University of Cambridge Computing Service

Specification of the Exim Mail Transfer Agent

by
Philip Hazel

University Computing Service
New Museums Site

Pembroke Street

Cambridge CB2 3QH

United Kingdom

phone: +44 1223 334600
fax: +44 1223 334679
email: phl0 at cus.cam.ac.uk

Edition for Exim 4.50, February 2005

Copyright [J University of Cambridge 2005

Contents

1. Introduction

1.1 Exim documentation
1.2 FTP and web sites

1.3 Mailing lists

1.4 Exim training

1.5 Bug reports

1.6 Where to find the Exim distribution
1.7 Wish list

1.8 Contributed material

1.9 Limitations

1.10 Run time configuration
1.11 Cdlling interface

1.12 Terminology

2. Incorporated code
3. How Exim receives and delivers mail

3.1 Overall philosophy

3.2 Palicy control

3.3 User filters

3.4 Message identification

3.5 Receiving mail

3.6 Handling an incoming message

3.7 Life of a message

3.8 Processing an address for delivery
3.9 Processing an address for verification
3.10 Running an individual router

3.11 Router preconditions

3.12 Delivery in detail

3.13 Retry mechanism

3.14 Temporary delivery failure

3.15 Permanent delivery failure

3.16 Failures to deliver bounce messages

4. Building and installing Exim

4.1 Unpacking

4.2 Multiple machine architectures and operating systems
4.3 DBM libraries

4.4 Pre-building configuration

4.5 Support for iconv()

4.6 Including TLS/SSL encryption support

4.7 Use of tcpwrappers

4.8 Including support for |Pv6

4.9 The building process

4.10 Overriding build-time options for Exim

4.11 OS-specific header files

4.12 Overriding build-time options for the monitor
4.13 Installing Exim binaries and scripts

4.14 Installing info documentation

4.15 Setting up the spool directory

4.16 Testing

[i]

©COWOoWWW 0 O UOrPAEDRMPRWWWNNE B

4.17 Replacing another MTA with Exim
4.18 Upgrading Exim
4.19 Stopping the Exim daemon on Solaris

5. The Exim command line

5.1 Setting options by program name
5.2 Trusted and admin users
5.3 Command line options

6. The Exim run time configuration file

6.1 Using a different configuration file

6.2 Configuration file format

6.3 File inclusions in the configuration file
6.4 Macros in the configuration file

6.5 Conditional skips in the configuration file

6.6 Common option syntax

6.7 Boolean options

6.8 Integer values

6.9 Octal integer values

6.10 Fixed point number values
6.11 Time interval values

6.12 String values

6.13 Expanded strings

6.14 User and group names
6.15 List construction

6.16 Empty itemsin lists

6.17 Format of driver configurations

7. The default configuration file

7.1 Main configuration settings
7.2 ACL configuration

7.3 Router configuration

7.4 Transport configuration

7.5 Default retry rule

7.6 Rewriting configuration

7.7 Authenticators configuration

8. Regular expressions

8.1 Testing regular expressions

9. File and database lookups

9.1 Lookup types

9.2 Single-key lookup types

9.3 Query-style lookup types

9.4 Temporary errors in lookups

9.5 Default values in single-key lookups
9.6 Partial matching in single-key 1ookups
9.7 Lookup caching

9.8 Quoting lookup data

9.9 More about dnsdb

9.10 Multiple dnsdb lookups

9.11 More about LDAP

9.12 Format of LDAP queries

9.13 LDAP quoting

9.14 LDAP connections

[ii]

25
26
26

27

27
27
28

46

46
47
47
48
49
49
49
50
50
50
50
50
51
51
51
51
52

56
58
60
61
62
62

63
63
65

65
66
68
68
69
69
70
71
71
72
72
73
73
74

9.15 LDAP authentication and control information 75

9.16 Format of data returned by LDAP 76
9.17 More about NIS+ 76
9.18 More about MySQL, PostgreSQL, Oracle, and Interbase 77
9.19 Specia MySQL features 78
9.20 Specia PostgreSQL features 78
10. Domain, host, address, and local part lists 79
10.1 Expansion of lists 79
10.2 Negated items in lists 79
10.3 File namesiin lists 79
10.4 An Isearch file is not an out-of-line list 80
10.5 Named lists 80
10.6 Named lists compared with macros 81
10.7 Named list caching 81
10.8 Domain lists 82
10.9 Host lists 84
10.10 Special host list patterns 84
10.11 Host list patterns that match by 1P address 84
10.12 Host list patterns for single-key lookups by host address 85
10.13 Host list patterns that match by host name 86
10.14 Behaviour when an IP address or name cannot be found 87
10.15 Host list patterns for single-key lookups by host name 87
10.16 Host list patterns for query-style lookups 87
10.17 Mixing wildcarded host names and addresses in host lists 88
10.18 Address lists 88
10.19 Case of letters in address lists 90
10.20 Local part lists 91
11. String expansions 92
11.1 Litera text in expanded strings 92
11.2 Character escape sequences in expanded strings 92
11.3 Testing string expansions 92
11.4 Forced expansion failure 92
11.5 Expansion items 93
11.6 Expansion operators 100
11.7 Expansion conditions 104
11.8 Combining expansion conditions 109
11.9 Expansion variables 110
12. Embedded Perl 122
12.1 Setting up so Perl can be used 122
12.2 Calling Perl subroutines 122
12.3 Calling Exim functions from Perl 123
12.4 Use of standard output and error by Perl 123
13. Starting the daemon and the use of network interfaces 124
13.1 Starting a listening daemon 124
13.2 Special IP listening addresses 125
13.3 Overriding local_interfaces and daemon_smtp_ports 125
13.4 Support for the obsolete SSMTP (or SMTPS) protocol 125
13.5 IPv6 address scopes 126
13.6 Examples of starting a listening daemon 126
13.7 Recognising the local host 126

13.8 Delivering to a remote host 127

[iii]

14. Main configuration

14.1 Miscellaneous

14.2 Exim parameters

14.3 Privilege controls

14.4 Logging

14.5 Frozen messages

14.6 Data lookups

14.7 Message ids

14.8 Embedded Perl Startup

14.9 Daemon

14.10 Resource control

14.11 Policy controls

14.12 Cadlout cache

1413 TLS

14.14 Local user handling

14.15 All incoming messages (SMTP and non-SMTP)
14.16 Non-SMTP incoming messages
14.17 Incoming SMTP messages
14.18 SMTP extensions

14.19 Processing messages

14.20 System filter

14.21 Routing and delivery

14.22 Bounce and warning messages
14.23 Alphabetical list of main options

15. Generic options for routers
16. The accept router
17. The dnslookup router

17.1 Problems with DNS lookups
17.2 Private options for dnslookup
17.3 Effect of qualify_single and search_parents

18. Theipliteral router
19. The iplookup router
20. The manualroute router

20.1 Private options for manualroute
20.2 Routing rules in route_list

20.3 Routing rules in route_data
20.4 Format of the list of hosts

20.5 How the list of hostsis used
20.6 How the options are used

20.7 Manualroute examples

21. The queryprogram router
22. Theredirect router

22.1 Redirection data

22.2 Forward files and address verification
22.3 Interpreting redirection data

22.4 Items in a non-filter redirection list
22.5 Redirecting to alocal mailbox

22.6 Specid items in redirection lists
22.7 Duplicate addresses

[ivV]

128

128
128
128
128
129
129
129
129
129
129
130
130
131
131
131
131
131
132
132
132
132
133
133

