <mi> x </mi>
         <mn> 3 </mn>
       </msup>
       <mo> + </mo>
       <mfrac>
         <mi> x </mi>
         <mn> 3 </mn>
       </mfrac>
   </mrow>
</mfrac>
<mo> = </mo>
<mfrac bevelled="true">
   <mn> 1 </mn>
   <mrow>
      <msup>
         <mi> x </mi>
         <mn> 3 </mn>
       </msup>
       <mo> + </mo>
       <mfrac>
         <mi> x </mi>
         <mn> 3 </mn>
       </mfrac>
   </mrow>
</mfrac>

A more generic example is:

<mfrac>
   <mrow>
      <mn> 1 </mn>
      <mo> + </mo>
      <msqrt>
         <mn> 5 </mn>
      </msqrt>
   </mrow>
   <mn> 2 </mn>
</mfrac>

3.3.3 Radicals (msqrt, mroot)

3.3.3.1 Description

These elements construct radicals. The msqrt element is used for square roots, while the mroot element is used to draw radicals with indices, e.g. a cube root. The syntax for these elements is:

<msqrt> base </msqrt>
<mroot> base index </mroot>

The mroot element requires exactly 2 arguments. However, msqrt accepts any number of arguments; if this number is not 1, its contents are treated as a single `inferred mrow' containing its arguments, as described in Section 3.1.3 [Required Arguments].

3.3.3.2 Attributes

This element only permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

The mroot element increments scriptlevel by 2, and sets displaystyle to false, within index, but leaves both attributes unchanged within base. The msqrt element leaves both attributes unchanged within all its arguments. These attributes are inherited by every element from its rendering environment, but can be set explicitly only on mstyle. (See Section 3.3.4 [Style Change (mstyle)].)

3.3.4 Style Change (mstyle)

3.3.4.1 Description

The mstyle element is used to make style changes that affect the rendering of its contents. mstyle can be given any attribute accepted by any MathML presentation element provided that the attribute value is inherited, computed or has a default value; presentation element attributes whose values are required are not accepted by the mstyle element. In addition mstyle can also be given certain special attributes listed below.

The mstyle element accepts any number of arguments. If this number is not 1, its contents are treated as a single `inferred mrow' formed from all its arguments, as described in Section 3.1.3 [Required Arguments].

Loosely speaking, the effect of the mstyle element is to change the default value of an attribute for the elements it contains. Style changes work in one of several ways, depending on the way in which default values are specified for an attribute. The cases are:

Note that attribute values inherited from an mstyle in any manner affect a given element in the mstyle's content only if that attribute is not given a value in that element's start tag. On any element for which the attribute is set explicitly, the value specified on the start tag overrides the inherited value. The only exception to this rule is when the value given on the start tag is documented as specifying an incremental change to the value inherited from that element's context or rendering environment.

Note also that the difference between inherited and non-inherited attributes set by mstyle, explained above, only matters when the attribute is set on some element within the mstyle's contents that has children also setting it. Thus it never matters for attributes, such as color, which can only be set on token elements (or on mstyle itself).

There is one exceptional element, mpadded, whose attributes cannot be set with mstyle. The mpadded element shares several attribute names with the mspace and mo elements. Thus, when the attributes width, height and depth are specified on an mstyle element, they apply only to the mspace element, and not the corresponding attributes of mpadded. Similarly, when lspace is set with mstyle, it applies only to the mo element.

3.3.4.2 Attributes

As stated above, mstyle accepts all attributes of all MathML presentation elements which do not have required values. That is, all attributes which have an explicit default value or a default value which is inherited or computed are accepted by the mstyle element.

This element also accepts id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Additionally, mstyle can be given the following special attributes that are implicitly inherited by every MathML element as part of its rendering environment:

Name values default
scriptlevel ['+' | '-'] unsigned-integer inherited
displaystyle true | false inherited
scriptsizemultiplier number 0.71
scriptminsize number v-unit 8pt
color #rgb | #rrggbb | html-color-name inherited
background #rgb | #rrggbb | transparent | html-color-name transparent
veryverythinmathspace number h-unit 0.0555556em
verythinmathspace number h-unit 0.111111em
thinmathspace number h-unit 0.166667em
mediummathspace number h-unit 0.222222em
thickmathspace number h-unit 0.277778em
verythickmathspace number h-unit 0.333333em
veryverythickmathspace number h-unit 0.388889em

scriptlevel and displaystyle

MathML uses two attributes, displaystyle and scriptlevel, to control orthogonal presentation features that TEX encodes into one style attribute with values \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle. The corresponding values of displaystyle and scriptlevel for those TEX styles would be true and 0, false and 0, false and 1, and false and 2, respectively.

The main effect of the displaystyle attribute is that it determines the effect of other attributes such as the largeop and movablescripts attributes of mo. The main effect of the scriptlevel attribute is to control the font size. Typically, the higher the scriptlevel, the smaller the font size. (Non-visual renderers can respond to the font size in an analogous way for their medium.) More sophisticated renderers may also choose to use these attributes in other ways, such as rendering expressions with displaystyle=false in a more vertically compressed manner.

These attributes are given initial values for the outermost expression of an instance of MathML based on its rendering environment. A short list of layout schemata described below modify these values for some of their sub-expressions. Otherwise, values are determined by inheritance whenever they are not directly specified on a given element's start tag.

For an instance of MathML embedded in a textual data format (such as HTML) in `display' mode, i.e. in place of a paragraph, displaystyle = true and scriptlevel = 0 for the outermost expression of the embedded MathML; if the MathML is embedded in `inline' mode, i.e. in place of a character, displaystyle = false and scriptlevel = 0 for the outermost expression. See Chapter 7 [The MathML Interface] for further discussion of the distinction between `display' and `inline' embedding of MathML and how this can be specified in particular instances. In general, a MathML renderer may determine these initial values in whatever manner is appropriate for the location and context of the specific instance of MathML it is rendering, or if it has no way to determine this, based on the way it is most likely to be used; as a last resort it is suggested that it use the most generic values displaystyle = "true" and scriptlevel = "0".

The MathML layout schemata that typically display some of their arguments in smaller type or with less vertical spacing, namely the elements for scripts, fractions, radicals, and tables or matrices, set displaystyle to false, and in some cases increase scriptlevel, for those arguments. The new values are inherited by all sub-expressions within those arguments, unless they are overridden.

The specific rules by which each element modifies displaystyle and/or scriptlevel are given in the specification for each element that does so; the complete list of elements that modify either attribute are: the `scripting' elements msub, msup, msubsup, munder, mover, munderover, and mmultiscripts; and the elements mfrac, mroot, and mtable.

When mstyle is given a scriptlevel attribute with no sign, it sets the value of scriptlevel within its contents to the value given, which must be a nonnegative integer. When the attribute value consists of a sign followed by an integer, the value of scriptlevel is incremented (for '+') or decremented (for '-') by the amount given. The incremental syntax for this attribute is an exception to the general rules for setting inherited attributes using mstyle, and is not allowed by any other attribute on mstyle.

Whenever the scriptlevel is changed, either automatically or by being explicitly incremented, decremented, or set, the current font size is multiplied by the value of scriptsizemultiplier to the power of the change in scriptlevel. For example, if scriptlevel is increased by 2, the font size is multiplied by scriptsizemultiplier twice in succession; if scriptlevel is explicitly set to 2 when it had been 3, the font size is divided by scriptsizemultiplier. References to fontsize in this section should be interpreted to mean either the fontsize attribute or the mathsize attribute.

The default value of scriptsizemultiplier is less than one (in fact, it is approximately the square root of 1/2), resulting in a smaller font size with increasing scriptlevel. To prevent scripts from becoming unreadably small, the font size is never allowed to go below the value of scriptminsize as a result of a change to scriptlevel, though it can be set to a lower value using the fontsize attribute (Section 3.2.2 [Mathematics style attributes common to token elements]) on mstyle or on token elements. If a change to scriptlevel would cause the font size to become lower than scriptminsize using the above formula, the font size is instead set equal to scriptminsize within the sub-expression for which scriptlevel was changed.

In the syntax for scriptminsize, v-unit represents a unit of vertical length (as described in Section 2.4.4.2 [Attributes with units]). The most common unit for specifying font sizes in typesetting is pt (points).

Explicit changes to the fontsize attribute have no effect on the value of scriptlevel.

Further details on scriptlevel for renderers

For MathML renderers that support CSS style sheets, or some other analogous style sheet mechanism, absolute or relative changes to fontsize (or other attributes) may occur implicitly on any element in response to a style sheet. Changes to fontsize of this kind also have no effect on scriptlevel. A style sheet-induced change to fontsize overrides scriptminsize in the same way as for an explicit change to fontsize in the element's start tag (discussed above), whether it is specified in the style sheet as an absolute or a relative change. (However, any subsequent scriptlevel-induced change to fontsize will still be affected by it.) As is required for inherited attributes in CSS, the style sheet-modified fontsize is inherited by child elements.

If the same element is subject to both a style sheet-induced and an automatic (scriptlevel-related) change to its own fontsize, the scriptlevel-related change is done first - in fact, in the simplest implementation of the element-specific rules for scriptlevel, this change would be done by the element's parent as part of producing the rendering properties it passes to the given element, since it is the parent element that knows whether scriptlevel should be changed for each of its child elements.

If the element's own fontsize is changed by a style sheet and it also changes scriptlevel (and thus fontsize) for one of its children, the style sheet-induced change is done first, followed by the change inherited by that child. If more than one child's scriptlevel is changed, the change inherited by each child has no effect on the other children. (As a mnemonic rule that applies to a `parse tree' of elements and their children, style sheet-induced changes to fontsize can be associated to nodes of the tree, i.e. to MathML elements, and scriptlevel-related changes can be associated to the edges between parent and child elements; then the order of the associated changes corresponds to the order of nodes and edges in each path down the tree.) For general information on the relative order of processing of properties set by style sheets versus by attributes, see the appropriate subsection of CSS-compatible attributes in Section 2.4.4.3 [CSS-compatible attributes].

If scriptlevel is changed incrementally by an mstyle element that also sets certain other attributes, the overall effect of the changes may depend on the order in which they are processed. In such cases, the attributes in the following list should be processed in the following order, regardless of the order in which they occur in the XML-format attribute list of the mstyle start tag: scriptsizemultiplier, scriptminsize, scriptlevel, fontsize.

Note that scriptlevel can, in principle, attain any integral value by being decremented sufficiently, even though it can only be explicitly set to nonnegative values. Negative values of scriptlevel generated in this way are legal and should work as described, generating font sizes larger than those of the surrounding expression. Since scriptlevel is initially 0 and never decreases automatically, it will always be nonnegative unless it is decremented past 0 using mstyle.

Explicit decrements of scriptlevel after the font size has been limited by scriptminsize as described above would produce undesirable results. This might occur, for example, in a representation of a continued fraction, in which the scriptlevel was decremented for part of the denominator back to its value for the fraction as a whole, if the continued fraction itself was located in a place that had a high scriptlevel. To prevent this problem, MathML renderers should, when decrementing scriptlevel, use as the initial font size the value the font size would have had if it had never been limited by scriptminsize. They should not, however, ignore the effects of explicit settings of fontsize, even to values below scriptminsize.