165
176
177

177
177
179

180
181
183

183
184
185
185
185
186
186

189
191

191
191
192
192
192
193
195

22.8 Repeated redirection expansion
22.9 Errorsin redirection lists
22.10 Private options for the redirect router

23. Environment for running local transports

23.1 Concurrent deliveries

23.2 Uids and gids

23.3 Current and home directories

23.4 Expansion variables derived from the address

24. Generic options for transports
25. Address batching in local transports
26. The appendfile transport

26.1 The file and directory options

26.2 Private options for appendfile

26.3 Operational details for appending

26.4 Operational details for delivery to a new file
26.5 Maildir delivery

26.6 Using tags to record message sizes

26.7 Using a maildirsize file

26.8 Mailstore delivery

26.9 Non-specia new file delivery

27. The autoreply transport

27.1 Private options for autoreply
28. The Imtp transport
29. The pipe transport

29.1 Concurrent delivery

29.2 Returned status and data

29.3 How the command is run

29.4 Environment variables

29.5 Private options for pipe

29.6 Using an external local delivery agent

30. The smtp transport

30.1 Multiple messages on a single connection

30.2 Use of the $host variable

30.3 Private options for smtp

30.4 How the limits for the number of hosts to try are used

31. Address rewriting

31.1 Explicitly configured address rewriting

31.2 When does rewriting happen?

31.3 Testing the rewriting rules that apply on input
31.4 Rewriting rules

31.5 Rewriting patterns

31.6 Rewriting replacements

31.7 Rewriting flags

31.8 Flags specifying which headers and envelope addresses to rewrite
31.9 The SMTP-time rewriting flag

31.10 Flags controlling the rewriting process
31.11 Rewriting examples

N

195
195
195

202

202
202
203
203

204
209
211

211
212
220
221
222
222
222
223
223

224
224
227
228

228
228
229
229
230
233

235

235
235
235
241

243

243
243
244
244
245
246
246
246
246
247
247

32. Retry configuration

32.1 Retry rules

32.2 Choosing which retry rule to use
32.3 Retry rules for specific errors
32.4 Retry rules for specified senders
32.5 Retry parameters

32.6 Retry rule examples

32.7 Timeout of retry data

32.8 Long-term failures

32.9 Ultimate address timeout

33. SMTP authentication

33.1 Generic options for authenticators

33.2 The AUTH parameter on MAIL commands
33.3 Authentication on an Exim server

33.4 Testing server authentication

33.5 Authentication by an Exim client

34. The plaintext authenticator

34.1 Using plaintext in a server

34.2 The PLAIN authentication mechanism

34.3 The LOGIN authentication mechanism

34.4 Support for different kinds of authentication
34.5 Using plaintext in a client

35. The cram_md5 authenticator

35.1 Using cram_md5 as a server
35.2 Using cram_md5 as a client

36. The cyrus_sad authenticator
36.1 Using cyrus_sadl as a server
37. The spa authenticator

37.1 Using spa as a server
37.2 Using spa as a client

38. Encrypted SMTP connections using TL S/SSL

38.1 Support for the legacy ‘ssmtp’ (aka ‘smtps') protocol
38.2 OpenSSL vs GnuTLS

38.3 Requiring specific ciphers in OpenSSL

38.4 Requiring specific ciphersin GnuTLS

38.5 Configuring an Exim server to use TLS

38.6 Requesting and verifying client certificates

38.7 Revoked certificates

38.8 Configuring an Exim client to use TLS

38.9 Multiple messages on the same encrypted TCP/IP connection
38.10 Certificates and all that

38.11 Certificate chains

38.12 Self-signed certificates

39. Access control lists

39.1 Testing ACLs

39.2 Specifying when ACLs are used
39.3 The non-SMTP ACL

39.4 The connect ACL

[vi]

249

249
250
250
251
252
252
253
253
254

255

256
257
257
258
259

260

260
260
261
262
262

264

264
264

266
266
268

268
268

269

269
269
270
271
271
272
273
273
274
274
274
274

276

276
276
277
277

39.5 The DATA ACLs 277

39.6 The MIME ACL 277
39.7 The QUIT ACL 277
39.8 Finding an ACL to use 277
39.9 ACL return codes 278
39.10 Unset ACL options 278
39.11 Data for message ACLs 279
39.12 Data for non-message ACLs 279
39.13 Format of an ACL 279
39.14 ACL verbs 280
39.15 ACL variables 281
39.16 Condition and modifier processing 281
39.17 ACL modifiers 282
39.18 Use of the control modifier 285
39.19 Adding header lines with the warn verb 287
39.20 ACL conditions 287
39.21 Using DNS lists 291
39.22 Specifying the IP address for a DNS list lookup 292
39.23 DNS lists keyed on domain names 292
39.24 Multiple explicit keys for a DNS list 292
39.25 Data returned by DNS lists 293
39.26 Variables set from DNS lists 293
39.27 Additional matching conditions for DNS lists 294
39.28 Negated DNS matching conditions 294
39.29 DNS lists and IPv6 295
39.30 Address verification 295
39.31 Callout verification 296
39.32 Additional parameters for callouts 297
39.33 Callout caching 299
39.34 Sender address verification reporting 299
39.35 Redirection while verifying 300
39.36 Using an ACL to control relaying 300
39.37 Checking arelay configuration 301
40. Content scanning 302
40.1 Scanning for viruses 302
40.2 Scanning with SpamAssassin 305
40.3 Scanning MIME parts 306
40.4 Scanning with regular expressions 309
40.5 The demime condition 309
41. Adding a local scan function to Exim 311
41.1 Building Exim to use alocal scan function 311
41.2 API for local_scan() 311
41.3 Configuration options for local_scan() 313
41.4 Available Exim variables 314
41.5 Structure of header lines 315
41.6 Structure of recipient items 316
41.7 Available Exim functions 316
41.8 More about Exim’'s memory handling 321
42. System-wide message filtering 322
42.1 Specifying a system filter 322
42.2 Testing a system filter 322

42.3 Contents of a system filter 322

[vii]

42.4 Additional variable for system filters

42.5 Defer, freeze, and fail commands for system filters

42.6 Adding and removing headers in a system filter
42.7 Setting an errors address in a system filter
42.8 Per-address filtering

43. M essage processing

43.1 Submission mode for non-local messages
43.2 Line endings

43.3 Unqualified addresses

43.4 The UUCP From line

43.5 Resent- header lines

43.6 The Auto-Submitted: header line
43.7 The Bcc: header line

43.8 The Date: header line

43.9 The Delivery-date: header line
43.10 The Envelope-to: header line
43.11 The From: header line

43.12 The Message-ID: header line
43.13 The Received: header line
43.14 The Return-path: header line
43.15 The Sender: header line

43.16 Adding and removing header lines in routers and transports

43.17 Constructed addresses
43.18 Case of local parts
43.19 Dotsin local parts
43.20 Rewriting addresses

44. SMTP processing

44.1 Outgoing SMTP and LMTP over TCP/IP
44.2 Errors in outgoing SMTP

44.3 Variable Envelope Return Paths (VERP)
44.4 Incoming SMTP messages over TCP/IP
44.5 Unrecognized SMTP commands

44.6 Syntax and protocol errorsin SMTP commands
44.7 Use of non-mail SMTP commands

44.8 The vrry and Expn commands

44.9 The eTrRN command

44.10 Incoming local SMTP

44.11 Outgoing batched SMTP

44.12 Incoming batched SMTP

45. Customizing bounce and war ning messages

45.1 Customizing bounce messages
45.2 Customizing warning messages

46. Some common configuration requirements

46.1 Sending mail to a smart host

46.2 Using Exim to handle mailing lists
46.3 Syntax errors in mailing lists

46.4 Re-expansion of mailing lists

46.5 Closed mailing lists

46.6 Virtual domains

46.7 Multiple user mailboxes

46.8 Simplified vacation processing

[Viii]

323
323
324
324
325

326

326
326
327
327
328
328
328
328
328
329
329
329
329
330
330
330
331
332
332
332

334

334
335
336
337
338
338
339
339
339
340
340
341

342

342
343

345
345
345
346
347
348

46.9 Taking copies of mail 348

46.10 Intermittently connected hosts 348
46.11 Exim on the upstream server host 348
46.12 Exim on the intermittently connected client host 349
47. Using Exim as a non-queueing client 350
48. Log files 352
48.1 Where the logs are written 352
48.2 Logging to local files that are periodically ‘cycled’ 353
48.3 Datestamped log files 353
48.4 Logging to syslog 354
48.5 Log line flags 355
48.6 Logging message reception 355
48.7 Logging deliveries 356
48.8 Discarded deliveries 356
48.9 Deferred deliveries 357
48.10 Delivery failures 357
48.11 Fake deliveries 357
48.12 Completion 357
48.13 Summary of Fieldsin Log Lines 357
48.14 Other log entries 358
48.15 Reducing or increasing what is logged 358
48.16 Message log 362
49. Exim utilities 363
49.1 Finding out what Exim processes are doing (exiwhat) 363
49.2 Selective queue listing (exiqgrep) 364
49.3 Summarising the queue (exigsumm) 364
49.4 Extracting specific information from the log (exigrep) 365
49.5 Selecting messages by various criteria (exipick) 365
49.6 Cycling log files (exicyclog) 365
49.7 Mail statistics (eximstats) 365
49.8 Checking access policy (exim_checkaccess) 368
49.9 Making DBM files (exim_dbmbuild) 369
49.10 Finding individual retry times (exinext) 369
49.11 Hints database maintenance (exim_dumpdb, exim_fixdb, exim_tidydb) 370
49.12 exim_dumpdb 370
49.13 exim_tidydb 371
49.14 exim_fixdb 371
49.15 Mailbox maintenance (exim_lock) 371
50. The Exim monitor 373
50.1 Running the monitor 373
50.2 The stripcharts 373
50.3 Main action buttons 374
50.4 The log display 374
50.5 The queue display 375
50.6 The queue menu 375
51. Security considerations 378
51.1 Building a more ‘hardened’ Exim 378
51.2 Root privilege 378
51.3 Running Exim without privilege 379
51.4 Delivering to local files 381

51.5 IPv4 source routing 381

[iX]

51.6 The VRFY, EXPN, and ETRN commands in SMTP
51.7 Privileged users

51.8 Spool files

51.9 Use of argv[Q]

51.10 Use of %f formatting

51.11 Embedded Exim path

51.12 Use of sprintf()

51.13 Use of debug_printf() and log_write()

51.14 Use of strcat() and strcpy()

52. Format of spool files

52.1 Format of the -H file
53. Adding new drivers or lookup types
Index

[x]

381
381
381
381
382
382
382
382
382

383
383
387
389

1. Introduction

If 1 have seen further it is by standing on the shoulders of giants. (Isaac Newton)

Exim is a mail transfer agent (MTA) for hosts that are running Unix or Unix-like operating systems. It
was designed on the assumption that it would be run on hosts that are permanently connected to
the Internet. However, it can be used on intermittently connected hosts with suitable configuration
adjustments.

Configuration files currently exist for the following operating systems. AlX, BSD/OS (aka BSDI),
Darwin (Mac OS X), DGUX, FreeBSD, GNU/Hurd, GNU/Linux, HI-OSF (Hitachi), HP-UX, IRIX,
MIPS RISCOS, NetBSD, OpenBSD, QNX, SCO, SCO SVR4.2 (aka UNIX-SV), Solaris (aka
SunOS5), SUnOS4, Trub4-Unix (formerly Digital UNIX, formerly DEC-OSF1), Ultrix, and Unixware.
Some of these operating systems are no longer current and cannot easily be tested, so the configuration
files may no longer work in practice.

There are also configuration files for compiling Exim in the Cygwin environment that can be installed
on systems running Windows. However, this document does not contain any information about running
Exim in the Cygwin environment.

The terms and conditions for the use and distribution of Exim are contained in the file NOTICE. Exim
is distributed under the terms of the GNU Genera Public Licence, a copy of which may be found in
the file LICENCE.

The use, supply or promotion of Exim for the purpose of sending bulk, unsolicited electronic mail is
incompatible with the basic aims of the program, which revolve around the free provision of a service
that enhances the quality of personal communications. The author of Exim regards indiscriminate
mass-mailing as an antisocial, irresponsible abuse of the Internet.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, | could never have contemplated starting to write a new MTA. Many of
the ideas and user interfaces were originaly taken from Smail 3, though the actual code of Exim is
entirely new, and has developed far beyond the initial concept.

Many people, both in Cambridge and around the world, have contributed to the development and the
testing of Exim, and to porting it to various operating systems. | am grateful to them all. The
distribution now contains a file called ACKNOWLEDGMENTS, in which | have started recording
the names of contributors.

1.1 Exim documentation

This edition of the Exim specification applies to version 4.50 of Exim. Substantive changes from the
4.40 edition are marked by bars in the right-hand margin in the PostScript, PDF, and plain text
versions of the document, and by green text in the HTML version, as shown by this paragraph.
Changes are not marked in the Texinfo version, because Texinfo doesn’t support change bars. Minor
corrections and rewordings are not marked.

This document is very much a reference manual; it is not a tutorial. The reader is expected to have
some familiarity with the SMTP mail transfer protocol and with general Unix system administration.
Although there are some discussions and examples in places, the information is mostly organized in a
way that makes it easy to look up, rather than in a natural order for sequential reading. Furthermore,
the manual aims to cover every aspect of Exim in detail, including a number of rarely-used, special-
purpose features that are unlikely to be of very wide interest.

An ‘easier’ discussion of Exim which provides more in-depth explanatory, introductory, and tutorial
material can be found in a book entitled The Exim SMTP Mail Server, published by UIT Cambridge
(http://www.uit.co.uk/exim-book/).

Exim 4.50 [1] introduction (1)

This book aso contains a chapter that gives a general introduction to SMTP and Internet mail.
Inevitably, however, the book is unlikely to be fully up-to-date with the latest release of Exim. (Note
that the earlier book about Exim, published by O'Reilly, covers Exim 3, and many things have
changed in Exim 4.)

As the program develops, there may be features in newer versions that have not yet made it into this
document, which is updated only when the most significant digit of the fractional part of the version
number changes. Specifications of new features that are not yet in this manual are placed in the file
doc/NewStuff in the Exim distribution.

Some features may be classified as ‘experimental’. These may change incompatibly while they are
developing, or even be withdrawn. For this reason, they are not documented in this manual.
Information about experimental features can be found in the file doc/experimental.txt.

All changes to the program (whether new features, bug fixes, or other kinds of change) are noted
briefly in the file called doc/Changel og.

This specification itself is available as an ASCII file in doc/spec.txt so that it can easily be searched
with a text editor. Other filesin the doc directory are:

OptionLists.txt list of al options in alphabetical order
dbm.discuss.txt discussion about DBM libraries

exim.8 aman page of Exim’'s command line options
experimental.txt documentation of experimental features
filter.txt specification of the filter language
pcrepatter n.txt specification of PCRE regular expressions
pcretest.txt specification of the PCRE testing program
Exim3.upgrade upgrade notes from release 2 to release 3
Exim4.upgrade upgrade notes from release 3 to release 4

The main specification and the specification of the filtering language are also available in other formats
(HTML, PostScript, PDF, and Texinfo). Section 1.6 below tells you how to get hold of these.

1.2 FTP and web sites

The primary distribution site for Exim is currently the University of Cambridge's FTP site, whose
contents are described in Where to find the Exim distribution below. In addition, there is a web site and
an FTP site at exim.org. These are now also hosted at the University of Cambridge. The exim.org site
was previously hosted for a number of years by Energis Squared, formerly Planet Online Ltd, whose
support | gratefully acknowledge.

As well as Exim distribution tar files, the Exim web site contains a number of differently formatted
versions of the documentation, including the FAQ in both text and HTML formats. The HTML version
comes with a keyword-in-context index. A recent addition to the online information is the Exim wiki
(http://mww.exim.or g/leximwiki/). We hope that this will make it easier for Exim users to contribute
examples, tips, and know-how for the benefit of others.

1.3 Mailing lists

The following are the three main Exim mailing lists:
exim-users@exim.org general discussion list
exim-dev@exim.org discussion of bugs, enhancements, etc.
eximrannounce@exim.org moderated, low volume announcements list

You can subscribe to these lists, change your existing subscriptions, and view or search the archives
via the mailing lists link on the Exim home page. The eximrusers mailing list is also forwarded to
http://www.egroups.com/list/exim-users, an archiving system with searching capabilities.

Exim 4.50 [2] introduction (1)

1.4 Exim training

From time to time (approximately annualy at the time of writing), lecture-based training courses are
run by the author of Exim in Cambridge, UK. Details can be found on the web site http://www-
tus.csx.cam.ac.uk/cour ses/exim/.

1.5 Bug reports

Reports of obvious bugs should be emailed to bugs@exim.org. However, if you are unsure whether
some behaviour is a bug or not, the best thing to do is to post a message to the exim-users mailing list
and have it discussed.

1.6 Where to find the Exim distribution
The master ftp site for the Exim distribution is

ftp://ftp.csx.cam.ac.uk/pub/softwar e/femail/exim
This is mirrored by
ftp://ftp.exim.or g/pub/exim
The file references that follow are relative to the exim directories at these sites.

There are now quite a number of independent mirror sites around the world. Those that | know about
are listed in the file called Mirrors.