Since MathML renderers may be unable to make use of arbitrary font sizes with good results, they may wish to modify the mapping from scriptlevel to fontsize to produce better renderings in their judgment. In particular, if fontsizes have to be rounded to available values, or limited to values within a range, the details of how this is done are up to the renderer. Renderers should, however, ensure that a series of incremental changes to scriptlevel resulting in its return to the same value for some sub-expression that it had in a surrounding expression results in the same fontsize for that sub-expression as for the surrounding expression.

Color and background attributes

Color and background attributes are discussed in Section 3.2.2.2 [Color-related attributes].

Precise background region not specified

The suggested MathML visual rendering rules do not define the precise extent of the region whose background is affected by using the background attribute on mstyle, except that, when mstyle's content does not have negative dimensions and its drawing region is not overlapped by other drawing due to surrounding negative spacing, this region should lie behind all the drawing done to render the content of the mstyle, but should not lie behind any of the drawing done to render surrounding expressions. The effect of overlap of drawing regions caused by negative spacing on the extent of the region affected by the background attribute is not defined by these rules.

Meaning of named mathspaces

The spacing between operators is often one of a small number of potential values. MathML names these values and allows their values to be changed. Because the default values for spacing around operators that are given in the operator dictionary Appendix F [Operator Dictionary] are defined using these named spaces, changing their values will produce tighter or looser spacing. These values can be used anywhere a h-unit or v-unit unit is allowed. See Section 2.4.4.2 [Attributes with units].

The predefined namedspaces are: veryverythinmathspace, verythinmathspace, thinmathspace, mediummathspace, thickmathspace, verythickmathspace, or veryverythickmathspace. The default values of veryverythinmathspace... veryverythickmathspace are 1/18em...7/18em, respectively.

3.3.4.3 Examples

The example of limiting the stretchiness of a parenthesis shown in the section on <mo>,

<mrow>
   <mo maxsize="1"> ( </mo>
   <mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
   <mo maxsize="1"> ) </mo>
</mrow>

can be rewritten using mstyle as:

<mstyle maxsize="1">
   <mrow>
      <mo> ( </mo>
      <mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
      <mo> ) </mo>
   </mrow>
</mstyle>

3.3.5 Error Message (merror)

3.3.5.1 Description

The merror element displays its contents as an `error message'. This might be done, for example, by displaying the contents in red, flashing the contents, or changing the background color. The contents can be any expression or expression sequence.

merror accepts any number of arguments; if this number is not 1, its contents are treated as a single `inferred mrow' as described in Section 3.1.3 [Required Arguments].

The intent of this element is to provide a standard way for programs that generate MathML from other input to report syntax errors in their input. Since it is anticipated that preprocessors that parse input syntaxes designed for easy hand entry will be developed to generate MathML, it is important that they have the ability to indicate that a syntax error occurred at a certain point. See Section 7.2.2 [Handling of Errors].

The suggested use of merror for reporting syntax errors is for a preprocessor to replace the erroneous part of its input with an merror element containing a description of the error, while processing the surrounding expressions normally as far as possible. By this means, the error message will be rendered where the erroneous input would have appeared, had it been correct; this makes it easier for an author to determine from the rendered output what portion of the input was in error.

No specific error message format is suggested here, but as with error messages from any program, the format should be designed to make as clear as possible (to a human viewer of the rendered error message) what was wrong with the input and how it can be fixed. If the erroneous input contains correctly formatted subsections, it may be useful for these to be preprocessed normally and included in the error message (within the contents of the merror element), taking advantage of the ability of merror to contain arbitrary MathML expressions rather than only text.

3.3.5.2 Attributes

This element only permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

3.3.5.3 Example

If a MathML syntax-checking preprocessor received the input

<mfraction>
   <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
   <mn> 2 </mn>
</mfraction>

which contains the non-MathML element mfraction (presumably in place of the MathML element mfrac), it might generate the error message

<merror>
   <mtext> Unrecognized element: mfraction;
           arguments were:  </mtext>
   <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
   <mtext>  and  </mtext>
   <mn> 2 </mn>
</merror>

Note that the preprocessor's input is not, in this case, valid MathML, but the error message it outputs is valid MathML.

3.3.6 Adjust Space Around Content (mpadded)

3.3.6.1 Description

An mpadded element renders the same as its content, but with its overall size and other dimensions (such as baseline position) modified according to its attributes. The mpadded element does not rescale (stretch or shrink) its content; its only effect is to modify the apparent size and position of the `bounding box' around its content, so as to affect the relative position of the content with respect to the surrounding elements. The name of the element reflects the use of mpadded to effectively add `padding', or extra space, around its content. If the `padding' is negative, it is possible for the content of mpadded to be rendered outside the mpadded element's bounding box; see below for warnings about several potential pitfalls of this effect.

The mpadded element accepts any number of arguments; if this number is not 1, its contents are treated as a single `inferred mrow' as described in Section 3.1.3 [Required Arguments].

It is suggested that audio renderers add (or shorten) time delays based on the attributes representing horizontal space (width and lspace).

3.3.6.2 Attributes

In addition to the attributes listed below, this element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
width [ + | - ] unsigned-number ( % [ pseudo-unit ] | pseudo-unit | h-unit | namedspace ) same as content
lspace [ + | - ] unsigned-number ( % [ pseudo-unit ] | pseudo-unit | h-unit ) 0
height [ + | - ] unsigned-number ( % [ pseudo-unit ] | pseudo-unit | v-unit ) same as content
depth [ + | - ] unsigned-number ( % [ pseudo-unit ] | pseudo-unit | v-unit ) same as content

(The pseudo-unit syntax symbol is described below.)

These attributes modify the dimensions of the `bounding box' of the mpadded element. The dimensions (which have the same names as the attributes) are defined in the next subsection. Depending on the format of the attribute value, a dimension may be set to a new value, or to an incremented or decremented version of the content's corresponding dimension. Values may be specified as multiples or percentages of any of the dimensions of the normal rendering of the element's content (using so-called `pseudo-units'), or they can be set directly using standard units Section 2.4.4.2 [Attributes with units].

If an attribute value begins with a + or - sign, it specifies an increment or decrement of the corresponding dimension by the following length value (interpreted as explained below). Otherwise, the corresponding dimension is set directly to the following length value. Note that the + and - do not mean that the following value is positive or negative, even when an explicit length unit (h-unit or v-unit) is given. In particular, these attributes cannot directly set a dimension to a negative value.

Length values (after the optional sign, which is not part of the length value) can be specified in several formats. Each format begins with an unsigned-number, which may be followed by a % sign and an optional `pseudo-unit' (denoted by pseudo-unit in the attribute syntaxes above), by a pseudo-unit alone, or by one of the length units (denoted by h-unit or v-unit) specified in Section 2.4.4.2 [Attributes with units], not including %. The possible pseudo-units are the keywords width, lspace, height, and depth; they each represent the length of the same-named dimension of the mpadded element's content (not of the mpadded element itself). The lengths represented by h-unit or v-unit are described in Section 2.4.4.2 [Attributes with units].

In any of these formats, the length value specified is the product of the specified number and the length represented by the unit or pseudo-unit. The result is multiplied by 0.01 if % is given. If no pseudo-unit is given after %, the one with the same name as the attribute being specified is assumed.

Some examples of attribute formats using pseudo-units (explicit or default) are as follows: depth="100% height" and depth="1.0 height" both set the depth of the mpadded element to the height of its content. depth="105%" sets the depth to 1.05 times the content's depth, and either depth="+100%" or depth="200%" sets the depth to twice the content's depth.

Dimensions that would be positive if the content was rendered normally cannot be made negative using mpadded; a positive dimension is set to 0 if it would otherwise become negative. Dimensions that are initially 0 can be made negative, but this should generally be avoided. See the warnings below on the use of negative spacing for `tweaking' or conveying meaning.

The rules given above imply that all of the following attribute settings have the same effect, which is to leave the content's dimensions unchanged:

<mpadded width="+0em"> ... </mpadded>
<mpadded width="+0%"> ... </mpadded>
<mpadded width="-0em"> ... </mpadded>
<mpadded width="- 0 height"> ... </mpadded>
<mpadded width="100%"> ... </mpadded>
<mpadded width="100% width"> ... </mpadded>
<mpadded width="1 width"> ... </mpadded>
<mpadded width="1.0 width"> ... </mpadded>
<mpadded> ... </mpadded>

3.3.6.3 Meanings of dimension attributes

See Appendix H [Glossary] for further information about some of the typesetting terms used here.

The width attribute refers to the overall horizontal width of a bounding box. By default (i.e. when lspace is not modified), the bounding box of the content of an mpadded element should be rendered flush with the left edge of the mpadded element's bounding box. Thus, increasing width alone effectively adds space on the right edge of the box.

The lspace attribute refers to the amount of space between the left edge of a bounding box and the start of the rendering of its contents' bounding box. Unlike the other dimensions, lspace does not correspond to a real property of a bounding box, but exists only transiently during the computations done by each instance of mpadded. It is provided so that there is a way to add space on the left edge of a bounding box.

The rationale behind using width and lspace to control horizontal padding instead of more symmetric attributes, such as a hypothetical rspace and lspace, is that it is desirable to have a `width' pseudo unit, in part because `width' is an actual property of a bounding box.

The height attribute refers to the amount of vertical space between the baseline (the line along the bottom of most letter glyphs in normal text rendering) and the top of the bounding box.

The depth attribute refers to the amount of vertical space between the bottom of the bounding box and the baseline.

MathML renderers should ensure that, except for the effects of the attributes, relative spacing between the contents of mpadded and surrounding MathML elements is not modified by replacing an mpadded element with an mrow element with the same content. This holds even if linebreaking occurs within the mpadded element. However, if an mpadded element with non-default attribute values is subjected to linebreaking, MathML does not define how its attributes or rendering interact with the linebreaking algorithm.

3.3.6.4 Warning: nonportability of `tweaking'

A likely temptation for the use of the mpadded and mspace elements (and perhaps also mphantom and mtext) will be for an author to improve the spacing generated by a specific renderer by slightly modifying it in specific expressions, i.e. to `tweak' the rendering.

Authors are strongly warned that different MathML renderers may use different spacing rules for computing the relative positions of rendered symbols in expressions that have no explicit modifications to their spacing; if renderer B improves upon renderer A's spacing rules, explicit spacing added to improve the output quality of renderer A may produce very poor results in renderer B, very likely worse than without any `tweaking' at all.

Even when a specific choice of renderer can be assumed, its spacing rules may be improved in successive versions, so that the effect of tweaking in a given MathML document may grow worse with time. Also, when style sheet mechanisms are extended to MathML, even one version of a renderer may use different spacing rules for users with different style sheets.

Therefore, it is suggested that MathML markup never use mpadded or mspace elements to tweak the rendering of specific expressions, unless the MathML is generated solely to be viewed using one specific version of one MathML renderer, using one specific style sheet (if style sheets are available in that renderer).

In cases where the temptation to improve spacing proves too strong, careful use of mpadded, mphantom, or the alignment elements (Section 3.5.5 [Alignment Markers]) may give more portable results than the direct insertion of extra space using mspace or mtext. Advice given to the implementors of MathML renderers might be still more productive, in the long run.

3.3.6.5 Warning: spacing should not be used to convey meaning

MathML elements that permit `negative spacing', namely mspace, mpadded, and mtext, could in theory be used to simulate new notations or `overstruck' characters by the visual overlap of the renderings of more than one MathML sub-expression.