Within the exim directory there are subdirectories called exim3 (for previous Exim 3 distributions),
exim4 (for the latest Exim 4 distributions), and Testing for testing versions. In the exim4 subdirectory,
the current release can always be found in files called

exim-n.nn.tar.gz
exim-n.nn.tar.bz2

where n.nn is the highest such version number in the directory. The two files contain identical data; the
only difference is the type of compression. The .bz2 file is usualy a lot smaller than the .gz file. The
distributions are currently signed with Philip Hazel’'s GPG key. The corresponding public key is
available from a number of keyservers, and there is also a copy in the file Public-Key. The signatures
for the tar bundles are in:

exim-n.nn.tar.gz.sig
exim-n.nn.tar.bz2.sig

For each released version, the log of changes is made separately available in a separate file in the
directory Changel ogs so that it is possible to find out what has changed without having to download
the entire distribution.

The main distribution contains ASCII versions of this specification and other documentation; other
formats of the documents are available in separate files inside the exim4 directory of the FTP site:

exim-html-n.nn.tar.gz
exim-pdf-n.nn.tar.gz
exim-postscript-n.nn.tar.gz
exim-texinfo-n.nn.tar.gz

These tar files contain only the doc directory, not the complete distribution, and are also available in
.bz2 as well as .gz forms.

The FAQ is available for downloading in two different formats in these files:

exim4/FAQ.txt.gz
exim4/FAQ.html.tar.gz

The first of these is a single ASCII file that can be searched with a text editor. The second is a
directory of HTML files, normally accessed by starting at index.html. The HTML version of the FAQ

Exim 4.50 [3] introduction (1)

(which is aso included in the HTML documentation tarbundle) includes a keyword-in-context index,
which is often the most convenient way of finding your way around.

1.7 Wish list

A wish list is maintained, containing ideas for new features that have been submitted. From time to
time the file is exported to the ftp site into the file exim4/WishList. Items are removed from the list if
they get implemented.

1.8 Contributed material

At the ftp dite, there is a directory called Contrib that contains miscellaneous files contributed to the
Exim community by Exim users. There is also a collection of contributed configuration examples in
exim4/config.samples.tar.gz. These samples are referenced from the FAQ.

1.9 Limitations

* Exim is designed for use as an Internet MTA, and therefore handles addresses in RFC 2822
domain format only. It cannot handle UUCP ‘bang paths’, though simple two-component bang
paths can be converted by a straightforward rewriting configuration. This restriction does not
prevent Exim from being interfaced to UUCP as a transport mechanism, provided that domain
addresses are used.

* Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically qualified with a configured domain value. Configuration
options specify from which remote systems unqualified addresses are acceptable. These are then
qualified on arrival.

e The only externa transport currently implemented is an SMTP transport over a TCP/IP network
(using sockets, including support for IPv6). However, a pipe transport is available, and there are
facilities for writing messages to files and pipes, optionaly in batched SMTP format; these
facilities can be used to send messages to some other transport mechanism such as UUCP,
provided it can handle domain-style addresses. Batched SMTP input is also catered for.

* Exim is not designed for storing mail for dial-in hosts. When the volumes of such mail are large,
it is better to get the messages ‘delivered’ into files (that is, off Exim’s queue) and subsequently
passed on to the dial-in hosts by other means.

e Although Exim does have basic facilities for scanning incoming messages, these are not compre-
hensive enough to do full virus or spam scanning. Such operations are best carried out using
additional specialized software packages. If you compile Exim with the content-scanning exten-
sion, straightforward interfaces to a number of common scanners are provided.

1.10 Run time configuration

Exim’s run time configuration is held in a single text file that is divided into a number of sections. The
entries in this file consist of keywords and values, in the style of Smail 3 configuration files. A default
configuration file which is suitable for simple online installations is provided in the distribution, and is
described in chapter 7 below.

1.11 Calling interface

Like many MTAs, Exim has adopted the Sendmail command line interface so that it can be a straight
replacement for /usr/lib/sendmail or /usr/sbin/sendmail when sending mail, but you do not need to
know anything about Sendmail in order to run Exim. For actions other than sending messages,
Sendmail-compatible options also exist, but those that produce output (for example, -bp, which lists
the messages on the queue) do so in Exim’'s own format. There are also some additional options that
are compatible with Smail 3, and some further options that are new to Exim. Chapter 5 documents all

Exim 4.50 [4] introduction (1)

Exim’'s command line options. This information is automatically made into the man page that forms
part of the Exim distribution.

Control of messages on the queue can be done via certain privileged command line options. There is
also an optional monitor program called eximon, which displays current information in an X window,
and which contains a menu interface to Exim’'s command line administration options.

1.12 Terminology

The body of a message is the actual data that the sender wants to transmit. It is the last part of a
message, and is separated from the header (see below) by a blank line.

When a message cannot be delivered, it is normally returned to the sender in a delivery failure
message or a ‘non-delivery report’ (NDR). The term bounce is commonly used for this action, and the
error reports are often called bounce messages. This is a convenient shorthand for ‘delivery failure
error report’. Such messages have an empty sender address in the message's envelope (see below) to
ensure that they cannot themselves give rise to further bounce messages.

The term default appears frequently in this manual. It is used to qualify a value which is used in the
absence of any setting in the configuration. It may also qualify an action which is taken unless a
configuration setting specifies otherwise.

The term defer is used when the delivery of a message to a specific destination cannot immediately
take place for some reason (a remote host may be down, or a user’s local mailbox may be full). Such
deliveries are deferred until a later time.

The word domain is sometimes used to mean al but the first component of a host's name. It is not
used in that sense here, where it normally refers to the part of an email address following the @ sign.

A message in transit has an associated envelope, as well as a header and a body. The envelope
contains a sender address (to which bounce messages should be delivered), and any number of
recipient addresses. References to the sender or the recipients of a message usualy mean the addresses
in the envelope. An MTA uses these addresses for delivery, and for returning bounce messages, not the
addresses that appear in the header lines.

The header of a message is the first part of a message’s text, consisting of a number of lines, each of
which has a name such as From:, To:, SQubject:, etc. Long header lines can be split over several text
lines by indenting the continuations. The header is separated from the body by a blank line.

The term local part, which is taken from RFC 2822, is used to refer to that part of an email address
that precedes the @ sign. The part that follows the @ sign is called the domain or mail domain.

The terms local delivery and remote delivery are used to distinguish delivery to a file or a pipe on the
local host from delivery by SMTP over TCP/IP to a remote host.

Return path is another name that is used for the sender address in a message's envelope.

The term queue is used to refer to the set of messages awaiting delivery, because this term is in
widespread use in the context of MTAs. However, in Exim’s case the reality is more like a pool than a
queue, because there is normally no ordering of waiting messages.

The term queue runner is used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAS, and aso relates to the
command rung, but in Exim the waiting messages are normally processed in an unpredictable order.

The term spool directory is used for a directory in which Exim keeps the messages on its queue — that
is, those that it is in the process of delivering. This should not be confused with the directory in which
local mailboxes are stored, which is called a ‘spool directory’ by some people. In the Exim documen-
tation, ‘spool’ is aways used in the first sense.

Exim 4.50 [5] introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE library, copyright [J University of Cambridge. The source is distributed
in the directory src/pcre. However, this is a cut-down version of PCRE. If you want to use the
PCRE library in other programs, you should obtain and install the full version from
ftp://ftp.csx.cam.ac.uk/pub/softwar e/programming/pcre.

Support for the cdb (Constant DataBase) lookup method is provided by code contributed by
Nigel Metheringham of (at the time he contributed it) Planet Online Ltd. which contains the
following statements:

Copyright 0 1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free

Software Foundation; either version 2 of the License, or (at your option) any later version.

This code implements Dan Bernstein's Constant DataBase (cdb) spec. Information, the spec and sample code for cdb can be obtained from
http://www.pobox.com/~djb/cdb.html. This implementation borrows some code from Dan Bernstein's implementation (which has no license restrictions

applied to it).

The implementation is completely contained within the code of Exim. It does not link against an
external cdb library.

Client support for Microsoft’'s Secure Password Authentication is provided by code contributed
by Marc Prud’hommeaux. Server support was contributed by Tom Kistner. This includes code
taken from the Samba project, which is released under the Gnu GPL.

Support for calling the Cyrus pwcheck and saslauthd daemons is provided by code taken from
the Cyrus-SASL library and adapted by Alexander S. Sabourenkov. The permission notice
appears below, in accordance with the conditions expressed therein.

Copyright 0 2001 Carnegie Mellon University. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documen-
tation and/or other materials provided with the distribution.

3. The name ‘Carnegie Mellon University’ must not be used to endorse or promote products derived from this software without prior written

permission. For permission or any other legal details, please contact

Office of Technology Transfer
Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

(412) 268-4387, fax: (412) 268-7395
tech-transfer@andrew.cmu.edu

4. Redistributions of any form whatsoever must retain the following acknowledgment:

This product includes software developed by Computing Services at Carnegie Mellon University (http://www.cmu.edu/computing/).

Exim 4.50 [6] incorporated code (2)

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

e The Exim Monitor program, which is an X-Window application, includes modified versions of
the Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears below, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the Massachusetts Institute of Technology, Cambridge,
Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the
above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that
the names of Digital or MIT not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

» Many people have contributed code fragments, some large, some small, that were not covered by
any specific licence requirements. It is assumed that the contributors are happy to see their code
incoporated into Exim under the GPL.

Exim 4.50 [7] incorporated code (2)

3. How Exim receives and delivers malil

3.1 Overall philosophy

Exim is designed to work efficiently on systems that are permanently connected to the Internet and are
handling a genera mix of mail. In such circumstances, most messages can be delivered immediately.
Consequently, Exim does not maintain independent queues of messages for specific domains or hosts,
though it does try to send several messages in a single SMTP connection after a host has been down,
and it al'so maintains per-host retry information.

3.2 Policy control

Policy controls are now an important feature of MTAS that are connected to the Internet. Perhaps their
most important job is to stop MTAs being abused as ‘open relays by misguided individuals who send
out vast amounts of unsolicited junk, and want to disguise its source. Exim provides flexible facilities
for specifying policy controls on incoming mail:

* Exim 4 (unlike previous versions of Exim) implements policy controls on incoming mail by
means of Access Control Lists (ACLS). Each list is a series of statements that may either grant or
deny access. ACLs can be used at several places in the SMTP dialogue while receiving a
message from a remote host. However, the most common places are after each rcPT command,
and at the very end of the message. The sysadmin can specify conditions for accepting or
rejecting individual recipients or the entire message, respectively, at these two points (see chapter
39). Denial of access resultsin an SMTP error code.

* An ACL is aso available for locally generated, non-SMTP messages. In this case, the only
available actions are to accept or deny the entire message.

* When Exim is compiled with the content-scanning extension, facilities are provided in the ACL
mechanism for passing the message to external virus and/or spam scanning software. The result
of such a scan is passed back to the ACL, which can then use it to decide what to do with the

message.
* When a message has been received, either from a remote host or from the local host, but before
the final acknowledgement has been sent, a locally supplied C function called local_scan() can be

run to inspect the message and decide whether to accept it or not (see chapter 41). If the message
is accepted, the list of recipients can be modified by the function.

e Using the local_scan() mechanism is another way of calling external scanner software. The SA-
Exim add-on package works this way. It does not require Exim to be compiled with the content-
scanning extension.

« After a message has been accepted, a further checking mechanism is available in the form of the
system filter (see chapter 42). This runs at the start of every delivery process.

3.3 User filters

In a conventional Exim configuration, users are able to run private filters by setting up appropriate
forward files in their home directories. See chapter 22 (about the redirect router) for the configur-
ation needed to support this, and the separate document entitled Exim's interfaces to mail filtering for
user details. Two different kinds of filtering are available:

» Sievefilters are written in the standard filtering language that is defined by RFC 3028.

e Exim filters are written in a syntax that is unique to Exim, but which is more powerful than
Sieve, which it pre-dates.

User filters are run as part of the routing process, described below.

Exim 4.50 [8] receiving & delivering mail (3)

3.4 Message identification

Every message handled by Exim is given a message id which is sixteen characters long. It is divided
into three parts, separated by hyphens, for example 16VDhn- 0001bo- D3. Each part is a sequence of
letters and digits, normally encoding numbers in base 62. However, in the Darwin operating system
(Mac OS X) and when Exim is compiled to run under Cygwin, base 36 (avoiding the use of lower
case letters) is used instead, because the message id is used to construct file names, and the names of
files in those systems are not case-sensitive.

The detail of the contents of the message id have changed as Exim has evolved. Earlier versions relied
on the operating system not re-using a process id (pid) within one second. On modern operating
systems, this assumption can no longer be made, so the algorithm had to be changed. To retain
backward compatibility, the format of the message id was retained, which is why the following rules
are somewhat eccentric:

e The first six characters of the message id are the time at which the message started to be
received, to a granularity of one second. That is, this field contains the number of seconds since
the start of the epoch (the normal Unix way of representing the date and time of day).

» After the first hyphen, the next six characters are the id of the process that received the message.
* There are two different possibilities for the fina two characters:

(& If localhost_number is not set, this value is the fractional part of the time of reception,
normally in units of /2000 of a second, but for systems that must use base 36 instead of
base 62 (because of case-insensitive file systems), the units are 1/1000 of a second.

(b) If localhost_number is set, it is multiplied by 200 (100) and added to the fractional part of
the time, which in this case is in units of 1/200 (1/100) of a second.

After a message has been received, Exim waits for the clock to tick at the appropriate resolution
before proceeding, so that if another message is received by the same process, or by another process
with the same (re-used) pid, it is guaranteed that the time will be different. In most cases, the clock
will already have ticked while the message was being received.

3.5 Receiving mail
The only way Exim can receive mail from a remote host is using SMTP over TCP/IP, in which case

the sender and recipient addresses are tranferred using SMTP commands. However, from a locally
running process (such as a user’'s MUA), there are several possibilities:

» If the process runs Exim with the -bm option, the message is read non-interactively (usually viaa
pipe), with the recipients taken from the command line, or from the body of the message if -t is
also used.

» If the process runs Exim with the -bS option, the message is also read non-interactively, but in
this case the recipients are listed at the start of the message in a series of SMTP rcpT commands,
terminated by a bata command. This is so-called ‘batch SMTP format, but it isn’'t really SMTP.
The SMTP commands are just another way of passing envelope addresses in a non-interactive
submission.

» If the process runs Exim with the -bs option, the message is read interactively, using the SMTP
protocol. A two-way pipe is normaly used for passing data between the local process and the
Exim process. This is ‘real’ SMTP and is handled in the same way as SMTP over TCP/IP. For
example, the ACLs for SMTP commands are used for this form of submission.

* A loca process may also make a TCP/IP call to the host’s loopback address (127.0.0.1) or any
other of its IP addresses. When receiving messages, Exim does not treat the loopback address
specialy. It treats al such connections in the same way as connections from other hosts.

In the three cases that do not involve TCP/IP, the sender address is constructed from the login name of
the user that called Exim and a default qualification domain (which can be set by the qualify_domain
configuration option). For local or batch SMTP, a sender address that is passed using the SMTP mAIL

Exim 4.50 [9] receiving & delivering mail (3)

command is ignored. However, the system administrator may allow certain users (‘trusted users’) to
specify a different sender address unconditionally, or al users to specify certain forms of different
sender address. The -f option or the SMTP maiL command is used to specify these different addresses.
See section 5.2 for details of trusted users, and the untrusted_set_sender option for a way of allowing
untrusted users to change sender addresses.

Messages received by either of the non-interactive mechanisms are subject to checking by the non-
SMTP ACL, if one is defined. Messages received using SMTP (either over TCP/IP, or interacting with
a local process) can be checked by a number of ACLSs that operate at different times during the SMTP
session. Either individual recipients, or the entire message, can be rejected if local policy requirements
are not met. The local_scan() function (see chapter 41) is run for all incoming messages.

Exim can be configured not to start a delivery process when a message is received; this can be
unconditional, or depend on the number of incoming SMTP connections or the system load. In these
situations, new messages wait on the queue until a queue runner process picks them up. However, in
standard configurations under normal conditions, delivery is started as soon as a message is received.

3.6 Handling an incoming message

When Exim accepts a message, it writes two files in its spool directory. The first contains the envelope
information, the current status of the message, and the header lines, and the second contains the body
of the message. The names of the two spool files consist of the message id, followed by - H for the file
containing the envelope and header, and - D for the data file.

By default all these message files are held in a single directory called input inside the general Exim
spool directory. Some operating systems do not perform very well if the number of files in a directory
gets very large; to improve performance in such cases, the split_spool_directory option can be used.
This causes Exim to split up the input files into 62 sub-directories whose names are single letters or
digits.