This practice is strongly discouraged in all situations, for the following reasons:

More generally, any construct that uses spacing to convey mathematical meaning, rather than simply as an aid to viewing expression structure, is discouraged. That is, the constructs that are discouraged are those that would be interpreted differently by a human viewer of rendered MathML if all explicit spacing was removed.

If such constructs are used in spite of this warning, they should be enclosed in a semantics element that also provides an additional MathML expression that can be interpreted in a standard way.

For example, the MathML expression

<mrow>
  <mpadded width="0"> <mi> C </mi> </mpadded>
  <mspace width="0.3em"/>
  <mtext> | </mtext>
</mrow>

forms an overstruck symbol in violation of the policy stated above; it might be intended to represent the set of complex numbers for a MathML renderer that lacks support for the standard symbol used for this purpose. This kind of construct should always be avoided in MathML, for the reasons stated above; indeed, it should never be necessary for standard symbols, since a MathML renderer with no better method of rendering them is free to use overstriking internally, so that it can still support general MathML input.

However, if for whatever reason such a construct is used in MathML, it should always be enclosed in a semantics element such as

<semantics>
  <mrow>
    <mpadded width="0"> <mi> C </mi> </mpadded>
    <mspace width="0.3em"/>
    <mtext> | </mtext>
  </mrow>
  <annotation-xml encoding="MathML-Presentation">
    <mi> &Copf; </mi>
  </annotation-xml>
</semantics>

which provides an alternative, standard encoding for the desired symbol, which is much more easily interpreted than the construct using negative spacing. (The alternative encoding in this example uses MathML presentation elements; the content elements described in Chapter 4 [Content Markup] should also be considered.)

(The above warning also applies to most uses of rendering attributes to alter the meaning conveyed by an expression, with the exception of attributes on mi (such as fontweight) used to distinguish one variable from another.)

3.3.7 Making Sub-Expressions Invisible (mphantom)

3.3.7.1 Description

The mphantom element renders invisibly, but with the same size and other dimensions, including baseline position, that its contents would have if they were rendered normally. mphantom can be used to align parts of an expression by invisibly duplicating sub-expressions.

The mphantom element accepts any number of arguments; if this number is not 1, its contents are treated as a single `inferred mrow' formed from all its arguments, as described in Section 3.1.3 [Required Arguments].

3.3.7.2 Attributes

This element only permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Note that it is possible to wrap both an mphantom and an mpadded element around one MathML expression, as in <mphantom><mpadded attribute-settings> ... </mpadded></mphantom>, to change its size and make it invisible at the same time.

MathML renderers should ensure that the relative spacing between the contents of an mphantom element and the surrounding MathML elements is the same as it would be if the mphantom element were replaced by an mrow element with the same content. This holds even if linebreaking occurs within the mphantom element.

For the above reason, mphantom is not considered space-like (Section 3.2.7 [Space (mspace)]) unless its content is space-like, since the suggested rendering rules for operators are affected by whether nearby elements are space-like. Even so, the warning about the legal grouping of space-like elements may apply to uses of mphantom.

There is one situation where the preceding rule for rendering an mphantom may not give the desired effect. When an mphantom is wrapped around a subsequence of the arguments of an mrow, the default determination of the form attribute for an mo element within the subsequence can change. (See the default value of the form attribute described in Section 3.2.5 [Operator, Fence, Separator or Accent (mo)].) It may be necessary to add an explicit form attribute to such an mo in these cases. This is illustrated in the following example.

3.3.7.3 Examples

In this example, mphantom is used to ensure alignment of corresponding parts of the numerator and denominator of a fraction:

<mfrac>
  <mrow>
    <mi> x </mi>
    <mo> + </mo>
    <mi> y </mi>
    <mo> + </mo>
    <mi> z </mi>
  </mrow>
  <mrow>
    <mi> x </mi>
    <mphantom>
      <mo form="infix"> + </mo>
      <mi> y </mi>
    </mphantom>
    <mo> + </mo>
    <mi> z </mi>
  </mrow>
</mfrac>

This would render as something like

\frac{x+y+z}{x\phantom{+y}\;+z}

rather than as

\frac{x+y+z}{x+z}

The explicit attribute setting form="infix" on the mo element inside the mphantom sets the form attribute to what it would have been in the absence of the surrounding mphantom. This is necessary since otherwise, the + sign would be interpreted as a prefix operator, which might have slightly different spacing.

Alternatively, this problem could be avoided without any explicit attribute settings, by wrapping each of the arguments <mo>+</mo> and <mi>y</mi> in its own mphantom element, i.e.

<mfrac>
   <mrow>
      <mi> x </mi>
      <mo> + </mo>
      <mi> y </mi>
      <mo> + </mo>
      <mi> z </mi>
   </mrow>
   <mrow>
      <mi> x </mi>
      <mphantom>
         <mo> + </mo>
      </mphantom>
      <mphantom>
         <mi> y </mi>
      </mphantom>
      <mo> + </mo>
      <mi> z </mi>
   </mrow>
</mfrac>

3.3.8 Expression Inside Pair of Fences (mfenced)

3.3.8.1 Description

The mfenced element provides a convenient form in which to express common constructs involving fences (i.e. braces, brackets, and parentheses), possibly including separators (such as comma) between the arguments.

For example, <mfenced> <mi>x</mi> </mfenced> renders as `(x)' and is equivalent to

<mrow> <mo> ( </mo> <mi>x</mi> <mo> ) </mo> </mrow>

and <mfenced> <mi>x</mi> <mi>y</mi> </mfenced> renders as `(x, y)' and is equivalent to

<mrow>
  <mo> ( </mo>
  <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow>
  <mo> ) </mo>
</mrow>

Individual fences or separators are represented using mo elements, as described in Section 3.2.5 [Operator, Fence, Separator or Accent (mo)]. Thus, any mfenced element is completely equivalent to an expanded form described below; either form can be used in MathML, at the convenience of an author or of a MathML-generating program. A MathML renderer is required to render either of these forms in exactly the same way.

In general, an mfenced element can contain zero or more arguments, and will enclose them between fences in an mrow; if there is more than one argument, it will insert separators between adjacent arguments, using an additional nested mrow around the arguments and separators for proper grouping (Section 3.3.1 [Horizontally Group Sub-Expressions (mrow)]). The general expanded form is shown below. The fences and separators will be parentheses and comma by default, but can be changed using attributes, as shown in the following table.

3.3.8.2 Attributes

In addition to the attributes listed below, this element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
open string (
close string )
separators character * ,

A generic mfenced element, with all attributes explicit, looks as follows:

<mfenced open="opening-fence"
         close="closing-fence"
         separators="sep#1 sep#2 ... sep#(n-1)" >
   arg#1
   ...
   arg#n
</mfenced>

The opening-fence and closing-fence are arbitrary strings. (Since they are used as the content of mo elements, any whitespace they contain will be trimmed and collapsed as described in Section 2.4.6 [Collapsing Whitespace in Input].)

The value of separators is a sequence of zero or more separator characters (or entity references), optionally separated by whitespace. Each sep#i consists of exactly one character or entity reference. Thus, separators=",;" is equivalent to separators=" , ; ".

The general mfenced element shown above is equivalent to the following expanded form:

<mrow>
   <mo fence="true"> opening-fence </mo>
   <mrow>
      arg#1
      <mo separator="true"> sep#1 </mo>
      ...
      <mo separator="true"> sep#(n-1) </mo>
      arg#n
   </mrow>
   <mo fence="true"> closing-fence </mo>
</mrow>

Each argument except the last is followed by a separator. The inner mrow is added for proper grouping, as described in Section 3.3.1 [Horizontally Group Sub-Expressions (mrow)].

When there is only one argument, the above form has no separators; since <mrow> arg#1 </mrow> is equivalent to arg#1 (as described in Section 3.3.1 [Horizontally Group Sub-Expressions (mrow)]), this case is also equivalent to:

<mrow>
   <mo fence="true"> opening-fence </mo>
   arg#1
   <mo fence="true"> closing-fence </mo>
</mrow>

If there are too many separator characters, the extra ones are ignored. If separator characters are given, but there are too few, the last one is repeated as necessary. Thus, the default value of separators="," is equivalent to separators=",,", separators=",,,", etc. If there are no separator characters provided but some are needed, for example if separators=" " or "" and there is more than one argument, then no separator elements are inserted at all - that is, the elements <mo separator="true"> sep#i </mo> are left out entirely. Note that this is different from inserting separators consisting of mo elements with empty content.

Finally, for the case with no arguments, i.e.

<mfenced open="opening-fence"
         close="closing-fence"
         separators="anything" >
</mfenced>

the equivalent expanded form is defined to include just the fences within an mrow:

<mrow>
   <mo fence="true"> opening-fence </mo>
   <mo fence="true"> closing-fence </mo>
</mrow>

Note that not all `fenced expressions' can be encoded by an mfenced element. Such exceptional expressions include those with an `embellished' separator or fence or one enclosed in an mstyle element, a missing or extra separator or fence, or a separator with multiple content characters. In these cases, it is necessary to encode the expression using an appropriately modified version of an expanded form. As discussed above, it is always permissible to use the expanded form directly, even when it is not necessary. In particular, authors cannot be guaranteed that MathML preprocessors won't replace occurrences of mfenced with equivalent expanded forms.

Note that the equivalent expanded forms shown above include attributes on the mo elements that identify them as fences or separators. Since the most common choices of fences and separators already occur in the operator dictionary with those attributes, authors would not normally need to specify those attributes explicitly when using the expanded form directly. Also, the rules for the default form attribute (Section 3.2.5 [Operator, Fence, Separator or Accent (mo)]) cause the opening and closing fences to be effectively given the values form="prefix" and form="postfix" respectively, and the separators to be given the value form="infix".

Note that it would be incorrect to use mfenced with a separator of, for instance, `+', as an abbreviation for an expression using `+' as an ordinary operator, e.g.

<mrow>
  <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi>
</mrow>

This is because the + signs would be treated as separators, not infix operators. That is, it would render as if they were marked up as <mo separator="true">+</mo>, which might therefore render inappropriately.

3.3.8.3 Examples

(a+b)

<mfenced>
  <mrow>
    <mi> a </mi>
    <mo> + </mo>
    <mi> b </mi>
  </mrow>
</mfenced>

Note that the above mrow is necessary so that the mfenced has just one argument. Without it, this would render incorrectly as `(a, +, b)'.

[0,1)

<mfenced open="[">
  <mn> 0 </mn>
  <mn> 1 </mn>
</mfenced>

f(x,y)

<mrow>
  <mi> f </mi>
  <mo> &ApplyFunction; </mo>
  <mfenced>
    <mi> x </mi>
    <mi> y </mi>
  </mfenced>
</mrow>

3.3.9 Enclose Expression Inside Notation (menclose)

3.3.9.1 Description

The menclose element renders its content inside the enclosing notation specified by its notation attribute. menclose accepts any number of arguments; if this number is not 1, its contents are treated as a single `inferred mrow' containing its arguments, as described in Section 3.1.3 [Required Arguments].