The envelope information consists of the address of the message’'s sender and the addresses of the
recipients. This information is entirely separate from any addresses contained in the header lines. The
status of the message includes a list of recipients who have aready received the message. The format
of the first spool file is described in chapter 52.

Address rewriting that is specified in the rewrite section of the configuration (see chapter 31) is done
once and for all on incoming addresses, both in the header lines and the envelope, at the time the
message is accepted. If during the course of delivery additional addresses are generated (for example,
via aliasing), these new addresses are rewritten as soon as they are generated. At the time a message is
actually delivered (transported) further rewriting can take place; because this is a transport option, it
can be different for different forms of delivery. It is aso possible to specify the addition or removal of
certain header lines at the time the message is delivered (see chapters 15 and 24).

3.7 Life of a message

A message remains in the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originaly created it. In cases
when delivery cannot proceed — for example, when a message can neither be delivered to its recipients
nor returned to its sender, the message is marked ‘frozen’ on the spool, and no more deliveries are
attempted.

An administrator can ‘thaw’ such messages when the problem has been corrected, and can also freeze
individual messages by hand if necessary. In addition, an administrator can force a delivery error,
causing a bounce message to be sent.

There is an option called auto_thaw, which can be used to cause Exim to retry frozen messages after
a certain time. When this is set, no message will remain on the queue for ever, because the delivery
timeout will eventually be reached. Delivery failure reports (bounce messages) that reach this timeout
are discarded. There is also an option called timeout_frozen_after, which discards frozen messages
after a certain time.

Exim 4.50 [10] receiving & delivering mail (3)

While Exim is working on a message, it writes information about each delivery attempt to the main
log file. This includes successful, unsuccessful, and delayed deliveries for each recipient (see chapter
48). The log lines are also written to a separate message log file for each message. These logs are
solely for the benefit of the administrator, and are normally deleted along with the spool files when
processing of a message is complete. The use of individual message logs can be disabled by setting
no_message logs; this might give an improvement in performance on very busy systems.

All the information Exim itself needs to set up a delivery is kept in the first spool file, along with the
header lines. When a successful delivery occurs, the address is immediately written at the end of a
journal file, whose name is the message id followed by - J. At the end of a delivery run, if there are
some addresses left to be tried again later, the first spool file (the - H file) is updated to indicate which
these are, and the journa file is then deleted. Updating the spool file is done by writing a new file and
renaming it, to minimize the possibility of data loss.

Should the system or the program crash after a successful delivery but before the spool file has been
updated, the journa is left lying around. The next time Exim attempts to deliver the message, it reads
the journal file and updates the spool file before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.8 Processing an address for delivery

The main delivery processing elements of Exim are called routers and transports, and collectively
these are known as drivers. Code for a number of them is provided in the source distribution, and
compile-time options specify which ones are included in the binary. Run time options specify which
ones are actually used for delivering messages.

Each driver that is specified in the run time configuration is an instance of that particular driver type.
Multiple instances are alowed; for example, you can set up several different smtp transports, each
with different option values that might specify different ports or different timeouts. Each instance has
its own identifying name. In what follows we will normally use the instance name when discussing
one particular instance (that is, one specific configuration of the driver), and the generic driver name
when discussing the driver’s features in general.

A router is a driver that operates on an address, either determining how its delivery should happen, by
routing it to a specific transport, or converting the address into one or more new addresses (for
example, via an dias file). A router may also explicitly choose to fail an address, causing it to be
bounced.

A transport is a driver that transmits a copy of the message from Exim'’s spool to some destination.
There are two kinds of transport: for a local transport, the destination is a file or a pipe on the local
host, whereas for a remote transport the destination is some other host. A message is passed to a
specific transport as a result of successful routing. If a message has several recipients, it may be passed
to a number of different transports.

An address is processed by passing it to each configured router instance in turn, subject to certain
preconditions, until a router accepts the address or specifies that it should be bounced. We will
describe this process in more detail shortly. As a simple example, the diagram below illustrates how
each recipient address in a message is processed in a small configuration of three routers that are
configured in various ways.

To make this a more concrete example, we'll describe it in terms of some actua routers, but
remember, this is only an example. You can configure Exim’s routers in many different ways, and
there may be any number of routers in a configuration.

The first router that is specified in a configuration is often one that handles addresses in domains that
are not recognized specially by the local host. These are typically addresses for arbitrary domains on
the Internet. A precondition is set up which looks for the specia domains known to the host (for
example, its own domain name), and the router is run for addresses that do not match. Typicaly, this
is arouter that looks up domains in the DNS in order to find the hosts to which this address routes. If
it succeeds, the address is queued for a suitable SMTP transport; if it does not succeed, the router is
configured to fail the address.

Exim 4.50 [11] receiving & delivering mail (3)

address
% new addresses
first router yes run
conditions ok? first router accept
no J7fail
gueue for
address bounces transport
second router yes run redirect
conditions ok? second router
no decline fail address
bounces
third router yes run
conditions ok? third router accept
no decline ‘
gueue for
transport
No more routers
address bounces

Routing an address

The example pictured could be a configuration of this type. The second and third routers can only be
run for addresses for which the preconditions for the first router are not met. If one of these
preconditions checks the domain, the second and third routers are run only for domains that are
somehow special to the local host.

The second router does redirection — also known as aliasing and forwarding. When it generates one or
more new addresses from the original, each of them is routed independently from the start. Otherwise,
the router may cause an address to fail, or it may simply decline to handle the address, in which case
the address is passed to the next router.

The final router in many configurations is one that checks to see if the address belongs to a local
mailbox. The precondition may involve a check to see if the local part is the name of alogin account,
or it may look up the local part in afile or a database. If its preconditions are not met, or if the router
declines, we have reached the end of the routers. When this happens, the address is bounced.

3.9 Processing an address for verification

As well as being used to decide how to deliver to an address, Exim's routers are also used for address
verification. Verification can be requested as one of the checks to be performed in an ACL for
incoming messages, on both sender and recipient addresses, and it can be tested using the -bv and -bvs
command line options.

Exim 4.50 [12] receiving & delivering mail (3)

When an address is being verified, the routers are run in ‘verify mode’. This does not affect the way
the routers work, but it is a state that can be detected. By this means, a router can be skipped or made
to behave differently when verifying. A common example is a configuration in which the first router
sends all messages to a message-scanning program, unless they have been previously scanned. Thus,
the first router accepts all addresses without any checking, making it useless for verifying. Normally,
the no_verify option would be set for such a router, causing it to be skipped in verify mode.

3.10 Running an individual router

As explained in the example above, a number of preconditions are checked before running a router. If
any are not met, the router is skipped, and the address is passed to the next router. When all the
preconditions on a router are met, the router is run. What happens next depends on the outcome,
which is one of the following:

e accept: The router accepts the address, and either queues it for a transport, or generates one or
more ‘child’ addresses. Processing the original address ceases, unless the unseen option is set on
the router. This option can be used to set up multiple deliveries with different routing (for
example, for keeping archive copies of messages). When unseen is set, the address is passed to
the next router. Normally, however, an accept return marks the end of routing.

If child addresses are generated, Exim checks to see whether they are duplicates of any existing
recipient addresses. During this check, local parts are treated as case-sensitive. Duplicate
addresses are discarded. Each of the remaining child addresses is then processed independently,
starting with the first router by default. It is possible to change this by setting the redirect_router
option to specify which router to start at for child addresses. Unlike pass router (see below) the
router specified by redirect_router may be anywhere in the router configuration.

e pass: The router recognizes the address, but cannot handle it itself. It requests that the address be
passed to another router. By default the address is passed to the next router, but this can be
changed by setting the pass_router option. However, (unlike redirect_router) the named router
must be below the current router (to avoid loops).

e decline: The router declines to accept the address because it does not recognize it a al. By
default, the address is passed to the next router, but this can be prevented by setting the no_more
option. When no_more is set, al the remaining routers are skipped.

« fail: The router determines that the address should fail, and queues it for the generation of a
bounce message. There is no further processing of the original address unless unseen is set on
the router.

» defer: The router cannot handle the address at the present time. (A database may be offline, or a
DNS lookup may have timed out.) No further processing of the address happens in this delivery
attempt. It is tried again next time the message is considered for delivery.

e error: There is some error in the router (for example, a syntax error in its configuration). The
action is as for defer.

If an address reaches the end of the routers without having been accepted by any of them, it is
bounced as unrouteable. The default error message in this situation is ‘unrouteable address’, but you
can set your own message by making use of the cannot_route_message option. This can be set for
any router; the value from the last router that ‘saw’ the address is used.

Sometimes while routing you want to fail a delivery when some conditions are met but others are not,
instead of passing the address on for further routing. You can do this by having a second router that
explicitly fails the delivery when the relevant conditions are met. The redirect router has a ‘fail’
facility for this purpose.

Exim 4.50 [13] receiving & delivering mail (3)

3.11 Router preconditions

The preconditions that are tested for each router are listed below, in the order in which they are tested.
The individual configuration options are described in more detail in chapter 15.

The local_part_prefix and local_part_suffix options can specify that the local parts handled by
the router may or must have certain prefixes and/or suffixes. If a mandatory affix (prefix or
suffix) is not present, the router is skipped. These conditions are tested first. When an affix is
present, it is removed from the local part before further processing, including the evaluation of
any other conditions.

Routers can be designated for use only when not verifying an address, that is, only when routing
it for delivery (or testing its delivery routing). If the verify option is set false, the router is
skipped when Exim is verifying an address. Setting the verify option actually sets two options,
verify_sender and verify_recipient, which independently control the use of the router for sender
and recipient verification. You can set these options directly if you want a router to be used for
only one type of verification.

If the address test option is set false, the router is skipped when Exim is run with the -bt option
to test an address routing. This can be helpful when the first router sends all new messages to a
scanner of some sort; it makes it possible to use -bt to test subsequent delivery routing without
having to simulate the effect of the scanner.

Routers can be designated for use only when verifying an address, as opposed to routing it for
delivery. The verify_only option controls this.

Certain routers can be explicitly skipped when running the routers to check an address given in
the SMTP expn command (see the expn option).

If the domains option is set, the domain of the address must be in the set of domains that it
defines.

If the local_parts option is set, the local part of the address must be in the set of local parts that
it defines. If local_part_prefix or local_part_suffix is in use, the prefix or suffix is removed
from the local part before this check. If you want to do precondition tests on local parts that
include affixes, you can do so by using a condition option (see below) that uses the variables
$local_part, $local_part_prefix, and $local_part_suffix as necessary.

If the check_local_user option is set, the local part must be the name of an account on the local
host. If this check succeeds, the uid and gid of the local user are placed in $local_user_uid and
$local_user_gid; these values can be used in the remaining preconditions.

If the router_home directory option is set, it is expanded at this point, because it overrides
the value of $home. If this expansion were left till later, the value of $home as set by
check _local_user would be used in subsequent tests. Having two different values of $home in
the same router could lead to confusion.

If the senders option is set, the envelope sender address must be in the set of addresses that it
defines.

If the require_files option is set, the existence or non-existence of specified files is tested.

If the condition option is set, it is evaluated and tested. This option uses an expanded string to
allow you to set up your own custom preconditions. Expanded strings are described in chap-
ter 11.

Note that require_files comes near the end of the list, so you cannot use it to check for the existence
of a file in which to lookup up a domain, local part, or sender. However, as these options are all
expanded, you can use the exists expansion condition to make such tests within each condition. The
require_files option is intended for checking files that the router may be going to use internally, or
which are needed by a specific transport (for example, .procmailrc).

Exim 4.50 [14] receiving & delivering mail (3)

3.12 Délivery in detail
When a message is to be delivered, the sequence of eventsis as follows:

If a system-wide filter file is specified, the message is passed to it. The filter may add recipients
to the message, replace the recipients, discard the message, cause a new message to be generated,
or cause the message delivery to fail. The format of the system filter file is the same as for Exim
user filter files, described in the separate document entitled Exim's interfaces to mail filtering.
(Note: Sieve cannot be used for system filter files) Some additional features are available in
system filters — see chapter 42 for details. Note that a message is passed to the system filter only
once per delivery attempt, however many recipients it has. However, if there are severa delivery
attempts because one or more addresses could not be immediately delivered, the system filter is
run each time. The filter condition first_delivery can be used to detect the first run of the system
filter.

Each recipient address is offered to each configured router in turn, subject to its preconditions,
until one is able to handle it. If no router can handle the address, that is, if they al decline, the
address is failed. Because routers can be targeted at particular domains, several locally handled
domains can be processed entirely independently of each other.

A router that accepts an address may set up a local or a remote transport for it. However, the
transport is not run at this time. Instead, the address is placed on a list for the particular transport,
to be run later. Alternatively, the router may generate one or more new addresses (typically from
dias, forward, or filter files). New addresses are fed back into this process from the top, but in
order to avoid loops, a router ignores any address which has an identically-named ancestor that
was processed by itself.

When all the routing has been done, addresses that have been successfully handled are passed to
their assigned transports. When local transports are doing real local deliveries, they handle only
one address at a time, but if a local transport is being used as a pseudo-remote transport (for
example, to collect batched SMTP messages for transmission by some other means) multiple
addresses can be handled. Remote transports can always handle more than one address at a time,
but can be configured not to do so, or to restrict multiple addresses to the same domain.

Each local delivery to afile or a pipe runs in a separate process under a non-privileged uid, and
these deliveries are run one at a time. Remote deliveries also run in separate processes, normally
under a uid that is private to Exim (‘the Exim user’), but in this case, several remote deliveries
can be run in parallel. The maximum number of simultaneous remote deliveries for any one
message is set by the remote_max_parallel option. The order in which deliveries are done is not
defined, except that all local deliveries happen before any remote deliveries.

When it encounters a local delivery during a queue run, Exim checks its retry database to see if
there has been a previous temporary delivery failure for the address before running the local
transport. If there was a previous failure, Exim does not attempt a new delivery until the retry
time for the address is reached. However, this happens only for delivery attempts that are part of
a queue run. Local deliveries are aways attempted when delivery immediately follows message
reception, even if retry times are set for them. This makes for better behaviour if one particular
message is causing problems (for example, causing quota overflow, or provoking an error in a
filter file).

Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
temporary failures and no host has reached its retry time, no delivery is attempted, whether in a
queue run or not. See chapter 32 for details of retry strategies.

If there were any permanent errors, a bounce message is returned to an appropriate address (the
sender in the common case), with details of the error for each failing address. Exim can be
configured to send copies of bounce messages to other addresses.

If one or more addresses suffered a temporary failure, the message is left on the queue, to be
tried again later. Delivery of these addresses is said to be deferred.

Exim 4.50 [15] receiving & delivering mail (3)

* When al the recipient addresses have either been delivered or bounced, handling of the message
is complete. The spool files and message log are deleted, though the message log can optionally
be preserved if required.

3.13 Retry mechanism

Exim’'s mechanism for retrying messages that fail to get delivered at the first attempt is the queue
runner process. You must either run an Exim daemon that uses the -q option with a time interva to
start queue runners at regular intervals, or use some other means (such as cron) to start them. If you do
not arrange for queue runners to be run, messages that fail temporarily at the first attempt will remain
on your queue for ever. A queue runner process works it way through the gueue, one message at a
time, trying each delivery that has passed its retry time. You can run several queue runners at once.

Exim uses a set of configured rules to determine when next to retry the failing address (see chapter
32). These rules also specify when Exim should give up trying to deliver to the address, at which point
it generates a bounce message. If no retry rules are set for a particular host, address, and error
combination, no retries are attempted, and temporary errors are treated as permanent.

3.14 Temporary delivery failure

There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most
common. Temporary failures may be detected during routing as well as during the transport stage of
delivery. Local deliveries may be delayed if NFS files are unavailable, or if a mailbox is on a file
system where the user is over quota. Exim can be configured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

If a host is unreachable for a period of time, a number of messages may be waiting for it by the time it
recovers, and sending them in a single SMTP connection is clearly beneficial. Whenever a delivery to
a remote host is deferred, Exim makes a note in its hints database, and whenever a successful SMTP
delivery has happened, it looks to see if any other messages are waiting for the same host. If any are
found, they are sent over the same SMTP connection, subject to a configuration limit as to the
maximum number in any one connection.

3.15 Permanent delivery failure

When a message cannot be delivered to some or all of its intended recipients, a bounce message is
generated. Temporary delivery failures turn into permanent errors when their timeout expires. All the
addresses that fail in a given delivery attempt are listed in a single message. If the original message
has many recipients, it is possible for some addresses to fail in one delivery attempt and others to fail
subsequently, giving rise to more than one bounce message. The wording of bounce messages can be
customized by the administrator. See chapter 45 for details.