3.3.9.2 Attributes

In addition to the attributes listed below, this element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
notation longdiv | actuarial | radical longdiv

When notation has the value longdiv, the contents are drawn enclosed by a long division symbol. A complete example of long division is accomplished by also using mtable and malign. When notation is specified as actuarial, the contents are drawn enclosed by an actuarial symbol. The case of notation=radical is equivalent to the msqrt schema.

3.3.9.3 Examples

The following markup might be used to encode an elementary US-style long division problem.

<mtable columnspacing='0' rowspacing='0'>
<mtr>
  <mtd></mtd>
  <mtd columnalign='right'><mn>10</mn></mtd>
</mtr>
<mtr>
  <mtd columnalign='right'><mn>131</mn></mtd>
  <mtd columnalign='right'>
    <menclose notation='longdiv'><mn>1413</mn></menclose>
  </mtd>
</mtr>
<mtr>
  <mtd></mtd>
  <mtd columnalign='right'>
    <mrow>
    <munder>
      <mn>131</mn>
      <mo> &UnderBar; </mo>
    </munder>
    <mphantom><mn>3</mn></mphantom>
    </mrow>
  </mtd>
</mtr>
<mtr>
  <mtd></mtd>
  <mtd columnalign='right'><mn>103</mn></mtd>
</mtr>
</mtable>

This might be rendered roughly as:

\begin{array}{rl}            & \phantom{)14}10                       \\        131 & \overline{)1413\,}                    \\            & \phantom{)}\underline{131\phantom{g}} \\            & \phantom{)1}103        \end{array}

An example of using menclose for actuarial notation is

<msub>
  <mi>a</mi>
  <mrow>
    <menclose notation='actuarial'>
      <mi>n</mi>
    </menclose>
    <mo>&it;</mo>
    <mi>i</mi>
  </mrow>
</msub>

which renders roughly as

\begin{array}{l@{}l}          \phantom{x}a                        & \\          \overline{\phantom{x}n\phantom{|}}| & i         \end{array}

3.4 Script and Limit Schemata

The elements described in this section position one or more scripts around a base. Attaching various kinds of scripts and embellishments to symbols is a very common notational device in mathematics. For purely visual layout, a single general-purpose element could suffice for positioning scripts and embellishments in any of the traditional script locations around a given base. However, in order to capture the abstract structure of common notation better, MathML provides several more specialized scripting elements.

In addition to sub/superscript elements, MathML has overscript and underscript elements that place scripts above and below the base. These elements can be used to place limits on large operators, or for placing accents and lines above or below the base. The rules for rendering accents differ from those for overscripts and underscripts, and this difference can be controlled with the accent and accentunder attributes, as described in the appropriate sections below.

Rendering of scripts is affected by the scriptlevel and displaystyle attributes, which are part of the environment inherited by the rendering process of every MathML expression, and are described under mstyle (Section 3.3.4 [Style Change (mstyle)]). These attributes cannot be given explicitly on a scripting element, but can be specified on the start tag of a surrounding mstyle element if desired.

MathML also provides an element for attachment of tensor indices. Tensor indices are distinct from ordinary subscripts and superscripts in that they must align in vertical columns. Tensor indices can also occur in prescript positions.

Because presentation elements should be used to describe the abstract notational structure of expressions, it is important that the base expression in all `scripting' elements (i.e. the first argument expression) should be the entire expression that is being scripted, not just the rightmost character. For example, (x+y)2 should be written as:

<msup>
  <mrow>
    <mo> ( </mo>
    <mrow>
      <mi> x </mi>
      <mo> + </mo>
      <mi> y </mi>
    </mrow>
    <mo> ) </mo>
  </mrow>
  <mn> 2 </mn>
</msup>

3.4.1 Subscript (msub)

3.4.1.1 Description

The syntax for the msub element is:

<msub> base subscript </msub>

3.4.1.2 Attributes

In addition to the attributes listed below, this element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
subscriptshift number v-unit automatic (typical unit is ex)

The subscriptshift attribute specifies the minimum amount to shift the baseline of subscript down.

v-unit represents a unit of vertical length (see Section 2.4.4.2 [Attributes with units]).

The msub element increments scriptlevel by 1, and sets displaystyle to false, within subscript, but leaves both attributes unchanged within base. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4 [Style Change (mstyle)].)

3.4.2 Superscript (msup)

3.4.2.1 Description

The syntax for the msup element is:

<msup> base superscript </msup>

3.4.2.2 Attributes

In addition to the attributes listed below, this element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
superscriptshift number v-unit automatic (typical unit is ex)

The superscriptshift attribute specifies the minimum amount to shift the baseline of superscript up.

v-unit represents a unit of vertical length (see Section 2.4.4.2 [Attributes with units]).

The msup element increments scriptlevel by 1, and sets displaystyle to false, within superscript, but leaves both attributes unchanged within base. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4 [Style Change (mstyle)].)

3.4.3 Subscript-superscript Pair (msubsup)

3.4.3.1 Description

The msubsup element is used to attach both a subscript and superscript to a base expression. Note that both scripts are positioned tight against the base: x_1{}^2 versus x_1^2.

The syntax for the msubsup element is:

<msubsup> base subscript superscript </msubsup>

3.4.3.2 Attributes

In addition to the attributes listed below, this element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
subscriptshift number v-unit automatic (typical unit is ex)
superscriptshift number v-unit automatic (typical unit is ex)

The subscriptshift attribute specifies the minimum amount to shift the baseline of subscript down. The superscriptshift attribute specifies the minimum amount to shift the baseline of superscript up.

v-unit represents a unit of vertical length (see Section 2.4.4.2 [Attributes with units]).

The msubsup element increments scriptlevel by 1, and sets displaystyle to false, within subscript and superscript, but leaves both attributes unchanged within base. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4 [Style Change (mstyle)].)

3.4.3.3 Examples

The msubsup is most commonly used for adding sub/superscript pairs to identifiers as illustrated above. However, another important use is placing limits on certain large operators whose limits are traditionally displayed in the script positions even when rendered in display style. The most common of these is the integral. For example,

\int\nolimits_0^1 \eulere^x \,\diffd x

would be represented as

<mrow>
  <msubsup>
    <mo> &int; </mo>
    <mn> 0 </mn>
    <mn> 1 </mn>
  </msubsup>
  <mrow>
    <msup>
      <mi> &ExponentialE; </mi>
      <mi> x </mi>
    </msup>
    <mo> &InvisibleTimes; </mo>
    <mrow>
      <mo> &DifferentialD; </mo>
      <mi> x </mi>
    </mrow>
  </mrow>
</mrow>

3.4.4 Underscript (munder)

3.4.4.1 Description

The syntax for the munder element is:

<munder> base underscript </munder>

3.4.4.2 Attributes

In addition to the attributes listed below, this element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
accentunder true | false automatic

The accentunder attribute controls whether underscript is drawn as an `accent' or as a limit. The main difference between an accent and a limit is that the limit is reduced in size whereas an accent is the same size as the base. A second difference is that the accent is drawn closer to the base.

The default value of accentunder is false, unless underscript is an mo element or an embellished operator (see Section 3.2.5 [Operator, Fence, Separator or Accent (mo)]). If underscript is an mo element, the value of its accent attribute is used as the default value of accentunder. If underscript is an embellished operator, the accent attribute of the mo element at its core is used as the default value. As with all attributes, an explicitly given value overrides the default.

Here is an example (accent versus underscript): \underbrace{x+y+z} versus \underbrace{\strut x+y+z}. The MathML representation for this example is shown below.

If the base is an operator with movablelimits=true (or an embellished operator whose mo element core has movablelimits=true), and displaystyle=false, then underscript is drawn in a subscript position. In this case, the accentunder attribute is ignored. This is often used for limits on symbols such as &sum;.

Within underscript, munder always sets displaystyle to false, but increments scriptlevel by 1 only when accentunder is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4 [Style Change (mstyle)].)

3.4.4.3 Examples

The MathML representation for the example shown above is:

<mrow>
  <munder accentunder="true">
    <mrow>
      <mi> x </mi>
      <mo> + </mo>
      <mi> y </mi>
      <mo> + </mo>
      <mi> z </mi>
    </mrow>
    <mo> &UnderBrace; </mo>
  </munder>
  <mtext>&nbsp;versus&nbsp;</mtext>
  <munder accentunder="false">
    <mrow>
      <mi> x </mi>
      <mo> + </mo>
      <mi> y </mi>
      <mo> + </mo>
      <mi> z </mi>
    </mrow>
    <mo> &UnderBrace; </mo>
  </munder>
</mrow>

3.4.5 Overscript (mover)

3.4.5.1 Description

The syntax for the mover element is:

<mover> base overscript </mover>

3.4.5.2 Attributes

In addition to the attributes listed below, this element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
accent true | false automatic

The accent attribute controls whether overscript is drawn as an `accent' (diacritical mark) or as a limit. The main difference between an accent and a limit is that the limit is reduced in size whereas an accent is the same size as the base. A second difference is that the accent is drawn closer to the base. This is shown below (accent versus limit): \hat{x} versus \hat{\strut x}.

These differences also apply to `mathematical accents' such as bars over expressions: \overbrace{x+y+z} versus \overbrace{\strut x+y+z}. The MathML representation for each of these examples is shown below.

The default value of accent is false, unless overscript is an mo element or an embellished operator (see Section 3.2.5 [Operator, Fence, Separator or Accent (mo)]). If overscript is an mo element, the value of its accent attribute is used as the default value of accent for mover. If overscript is an embellished operator, the accent attribute of the mo element at its core is used as the default value.

If the base is an operator with movablelimits=true (or an embellished operator whose mo element core has movablelimits=true), and displaystyle=false, then overscript is drawn in a superscript position. In this case, the accent attribute is ignored. This is often used for limits on symbols such as &sum;.

Within overscript, mover always sets displaystyle to false, but increments scriptlevel by 1 only when accent is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4 [Style Change (mstyle)].)

3.4.5.3 Examples

The MathML representation for the examples shown above is:

<mrow>
  <mover accent="true">
    <mi> x </mi>
    <mo> &Hat; </mo>
  </mover>
  <mtext> versus </mtext>
  <mover accent="false">
    <mi> x </mi>
    <mo> &Hat; </mo>
  </mover>
</mrow>

<mrow>
  <mover accent="true">
    <mrow>
      <mi> x </mi>
      <mo> + </mo>
      <mi> y </mi>
      <mo> + </mo>
      <mi> z </mi>
    </mrow>
    <mo> &OverBar; </mo>
  </mover>
  <mtext> versus </mtext>
  <mover accent="false">
    <mrow>
      <mi> x </mi>
      <mo> + </mo>
      <mi> y </mi>
      <mo> + </mo>
      <mi> z </mi>
    </mrow>
    <mo> &OverBar; </mo>
  </mover>
</mrow>

3.4.6 Underscript-overscript Pair (munderover)

3.4.6.1 Description

The syntax for the munderover element is:

<munderover> base underscript overscript </munderover>

3.4.6.2 Attributes

In addition to the attributes listed below, this element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
accent true | false automatic
accentunder true | false automatic

The munderover element is used so that the underscript and overscript are vertically spaced equally in relation to the base and so that they follow the slant of the base as in the second expression shown below:

\int_0^{\!\!\!\infty}

versus

\int_0^{\infty}

The MathML representation for this example is shown below.

The difference in the vertical spacing is too small to be noticed on a low resolution display at a normal font size, but is noticeable on a higher resolution device such as a printer and when using large font sizes. In addition to the visual differences, attaching both the underscript and overscript to the same base more accurately reflects the semantics of the expression.

The accent and accentunder attributes have the same effect as the attributes with the same names on mover (Section 3.4.5 [Overscript (mover)]) and munder (Section 3.4.4 [Underscript (munder)]), respectively. Their default values are also computed in the same manner as described for those elements, with the default value of accent depending on overscript and the default value of accentunder depending on underscript.

If the base is an operator with movablelimits=true (or an embellished operator whose mo element core has movablelimits=true), and displaystyle=false, then underscript and overscript are drawn in a subscript and superscript position, respectively. In this case, the accent and accentunder attributes are ignored. This is often used for limits on symbols such as &sum;.

Within underscript, munderover always sets displaystyle to false, but increments scriptlevel by 1 only when accentunder is false. Within overscript, munderover always sets displaystyle to false, but increments scriptlevel by 1 only when accent is false. Within base, it always leaves both attributes unchanged. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4 [Style Change (mstyle)]).

3.4.6.3 Examples

The MathML representation for the example shown above with the first expression made using separate munder and mover elements, and the second one using an munderover element, is:

<mrow>
  <mover>
    <munder>
      <mo> &int; </mo>
      <mn> 0 </mn>
    </munder>
    <mi> &infin; </mi>
  </mover>
  <mtext> versus </mtext>
  <munderover>
    <mo> &int; </mo>
    <mn> 0 </mn>
    <mi> &infin; </mi>
  </munderover>
</mrow>

3.4.7 Prescripts and Tensor Indices (mmultiscripts)

3.4.7.1 Description

The syntax for the mmultiscripts element is:

<mmultiscripts>
    base
     (subscript superscript)*
     [ <mprescripts/> (presubscript presuperscript)* ]
</mmultiscripts>

Presubscripts and tensor notations are represented by a single element, mmultiscripts. This element allows the representation of any number of vertically-aligned pairs of subscripts and superscripts, attached to one base expression. It supports both postscripts (to the right of the base in visual notation) and prescripts (to the left of the base in visual notation). Missing scripts can be represented by the empty element none.

The prescripts are optional, and when present are given after the postscripts, because prescripts are relatively rare compared to tensor notation.

The argument sequence consists of the base followed by zero or more pairs of vertically-aligned subscripts and superscripts (in that order) that represent all of the postscripts. This list is optionally followed by an empty element mprescripts and a list of zero or more pairs of vertically-aligned presubscripts and presuperscripts that represent all of the prescripts. The pair lists for postscripts and prescripts are given in a left-to-right order. If no subscript or superscript should be rendered in a given position, then the empty element none should be used in that position.

The base, subscripts, superscripts, the optional separator element mprescripts, the presubscripts, and the presuperscripts, are all direct sub-expressions of the mmultiscripts element, i.e. they are all at the same level of the expression tree. Whether a script argument is a subscript or a superscript, or whether it is a presubscript or a presuperscript is determined by whether it occurs in an even-numbered or odd-numbered argument position, respectively, ignoring the empty element mprescripts itself when determining the position. The first argument, the base, is considered to be in position 1. The total number of arguments must be odd, if mprescripts is not given, or even, if it is.

The empty elements mprescripts and none are only allowed as direct sub-expressions of mmultiscripts.

3.4.7.2 Attributes

Same as the attributes of msubsup.

The mmultiscripts element increments scriptlevel by 1, and sets displaystyle to false, within each of its arguments except base, but leaves both attributes unchanged within base. (These attributes are inherited by every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4 [Style Change (mstyle)].)

3.4.7.3 Examples

Two examples of the use of mmultiscripts are:

0F1(;a;z).

<mrow>
  <mmultiscripts>
    <mi> F </mi>
    <mn> 1 </mn>
    <none/>
    <mprescripts/>
    <mn> 0 </mn>
    <none/>
  </mmultiscripts>
  <mo> &ApplyFunction; </mo>
  <mrow>
    <mo> ( </mo>
    <mrow> 
      <mo> ; </mo>
      <mi> a </mi>
      <mo> ; </mo>
      <mi> z </mi>
    </mrow> 
    <mo> ) </mo>
  </mrow>
</mrow>

R_i{}^j_{kl} (where k and l are different indices)

<mmultiscripts>
  <mi> R </mi>
  <mi> i </mi>
  <none/>
  <none/>
  <mi> j </mi>
  <mi> k </mi>
  <none/>
  <mi> l </mi>
  <none/>
</mmultiscripts>

3.5 Tables and Matrices

Matrices, arrays and other table-like mathematical notation are marked up using mtable, mtr, mlabeledtr and mtd elements. These elements are similar to the TABLE, TR and TD elements of HTML, except that they provide specialized attributes for the fine layout control necessary for commutative diagrams, block matrices and so on.

The mlabeledtr element represents a labeled row of a table and can be used for numbered equations. The first child of mlabeledtr is the label. A label is somewhat special in that it is not considered an expression in the matrix and is not counted when determining the number of columns in that row.

3.5.1 Table or Matrix (mtable)

3.5.1.1 Description

A matrix or table is specified using the mtable element. Inside of the mtable element, only mtr or mlabeledtr elements may appear.

In MathML 1.x, the mtable element could infer mtr elements around its arguments, and the mtr element could infer mtd elements. In other words, if some argument to an mtable was not an mtr element, a MathML application was to assume a row with a single column (i.e. the argument was effectively wrapped with an inferred mtr). Similarly, if some argument to a (possibly inferred) mtr element was not an mtd element, that argument was to be treated as a table entry by wrapping it with an inferred mtd element. MathML 2.0 deprecates the inference of mtr and mtd elements; mtr and mtd elements must be used inside of mtable and mtr respectively.

Table rows that have fewer columns than other rows of the same table (whether the other rows precede or follow them) are effectively padded on the right with empty mtd elements so that the number of columns in each row equals the maximum number of columns in any row of the table. Note that the use of mtd elements with non-default values of the rowspan or columnspan attributes may affect the number of mtd elements that should be given in subsequent mtr elements to cover a given number of columns. Note also that the label in an mlabeledtr element is not considered a column in the table.

3.5.1.2 Attributes

In addition to the attributes listed below, this element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
align (top | bottom | center | baseline | axis) [ rownumber ] axis
rowalign (top | bottom | center | baseline | axis) + baseline
columnalign (left | center | right) + center
groupalign group-alignment-list-list {left}
alignmentscope (true | false) + true
columnwidth ( auto | number h-unit | namedspace | fit ) + auto
width auto | number h-unit auto
rowspacing ( number v-unit ) + 1.0ex
columnspacing ( number h-unit | namedspace ) + 0.8em
rowlines (none | solid | dashed) + none
columnlines (none | solid | dashed) + none
frame none | solid | dashed none
framespacing (number h-unit | namedspace) (number v-unit | namedspace) 0.4em 0.5ex
equalrows true | false false
equalcolumns true | false false
displaystyle true | false false
side left | right | leftoverlap | rightoverlap right
minlabelspacing number h-unit 0.8em

Note that the default value for each of rowlines, columnlines and frame is the literal string `none', meaning that the default is to render no lines, rather than that there is no default.

As described in Section 2.4.4 [MathML Attribute Values], the notation (x | y)+ means one or more occurrences of either x or y, separated by whitespace. For example, possible values for columnalign are left, left left, and left right center center. If there are more entries than are necessary (e.g. more entries than columns for columnalign), then only the first entries will be used. If there are fewer entries, then the last entry is repeated as often as necessary. For example, if columnalign="right center" and the table has three columns, the first column will be right aligned and the second and third columns will be centered. The label in a mlabeledtr is not considered as a column in the table and the attribute values that apply to columns do not apply to labels.

The align attribute specifies where to align the table with respect to its environment. axis means to align the center of the table on the environment's axis. (The axis of an equation is an alignment line used by typesetters. It is the line on which a minus sign typically lies. The center of the table is the midpoint of the table's vertical extent.) center and baseline both mean to align the center of the table on the environment's baseline. top or bottom aligns the top or bottom of the table on the environment's baseline.

If the align attribute value ends with a rownumber between 1 and n (for a table with n rows), the specified row is aligned in the way described above, rather than the table as a whole; the top (first) row is numbered 1, and the bottom (last) row is numbered n. The same is true if the row number is negative, between -1 and -n, except that the bottom row is referred to as -1 and the top row as -n. Other values of rownumber are illegal.

The rowalign attribute specifies how the entries in each row should be aligned. For example, top means that the tops of each entry in each row should be aligned with the tops of the other entries in that row. The columnalign attribute specifies how the entries in each column should be aligned.

The groupalign and alignmentscope attributes are described with the alignment elements, maligngroup and malignmark, in Section 3.5.5 [Alignment Markers].

The columnwidth attribute specifies how wide a column should be. The auto value means that the column should be as wide as needed, which is the default. If an explicit value is given, then the column is exactly that wide and the contents of that column are made to fit in that width. The contents are linewrapped or clipped at the discretion of the renderer. If fit is given as a value, the remaining page width after subtracting the widths for columns specified as auto and/or specific widths is divided equally among the fit columns and this value is used for the column width. If insufficient room remains to hold the contents of the fit columns, renderers may linewrap or clip the contents of the fit columns. When the columnwidth is specified as a percentage, the value is relative to the width of the table. That is, a renderer should try to adjust the width of the column so that it covers the specified percentage of the entire table width.

The width attribute specifies the desired width of the entire table and is intended for visual user agents. When the value is a percentage value, the value is relative to the horizontal space a MathML renderer has available for the table element. When the value is auto, the MathML renderer should calculate the table width from its contents using whatever layout algorithm it chooses.

MathML 2.0 does not specify a table layout algorithm. In particular, it is the responsibility of a MathML renderer to resolve conflicts between the width attribute and other constraints on the width of a table, such as explicit values for columnwidth attributes, and minimum sizes for table cell contents. For a discussion of table layout algorithms, see Cascading Style Sheets, level 2.

The rowspacing and columnspacing attributes specify how much space should be added between each row and column. However, spacing before the first row and after the last row (i.e. at the top and bottom of the table) is given by the second number in the value of the framespacing attribute, and spacing before the first column and after the last column (i.e. on the left and on the right of the table) is given by the first number in the value of the framespacing attribute.

In those attributes' syntaxes, h-unit or v-unit represents a unit of horizontal or vertical length, respectively (see Section 2.4.4.2 [Attributes with units]). The units shown in the attributes' default values (em or ex) are typically used.

The rowlines and columnlines attributes specify whether and what kind of lines should be added between each row and column. Lines before the first row or column and after the last row or column are given using the frame attribute.

If a frame is desired around the table, the frame attribute is used. If the attribute value is not `none', then framespacing is used to add spacing between the lines of the frame and the first and last rows and columns of the table. If frame="none", then the framespacing attribute is ignored. The frame and framespacing attributes are not part of the rowlines/columnlines, rowspacing/columnspacing options because having them be so would often require that rowlines and columnlines would need to be fully specified instead of just giving a single value. For example, if a table had five columns and it was desired to have no frame around the table but to have lines between the columns, then columnlines="none solid solid solid solid none" would be necessary. If the frame is separated from the internal lines, only columnlines="solid" is needed.

The equalrows attribute forces the rows all to be the same total height when set to true. The equalcolumns attribute forces the columns all to be the same width when set to true.

The displaystyle attribute specifies the value of displaystyle (described under mstyle in Section 3.3.4 [Style Change (mstyle)]) within each cell (mtd element) of the table. Setting displaystyle=true can be useful for tables whose elements are whole mathematical expressions; the default value of false is appropriate when the table is part of an expression, for example, when it represents a matrix. In either case, scriptlevel (Section 3.3.4 [Style Change (mstyle)]) is not changed for the table cells.

The side attribute specifies what side of a table a label for a table row should should be placed. This attribute is intended to be used for labeled expressions. If left or right is specified, the label is placed on the left or right side of the table row respectively. The other two attribute values are variations on left and right: if the labeled row fits within the width allowed for the table without the label, but does not fit within the width if the label is included, then the label overlaps the row and is displayed above the row if rowalign for that row is top; otherwise the label is displayed below the row.

If there are multiple labels in a table, the alignment of the labels within the virtual column that they form is left-aligned for labels on the left side of the table, and right-aligned for labels on the right side of the table. The alignment can be overridden by specifying columnalignment for a mlabeledtr element.

The minlabelspacing attribute specifies the minimum space allowed between a label and the adjacent entry in the row.

3.5.1.3 Examples

A 3 by 3 identity matrix could be represented as follows:

<mrow>
  <mo> ( </mo>
  <mtable>
    <mtr>
      <mtd> <mn>1</mn> </mtd>
      <mtd> <mn>0</mn> </mtd>
      <mtd> <mn>0</mn> </mtd>
    </mtr>
    <mtr>
      <mtd> <mn>0</mn> </mtd>
      <mtd> <mn>1</mn> </mtd>
      <mtd> <mn>0</mn> </mtd>
    </mtr>
    <mtr>
      <mtd> <mn>0</mn> </mtd>
      <mtd> <mn>0</mn> </mtd>
      <mtd> <mn>1</mn> </mtd>
    </mtr>
  </mtable>
  <mo> ) </mo>
</mrow>

This might be rendered as:

\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)

Note that the parentheses must be represented explicitly; they are not part of the mtable element's rendering. This allows use of other surrounding fences, such as brackets, or none at all.

3.5.2 Row in Table or Matrix (mtr)

3.5.2.1 Description

An mtr element represents one row in a table or matrix. An mtr element is only allowed as a direct sub-expression of an mtable element, and specifies that its contents should form one row of the table. Each argument of mtr is placed in a different column of the table, starting at the leftmost column.

As described in Section 3.5.1 [Table or Matrix (mtable)], mtr elements are effectively padded on the right with mtd elements when they are shorter than other rows in a table.

3.5.2.2 Attributes

In addition to the attributes listed below, this element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
rowalign top | bottom | center | baseline | axis inherited
columnalign (left | center | right) + inherited
groupalign group-alignment-list-list inherited

The rowalign and columnalign attributes allow a specific row to override the alignment specified by the same attributes in the surrounding mtable element.

As with mtable, if there are more entries than necessary in the value of columnalign (i.e. more entries than columns in the row), then the extra entries will be ignored. If there are fewer entries than columns, then the last entry will be repeated as many times as needed.

The groupalign attribute is described with the alignment elements, maligngroup and malignmark, in Section 3.5.5 [Alignment Markers].

3.5.3 Labeled Row in Table or Matrix (mlabeledtr)

3.5.3.1 Description

An mlabeledtr element represents one row in a table that has a label on either the left or right side, as determined by the side attribute. The label is the first child of mlabeledtr. The rest of the children represent the contents of the row and are identical to those used for mtr; all of the children except the first must be mtd elements.

An mlabeledtr element is only allowed as a direct sub-expression of an mtable element. Each argument of mlabeledtr except for the first argument (the label) is placed in a different column of the table, starting at the leftmost column.

Note that the label element is not considered to be a cell in the table row. In particular, the label element is not taken into consideration in the table layout for purposes of width and alignment calculations. For example, in the case of an mlabeledtr with a label and a single centered mtd child, the child is first centered in the enclosing mtable, and then the label is placed. Specifically, the child is not centered in the space that remains in the table after placing the label.

While MathML 2.0 does not specify an algorithm for placing labels, implementors of visual renderers may find the following formatting model useful. To place a label, an implementor might think in terms of creating a larger table, with an extra column on both ends. The columnwidth attributes of both these border columns would be set to fit so that they expand to fill whatever space remains after the inner columns have been laid out. Finally, depending on the values of side and minlabelspacing, the label is placed in whatever border column is appropriate, possibly shifted down if necessary.

3.5.3.2 Attributes

The attributes for mlabeledtr are the same as for mtr. Unlike the attributes for the mtable element, attributes of mlabeledtr that apply to column elements also apply to the label. For example, in a one column table,


<mlabeledtr rowalign='top'>

means that the label and other entries in the row are vertically aligned along their top. To force a particular alignment on the label, the appropriate attribute would normally be set on the mtd start tag that surrounds the label content.

3.5.3.3 Equation Numbering

One of the important uses of mlabeledtr is for numbered equations. In a mlabeledtr, the label represents the equation number and the elements in the row are the equation being numbered. The side and minlabelspacing attributes of mtable determine the placement of the equation number.

In larger documents with many numbered equations, automatic numbering becomes important. While automatic equation numbering and automatically resolving references to equation numbers is outside the scope of MathML, these problems can be addressed by the use of style sheets or other means. The mlabeledtr construction provides support for both of these functions in a way that is intended to facilitate XSLT processing. The mlabeledtr element can be used to indicate the presence of a numbered equation, and the first child can be changed to the current equation number, along with incrementing the global equation number. For cross references, an id on either the mlabeledtr element or on the first element itself could be used as a target of any link.

<mtable>
  <mlabeledtr id='e-is-m-c-square'>
    <mtd>
      <mtext> (2.1) </mtext>
    </mtd>
    <mtd>
     <mrow>
       <mi>E</mi>
       <mo>=</mo>
       <mrow>
        <mi>m</mi>
        <mo>&it;</mo>
        <msup>
         <mi>c</mi>
         <mn>2</mn>
        </msup>
       </mrow>
     </mrow>
    </mtd>
  </mlabeledtr>
</mtable>

This should be rendered as:

      E = mc2 (2.1)

3.5.4 Entry in Table or Matrix (mtd)

3.5.4.1 Description

An mtd element represents one entry, or cell, in a table or matrix. An mtd element is only allowed as a direct sub-expression of an mtr or an mlabeledtr element.

The mtd element accepts any number of arguments; if this number is not 1, its contents are treated as a single `inferred mrow' formed from all its arguments, as described in Section 3.1.3 [Required Arguments].

3.5.4.2 Attributes

Name values default
rowspan number 1
columnspan number 1
rowalign top | bottom | center | baseline | axis inherited
columnalign left | center | right inherited
groupalign group-alignment-list inherited

The rowspan and columnspan attributes allow a specific matrix element to be treated as if it occupied the number of rows or columns specified. The interpretation of how this larger element affects specifying subsequent rows and columns is meant to correspond with the similar attributes for HTML 4.01 tables.

The rowspan and columnspan attributes can be used around an mtd element that represents the label in a mlabeledtr element. Also, the label of a mlabeledtr element is not considered to be part of a previous rowspan and columnspan.

The rowalign and columnalign attributes allow a specific matrix element to override the alignment specified by a surrounding mtable or mtr element.

The groupalign attribute is described with the alignment elements, maligngroup and malignmark, in Section 3.5.5 [Alignment Markers].

3.5.5 Alignment Markers

3.5.5.1 Description

Alignment markers are space-like elements (see Section 3.2.7 [Space (mspace)]) that can be used to vertically align specified points within a column of MathML expressions by the automatic insertion of the necessary amount of horizontal space between specified sub-expressions.

The discussion that follows will use the example of a set of simultaneous equations that should be rendered with vertical alignment of the coefficients and variables of each term, by inserting spacing somewhat like that shown here:

    8.44x + 55  y =  0
    3.1 x -  0.7y = -1.1

If the example expressions shown above were arranged in a column but not aligned, they would appear as:

    8.44x + 55y = 0
    3.1x - 0.7y = -1.1

(For audio renderers, it is suggested that the alignment elements produce the analogous behavior of altering the rhythm of pronunciation so that it is the same for several sub-expressions in a column, by the insertion of the appropriate time delays in place of the extra horizontal spacing described here.)

The expressions whose parts are to be aligned (each equation, in the example above) must be given as the table elements (i.e. as the mtd elements) of one column of an mtable. To avoid confusion, the term `table cell' rather than `table element' will be used in the remainder of this section.

All interactions between alignment elements are limited to the mtable column they arise in. That is, every column of a table specified by an mtable element acts as an `alignment scope' that contains within it all alignment effects arising from its contents. It also excludes any interaction between its own alignment elements and the alignment elements inside any nested alignment scopes it might contain.

The reason mtable columns are used as alignment scopes is that they are the only general way in MathML to arrange expressions into vertical columns. Future versions of MathML may provide an malignscope element that allows an alignment scope to be created around any MathML element, but even then, table columns would still sometimes need to act as alignment scopes, and since they are not elements themselves, but rather are made from corresponding parts of the content of several mtr elements, they could not individually be the content of an alignment scope element.

An mtable element can be given the attribute alignmentscope=false to cause its columns not to act as alignment scopes. This is discussed further at the end of this section. Otherwise, the discussion in this section assumes that this attribute has its default value of true.

3.5.5.2 Specifying alignment groups

To cause alignment, it is necessary to specify, within each expression to be aligned, the points to be aligned with corresponding points in other expressions, and the beginning of each alignment group of sub-expressions that can be horizontally shifted as a unit to effect the alignment. Each alignment group must contain one alignment point. It is also necessary to specify which expressions in the column have no alignment groups at all, but are affected only by the ordinary column alignment for that column of the table, i.e. by the columnalign attribute, described elsewhere.

The alignment groups start at the locations of invisible maligngroup elements, which are rendered with zero width when they occur outside of an alignment scope, but within an alignment scope are rendered with just enough horizontal space to cause the desired alignment of the alignment group that follows them. A simple algorithm by which a MathML application can achieve this is given later. In the example above, each equation would have one maligngroup element before each coefficient, variable, and operator on the left-hand side, one before the = sign, and one before the constant on the right-hand side.

In general, a table cell containing n maligngroup elements contains n alignment groups, with the ith group consisting of the elements entirely after the ith maligngroup element and before the (i+1)-th; no element within the table cell's content should occur entirely before its first maligngroup element.

Note that the division into alignment groups does not necessarily fit the nested expression structure of the MathML expression containing the groups - that is, it is permissible for one alignment group to consist of the end of one mrow, all of another one, and the beginning of a third one, for example. This can be seen in the MathML markup for the present example, given at the end of this section.

The nested expression structure formed by mrows and other layout schemata should reflect the mathematical structure of the expression, not the alignment-group structure, to make possible optimal renderings and better automatic interpretations; see the discussion of proper grouping in section Section 3.3.1 [Horizontally Group Sub-Expressions (mrow)]. Insertion of alignment elements (or other space-like elements) should not alter the correspondence between the structure of a MathML expression and the structure of the mathematical expression it represents.

Although alignment groups need to coincide with the nested expression structure of layout schemata, there are nonetheless restrictions on where an maligngroup element is allowed within a table cell. The maligngroup element may only be contained within elements of the following types (which are themselves contained in the table cell):

These restrictions are intended to ensure that alignment can be unambiguously specified, while avoiding complexities involving things like overscripts, radical signs and fraction bars. They also ensure that a simple algorithm suffices to accomplish the desired alignment.

Note that some positions for an maligngroup element, although legal, are not useful, such as for an maligngroup element to be an argument of an mfenced element. When inserting an maligngroup element before a given element in pre-existing MathML, it will often be necessary, and always acceptable, to form a new mrow element to contain just the maligngroup element and the element it is inserted before. In general, this will be necessary except when the maligngroup element is inserted directly into an mrow or into an element that can form an inferred mrow from its contents. See the warning about the legal grouping of `space-like elements' in Section 3.2.7 [Space (mspace)].

For the table cells that are divided into alignment groups, every element in their content must be part of exactly one alignment group, except the elements from the above list that contain maligngroup elements inside them, and the maligngroup elements themselves. This means that, within any table cell containing alignment groups, the first complete element must be an maligngroup element, though this may be preceded by the start tags of other elements.

This requirement removes a potential confusion about how to align elements before the first maligngroup element, and makes it easy to identify table cells that are left out of their column's alignment process entirely.

Note that it is not required that the table cells in a column that are divided into alignment groups each contain the same number of groups. If they don't, zero-width alignment groups are effectively added on the right side of each table cell that has fewer groups than other table cells in the same column.

3.5.5.3 Table cells that are not divided into alignment groups

Expressions in a column that are to have no alignment groups should contain no maligngroup elements. Expressions with no alignment groups are aligned using only the columnalign attribute that applies to the table column as a whole, and are not affected by the groupalign attribute described below. If such an expression is wider than the column width needed for the table cells containing alignment groups, all the table cells containing alignment groups will be shifted as a unit within the column as described by the columnalign attribute for that column. For example, a column heading with no internal alignment could be added to the column of two equations given above by preceding them with another table row containing an mtext element for the heading, and using the default columnalign="center" for the table, to produce:

equations with aligned variables
      8.44x + 55  y =  0
      3.1 x -  0.7y = -1.1

or, with a shorter heading,

   some equations
8.44x + 55  y =  0
3.1 x -  0.7y = -1.1

3.5.5.4 Specifying alignment points using malignmark

Each alignment group's alignment point can either be specified by an malignmark element anywhere within the alignment group (except within another alignment scope wholly contained inside it), or it is determined automatically from the groupalign attribute. The groupalign attribute can be specified on the group's preceding maligngroup element or on its surrounding mtd, mtr, or mtable elements. In typical cases, using the groupalign attribute is sufficient to describe the desired alignment points, so no malignmark elements need to be provided.

The malignmark element indicates that the alignment point should occur on the right edge of the preceding element, or the left edge of the following element or character, depending on the edge attribute of malignmark. Note that it may be necessary to introduce an mrow to group an malignmark element with a neighboring element, in order not to alter the argument count of the containing element. (See the warning about the legal grouping of `space-like elements' in Section 3.2.7 [Space (mspace)]).

When an malignmark element is provided within an alignment group, it can occur in an arbitrarily deeply nested element within the group, as long as it is not within a nested alignment scope. It is not subject to the same restrictions on location as maligngroup elements. However, its immediate surroundings need to be such that the element to its immediate right or left (depending on its edge attribute) can be unambiguously identified. If no such element is present, renderers should behave as if a zero-width element had been inserted there.

For the purposes of alignment, an element X is considered to be to the immediate left of an element Y, and Y to the immediate right of X, whenever X and Y are successive arguments of one (possibly inferred) mrow element, with X coming before Y. In the case of mfenced elements, MathML applications should evaluate this relation as if the mfenced element had been replaced by the equivalent expanded form involving mrow. Similarly, an maction element should be treated as if it were replaced by its currently selected sub-expression. In all other cases, no relation of `to the immediate left or right' is defined for two elements X and Y. However, in the case of content elements interspersed in presentation markup, MathML applications should attempt to evaluate this relation in a sensible way. For example, if a renderer maintains an internal presentation structure for rendering content elements, the relation could be evaluated with respect to that. (See Chapter 4 [Content Markup] and Chapter 5 [Combining Presentation and Content Markup] for further details about mixing presentation and content markup.)

Unlike all other elements in MathML, malignmark elements are allowed to occur within the content of token elements, such as mn, mi, or mtext. When this occurs, the character immediately before or after the malignmark element will carry the alignment point; in all other cases, the element to its immediate left or right will carry the alignment point. The rationale for this is that it is sometimes desirable to align on the edges of specific characters within multi-character token elements.

If there is more than one malignmark element in an alignment group, all but the first one will be ignored. MathML applications may wish to provide a mode in which they will warn about this situation, but it is not an error, and should trigger no warnings by default. (Rationale: it would be inconvenient to have to remove all unnecessary malignmark elements from automatically generated data, in certain cases, such as when they are used to specify alignment on `decimal points' other than the '.' character.)

3.5.5.5 Attributes

In addition to the attributes listed below, the malignmark element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
edge left | right left

malignmark has one attribute, edge, which specifies whether the alignment point will be found on the left or right edge of some element or character. The precise location meant by `left edge' or `right edge' is discussed below. If edge="right", the alignment point is the right edge of the element or character to the immediate left of the malignmark element. If edge="left", the alignment point is the left edge of the element or character to the immediate right of the malignmark element. Note that the attribute refers to the choice of edge rather than to the direction in which to look for the element whose edge will be used.

For malignmark elements that occur within the content of MathML token elements, the preceding or following character in the token element's content is used; if there is no such character, a zero-width character is effectively inserted for the purpose of carrying the alignment point on its edge. For all other malignmark elements, the preceding or following element is used; if there is no such element, a zero-width element is effectively inserted to carry the alignment point.

The precise definition of the `left edge' or `right edge' of a character or glyph (e.g. whether it should coincide with an edge of the character's bounding box) is not specified by MathML, but is at the discretion of the renderer; the renderer is allowed to let the edge position depend on the character's context as well as on the character itself.

For proper alignment of columns of numbers (using groupalign values of left, right, or decimalpoint), it is likely to be desirable for the effective width (i.e. the distance between the left and right edges) of decimal digits to be constant, even if their bounding box widths are not constant (e.g. if `1' is narrower than other digits). For other characters, such as letters and operators, it may be desirable for the aligned edges to coincide with the bounding box.

The `left edge' of a MathML element or alignment group refers to the left edge of the leftmost glyph drawn to render the element or group, except that explicit space represented by mspace or mtext elements should also count as `glyphs' in this context, as should glyphs that would be drawn if not for mphantom elements around them. The `right edge' of an element or alignment group is defined similarly.

3.5.5.6 Attributes

In addition to the attributes listed below, the malignmark element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
groupalign left | center | right | decimalpoint inherited

maligngroup has one attribute, groupalign, which is used to determine the position of its group's alignment point when no malignmark element is present. The following discussion assumes that no malignmark element is found within a group.

In the example given at the beginning of this section, there is one column of 2 table cells, with 7 alignment groups in each table cell; thus there are 7 columns of alignment groups, with 2 groups, one above the other, in each column. These columns of alignment groups should be given the 7 groupalign values `decimalpoint left left decimalpoint left left decimalpoint', in that order. How to specify this list of values for a table cell or table column as a whole, using attributes on elements surrounding the maligngroup element is described later.

If groupalign is `left', `right', or `center', the alignment point is defined to be at the group's left edge, at its right edge, or halfway between these edges, respectively. The meanings of `left edge' and `right edge' are as discussed above in relation to malignmark.

If groupalign is `decimalpoint', the alignment point is the right edge of the last character before the decimal point. The decimal point is the first `.' character (ASCII 0x2e) in the first mn element found along the alignment group's baseline. More precisely, the alignment group is scanned recursively, depth-first, for the first mn element, descending into all arguments of each element of the types mrow (including inferred mrows), mstyle, mpadded, mphantom, mfenced, or msqrt, descending into only the first argument of each `scripting' element (msub, msup, msubsup, munder, mover, munderover, mmultiscripts) or of each mroot or semantics element, descending into only the selected sub-expression of each maction element, and skipping the content of all other elements. The first mn so found always contains the alignment point, which is the right edge of the last character before the first decimal point in the content of the mn element. If there is no decimal point in the mn element, the alignment point is the right edge of the last character in the content. If the decimal point is the first character of the mn element's content, the right edge of a zero-width character inserted before the decimal point is used. If no mn element is found, the right edge of the entire alignment group is used (as for groupalign="right").

In order to permit alignment on decimal points in cn elements, a MathML application can convert a content expression into a presentation expression that renders the same way before searching for decimal points as described above.

If characters other than `.' should be used as `decimal points' for alignment, they should be preceded by malignmark elements within the mn token's content itself.

For any of the groupalign values, if an explicit malignmark element is present anywhere within the group, the position it specifies (described earlier) overrides the automatic determination of alignment point from the groupalign value.

3.5.5.7 Inheritance of groupalign values

It is not usually necessary to put a groupalign attribute on every maligngroup element. Since this attribute is usually the same for every group in a column of alignment groups to be aligned, it can be inherited from an attribute on the mtable that was used to set up the alignment scope as a whole, or from the mtr or mtd elements surrounding the alignment group. It is inherited via an `inheritance path' that proceeds from mtable through successively contained mtr, mtd, and maligngroup elements. There is exactly one element of each of these kinds in this path from an mtable to any alignment group inside it. In general, the value of groupalign will be inherited by any given alignment group from the innermost element that surrounds the alignment group and provides an explicit setting for this attribute.

Note, however, that each mtd element needs, in general, a list of groupalign values, one for each maligngroup element inside it, rather than just a single value. Furthermore, an mtr or mtable element needs, in general, a list of lists of groupalign values, since it spans multiple mtable columns, each potentially acting as an alignment scope. Such lists of group-alignment values are specified using the following syntax rules:

group-alignment            := left | right | center | decimalpoint
group-alignment-list       := group-alignment +
group-alignment-list-list := ( '{' group-alignment-list '}' ) +

As described in Section 2.4.4 [MathML Attribute Values], | separates alternatives; + represents optional repetition (i.e. 1 or more copies of what precedes it), with extra values ignored and the last value repeated if necessary to cover additional table columns or alignment group columns; '{' and '}' represent literal braces; and ( and ) are used for grouping, but do not literally appear in the attribute value.

The permissible values of the groupalign attribute of the elements that have this attribute are specified using the above syntax definitions as follows:

Element type groupalign attribute syntax default value
mtable group-alignment-list-list {left}
mtr group-alignment-list-list inherited from mtable attribute
mtd group-alignment-list inherited from within mtr attribute
maligngroup group-alignment inherited from within mtd attribute

In the example near the beginning of this section, the group alignment values could be specified on every mtd element using groupalign = `decimalpoint left left decimalpoint left left decimalpoint', or on every mtr element using groupalign = `{decimalpoint left left decimalpoint left left decimalpoint}', or (most conveniently) on the mtable as a whole using groupalign = `{decimalpoint left left decimalpoint left left decimalpoint}', which provides a single braced list of group-alignment values for the single column of expressions to be aligned.

3.5.5.8 MathML representation of an alignment example

The above rules are sufficient to explain the MathML representation of the example given near the start of this section. To repeat the example, the desired rendering is:

    8.44x + 55  y =  0
    3.1 x -  0.7y = -1.1

One way to represent that in MathML is:

<mtable groupalign="decimalpoint left left decimalpoint left left decimalpoint">
  <mtr>
    <mtd>
      <mrow>
        <mrow>
          <mrow>
            <maligngroup/>
            <mn> 8.44 </mn>
            <mo> &InvisibleTimes; </mo>
            <maligngroup/>
            <mi> x </mi>
          </mrow>
          <maligngroup/>
          <mo> + </mo>
          <mrow>
            <maligngroup/>
            <mn> 55 </mn>
            <mo> &InvisibleTimes; </mo>
            <maligngroup/>
            <mi> y </mi>
          </mrow>
        </mrow>
      <maligngroup/>
      <mo> = </mo>
      <maligngroup/>
      <mn> 0 </mn>
    </mrow>
    </mtd>
    <mtd>
      <mrow>
        <mrow>
          <mrow>
            <maligngroup/>
            <mn> 3.1 </mn>
            <mo> &InvisibleTimes; </mo>
            <maligngroup/>
            <mi> x </mi>
          </mrow>
          <maligngroup/>
          <mo> - </mo>
          <mrow>
            <maligngroup/>
            <mn> 0.7 </mn>
            <mo> &InvisibleTimes; </mo>
            <maligngroup/>
            <mi> y </mi>
          </mrow>
        </mrow>
        <maligngroup/>
        <mo> = </mo>
        <maligngroup/>
        <mrow>
          <mo> - </mo>
          <mn> 1.1 </mn>
        </mrow>
      </mrow>
    </mtd>
  </mtr>
</mtable>

3.5.5.9 Further details of alignment elements

The alignment elements maligngroup and malignmark can occur outside of alignment scopes, where they are ignored. The rationale behind this is that in situations in which MathML is generated, or copied from another document, without knowing whether it will be placed inside an alignment scope, it would be inconvenient for this to be an error.

An mtable element can be given the attribute alignmentscope=false to cause its columns not to act as alignment scopes. In general, this attribute has the syntax (true | false) +; if its value is a list of boolean values, each boolean value applies to one column, with the last value repeated if necessary to cover additional columns, or with extra values ignored. Columns that are not alignment scopes are part of the alignment scope surrounding the mtable element, if there is one. Use of alignmentscope=false allows nested tables to contain malignmark elements for aligning the inner table in the surrounding alignment scope.

As discussed above, processing of alignment for content elements is not well-defined, since MathML does not specify how content elements should be rendered. However, many MathML applications are likely to find it convenient to internally convert content elements to presentation elements that render the same way. Thus, as a general rule, even if a renderer does not perform such conversions internally, it is recommended that the alignment elements should be processed as if it did perform them.

A particularly important case for renderers to handle gracefully is the interaction of alignment elements with the matrix content element, since this element may or may not be internally converted to an expression containing an mtable element for rendering. To partially resolve this ambiguity, it is suggested, but not required, that if the matrix element is converted to an expression involving an mtable element, that the mtable element be given the attribute alignmentscope=false, which will make the interaction of the matrix element with the alignment elements no different than that of a generic presentation element (in particular, it will allow it to contain malignmark elements that operate within the alignment scopes created by the columns of an mtable that contains the matrix element in one of its table cells).

The effect of alignment elements within table cells that have non-default values of the columnspan or rowspan attributes is not specified, except that such use of alignment elements is not an error. Future versions of MathML may specify the behavior of alignment elements in such table cells.

The effect of possible linebreaking of an mtable element on the alignment elements is not specified.

3.5.5.10 A simple alignment algorithm

A simple algorithm by which a MathML application can perform the alignment specified in this section is given here. Since the alignment specification is deterministic (except for the definition of the left and right edges of a character), any correct MathML alignment algorithm will have the same behavior as this one. Each mtable column (alignment scope) can be treated independently; the algorithm given here applies to one mtable column, and takes into account the alignment elements, the groupalign attribute described in this section, and the columnalign attribute described under mtable (Section 3.5.1 [Table or Matrix (mtable)]).

First, a rendering is computed for the contents of each table cell in the column, using zero width for all maligngroup and malignmark elements. The final rendering will be identical except for horizontal shifts applied to each alignment group and/or table cell. The positions of alignment points specified by any malignmark elements are noted, and the remaining alignment points are determined using groupalign values.

For each alignment group, the horizontal positions of the left edge, alignment point, and right edge are noted, allowing the width of the group on each side of the alignment point (left and right) to be determined. The sum of these two `side-widths', i.e. the sum of the widths to the left and right of the alignment point, will equal the width of the alignment group.

Second, each column of alignment groups, from left to right, is scanned. The ith scan covers the ith alignment group in each table cell containing any alignment groups. Table cells with no alignment groups, or with fewer than i alignment groups, are ignored. Each scan computes two maximums over the alignment groups scanned: the maximum width to the left of the alignment point, and the maximum width to the right of the alignment point, of any alignment group scanned.

The sum of all the maximum widths computed (two for each column of alignment groups) gives one total width, which will be the width of each table cell containing alignment groups. Call the maximum number of alignment groups in one cell n; each such cell's width is divided into 2n adjacent sections, called L(i) and R(i) for i from 1 to n, using the 2n maximum side-widths computed above; for each i, the width of all sections called L(i) is the maximum width of any cell's ith alignment group to the left of its alignment point, and the width of all sections called R(i) is the maximum width of any cell's ith alignment group to the right of its alignment point.

The alignment groups are then positioned in the unique way that places the part of each ith group to the left of its alignment point in a section called L(i), and places the part of each ith group to the right of its alignment point in a section called R(i). This results in the alignment point of each ith group being on the boundary between adjacent sections L(i) and R(i), so that all alignment points of ith groups have the same horizontal position.

The widths of the table cells that contain no alignment groups were computed as part of the initial rendering, and may be different for each cell, and different from the single width used for cells containing alignment groups. The maximum of all the cell widths (for both kinds of cells) gives the width of the table column as a whole.

The position of each cell in the column is determined by the applicable part of the value of the columnalign attribute of the innermost surrounding mtable, mtr, or mtd element that has an explicit value for it, as described in the sections on those elements. This may mean that the cells containing alignment groups will be shifted within their column, in addition to their alignment groups having been shifted within the cells as described above, but since each such cell has the same width, it will be shifted the same amount within the column, thus maintaining the vertical alignment of the alignment points of the corresponding alignment groups in each cell.

3.6 Enlivening Expressions

3.6.1 Bind Action to Sub-Expression (maction)

There are many ways in which it might be desirable to make mathematical content active. Adding a link to a MathML sub-expression is one basic kind of interactivity. See Section 7.1.4 [Mixing and Linking MathML and HTML]. However, many other kinds of interactivity cannot be easily accommodated by generic linking mechanisms. For example, in lengthy mathematical expressions, the ability to `fold' expressions might be provided, i.e. a renderer might allow a reader to toggle between an ellipsis and a much longer expression that it represents.

To provide a mechanism for binding actions to expressions, MathML provides the maction element. This element accepts any number of sub-expressions as arguments.

3.6.1.1 Attributes

In addition to the attributes listed below, this element permits id, xref, class and style attributes, as described in Section 2.4.5 [Attributes Shared by all MathML Elements].

Name values default
actiontype (described below) (required attribute, no default value)
selection positive-integer 1

By default, MathML applications that do not recognize the specified actiontype should render the selected sub-expression as defined below. If no selected sub-expression exists, it is a MathML error; the appropriate rendering in that case is as described in Section 7.2.2 [Handling of Errors].

Since a MathML-compliant application is not required to recognize any particular actiontypes, an application can be fully MathML compliant just by implementing the above-described default behavior.

The selection attribute is provided for those actiontypes that permit someone viewing a document to select one of several sub-expressions for viewing. Its value should be a positive integer that indicates one of the sub-expressions of the maction element, numbered from 1 to the number of children of the element. When this is the case, the sub-expression so indicated is defined to be the `selected sub-expression' of the maction element; otherwise the `selected sub-expression' does not exist, which is an error. When the selection attribute is not specified (including for actiontypes for which it makes no sense), its default value is 1, so the selected sub-expression will be the first sub-expression.

Furthermore, as described in Chapter 7 [The MathML Interface], if a MathML application responds to a user command to copy a MathML sub-expression to the environment's `clipboard', any maction elements present in what is copied should be given selection attributes that correspond to their selection state in the MathML rendering at the time of the copy command.

A suggested list of actiontypes and their associated actions is given below. Keep in mind, however, that this list is mainly for illustration, and recognized values and behaviors will vary from application to application.

<maction actiontype="toggle" selection="positive-integer" > (first expression) (second expression)... </maction>
For this action type, a renderer would alternately display the given expressions, cycling through them when a reader clicked on the active expression, starting with the selected expression and updating the selection attribute value as described above. Typical uses would be for exercises in education, ellipses in long computer algebra output, or to illustrate alternate notations. Note that the expressions may be of significantly different size, so that size negotiation with the browser may be desirable. If size negotiation is not available, scrolling, elision, panning, or some other method may be necessary to allow full viewing.
<maction actiontype="statusline"> (expression) (message) </maction>
In this case, the renderer would display the expression in context on the screen. When a reader clicked on the expression or moved the mouse over it, the renderer would send a rendering of the message to the browser statusline. Since most browsers in the foreseeable future are likely to be limited to displaying text on their statusline, authors would presumably use plain text in an mtext element for the message in most circumstances. For non-mtext messages, renderers might provide a natural language translation of the markup, but this is not required.
<maction actiontype="tooltip"> (expression) (message) </maction>
Here the renderer would also display the expression in context on the screen. When the mouse pauses over the expression for a long enough delay time, the renderer displays a rendering of the message in a pop-up `tooltip' box near the expression. These message boxes are also sometimes called `balloon help' boxes. Presumably authors would use plain text in an mtext element for the message in most circumstances. For non-mtext messages, renderers may provide a natural language translation of the markup if full MathML rendering is not practical, but this is not required.
<maction actiontype="highlight" my:color="red" my:background="yellow"> expression </maction>
In this case, a renderer might highlight the enclosed expression on a `mouse-over' event. In the example given above, non-standard attributes from another namespace are being used to pass additional information to renderers that support them, without violating the MathML DTD (see Section 7.2.3 [Attributes for unspecified data]). The my:color attribute changes the color of the characters in the presentation, while the my:background attribute changes the color of the background behind the characters.
<maction actiontype="menu" selection="1" > (menu item 1) (menu item 2) ... </maction>
This action type instructs a renderer to provide a pop up menu. This allows a one-to-many linking capability. Note that the menu items may be other <maction actiontype="menu">...</maction> expressions, thereby allowing nested menus. It is assumed that the user choosing a menu item would invoke some kind of action associated with that item. Such action might be completely handled by the renderer itself or it might trigger some kind of event within the browser that could be linked to other programming logic.

Overview: Mathematical Markup Language (MathML) Version 2.0
Previous: 2 MathML Fundamentals
Next: 4 Content Markup