Bounce messages contain an X-Failed-Recipients: header line that lists the failed addresses, for the
benefit of programs that try to analyse such messages automatically.

A bounce message is normally sent to the sender of the original message, as obtained from the
message’s envelope. For incoming SMTP messages, this is the address given in the maiL command.
However, when an address is expanded via a forward or alias file, an aternative address can be
specified for delivery failures of the generated addresses. For a mailing list expansion (see section
46.2) it is common to direct bounce messages to the manager of the list.

3.16 Failures to deliver bounce messages

If a bounce message (either locally generated or received from a remote host) itself suffers a
permanent delivery failure, the message is left on the queue, but it is frozen, awaiting the attention of
an administrator. There are options which can be used to make Exim discard such failed messages, or
to keep them for only a short time (see timeout_frozen_after and ignore_bounce _errors_after).

Exim 4.50 [16] receiving & delivering mail (3)

4. Building and installing Exim

4.1 Unpacking

Exim is distributed as a gzipped or bzipped tar file which, when upacked, creates a directory with the
name of the current release (for example, exim-4.50) into which the following files are placed:

ACKNOWLEDGMENTS contains some acknowledgments

CHANGES contains a reference to where changes are documented
LICENCE the GNU Genera Public Licence

M akefile top-level make file

NOTICE conditions for the use of Exim

README list of files, directories and simple build instructions

Other files whose names begin with README may also be present. The following subdirectories are
created:

Local an empty directory for local configuration files
(O] OS-gpecific files

doc documentation files

exim_monitor source files for the Exim monitor

scripts scripts used in the build process

src remaining source files

util independent utilities

The main utility programs are contained in the src directory, and are built with the Exim binary. The
util directory contains a few optional scripts that may be useful to some sites.

4.2 Multiple machine architectures and operating systems

The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source files. Compilation does not take place
in the src directory. Instead, a build directory is created for each architecture and operating system.
Symboalic links to the sources are installed in this directory, which is where the actual building takes
place.

In most cases, Exim can discover the machine architecture and operating system for itself, but the
defaults can be overridden if necessary.

4.3 DBM libraries

Even if you do not use any DBM files in your configuration, Exim still needs a DBM library in order
to operate, because it uses indexed files for its hints databases. Unfortunately, there are a number of
DBM libraries in existence, and different operating systems often have different ones installed.

If you are using Solaris, IRIX, one of the modern BSD systems, or a modern Linux distribution,
the DBM configuration should happen automatically, and you may be able to ignore this section.
Otherwise, you may have to learn more than you would like about DBM libraries from what follows.

Licensed versions of Unix normally contain a library of DBM functions operating via the ndbm
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they
contain as standard. In particular, some early versions of Linux have no default DBM library, and
different distributors have chosen to bundle different libraries with their packaged versions. However,
the more recent releases seem to have standardised on the Berkeley DB library.

Different DBM libraries have different conventions for naming the files they use. When a program
opens afile caled dbmfile, there are four possibilities:

(1) A traditional ndbm implementation, such as that supplied as part of Solaris, operates on two files
called dbmfile.dir and dbmfile.pag.

Exim 4.50 [17] building/installing (4)

(2) The GNU library, gdbm, operates on a single file. If used via its ndbm compatibility interface it
makes two different hard links to it with names dbmfile.dir and dbmfile.pag, but if used via its
native interface, the file name is used unmodified.

(3) The Berkeley DB package, if caled via its ndbm compatibility interface, operates on a single file
called dbmfile.db, but otherwise looks to the programmer exactly the same as the traditional
ndbm implementation.

(4) If the Berkeley package is used in its native mode, it operates on a single file called dbmfile; the
programmer’s interface is somewhat different to the traditional ndom interface.

(5) To complicate things further, there are several very different versions of the Berkeley DB
package. Version 1.85 was stable for a very long time, releases 2.x and 3.x were current for a
while, but the latest versions are now numbered 4.x. Maintenance of some of the earlier releases
has ceased. All versions of Berkeley DB can be obtained from

http://lwww.d eepycat.com/
(6) Yet another DBM library, called tdb, has become available from
http://download.sour cefor ge.net/tdb
It has its own interface, and also operates on a single file.

Exim and its utilities can be compiled to use any of these interfaces. In order to use any version of the
Berkeley DB package in native mode, you must set use pB in an appropriate configuration file
(typically Local/M akefile). For example:

USE_DB-=yes

Similarly, for gdbm you set use_cpem, and for tdb you set use Tpe. An error is diagnosed if you set
more than one of these.

At the lowest level, the build-time configuration sets none of these options, thereby assuming an
interface of type (1). However, some operating system configuration files (for example, those for the
BSD operating systems and Linux) assume type (4) by setting use pe as their default, and the
configuration files for Cygwin set use_Gpem. Anything you set in Local/M akefile, however, overrides
these system defaults.

As well as setting use_ DB, USE_GDBM, Or USE TDB, it may aso be necessary to set pemLIB, tO cause
inclusion of the appropriate library, as in one of these lines:

DBMLIB = -1db
DBMLIB = -1tdb

Settings like that will work if the DBM library is installed in the standard place. Sometimes it is not,
and the library’s header file may also not be in the default path. You may need to set INCLUDE to
specify where the header file is, and to specify the path to the library more fully in pewmLiB, as in this
example:

| NCLUDE=-1/usr/local/include/db-4.1
DBM.I B=/usr/l ocal /1ib/db-4.1/1i bdb. a

There is further detailed discussion about the various DBM libraries in the file doc/dbm.discuss.txt in
the Exim distribution.

4.4 Pre-building configuration

Before building Exim, a local configuration file that specifies options independent of any operating
system has to be created with the name L ocal/M akefile. A template for this file is supplied as the file
src/EDITME, and it contains full descriptions of al the option settings therein. These descriptions are
therefore not repeated here. If you are building Exim for the first time, the simplest thing to do is to
copy src/EDITME to Local/M akefile, then read it and edit it appropriately.

Exim 4.50 [18] building/installing (4)

There are three settings that you must supply, because Exim will not build without them. They are the
location of the run time configuration file (coNFIGURE_FILE), the directory in which Exim binaries will
be installed (BIN_DIRECTORY), and the identity of the Exim user (Exim_user and maybe exim_GRouP as
well). The value of conrFIGURE FILE can in fact be a colon-separated list of file names; Exim uses the
first of them that exists.

There are a few other parameters that can be specified either at build time or at run time, to enable the
same binary to be used on a number of different machines. However, if the locations of Exim's spool
directory and log file directory (if not within the spool directory) are fixed, it is recommended that you
specify them in Local/Makefile instead of at run time, so that errors detected early in Exim's
execution (such as a malformed configuration file) can be logged.

Exim'’s interfaces for calling virus and spam scanning sofware directly from access control lists are not
compiled by default. If you want to include these facilities, you need to set

W TH_CONTENT_SCAN=yes
in your Local/M akefile. For details of the facilities themselves, see chapter 40.

If you are going to build the Exim monitor, a similar configuration process is required. The file
exim_monitor/EDITME must be edited appropriately for your installation and saved under the name
L ocal/eximon.conf. If you are happy with the default settings described in exim_monitor/EDITME,
L ocal/eximon.conf can be empty, but it must exist.

This is al the configuration that is needed in straightforward cases for known operating systems.
However, the building process is set up so that it is easy to override options that are set by default or
by operating-system-specific configuration files, for example to change the name of the C compiler,
which defaults to gcc. See section 4.10 below for details of how to do this.

4.5 Support for iconv()

The contents of header lines in messages may be encoded according to the rules described RFC 2047.
This makes it possible to transmit characters that are not in the ASCII character set, and to label them
as being in a particular character set. When Exim is inspecting header lines by means of the $h_
mechanism, it decodes them, and transates them into a specified character set (default 1SO-8859-1).
The trandlation is possible only if the operating system supports the iconv() function.

However, some of the operating systems that supply iconv() do not support very many conversions.
The GNU libiconv library (available from http://www.gnu.or g/softwar e/libiconv/) can be installed on
such systems to remedy this deficiency, as well as on systems that do not supply iconv() at al. After
installing libiconv, you should add

HAVE_| CONvV=yes

to your L ocal/Makefile and rebuild Exim.

4.6 Including TLS/SSL encryption support

Exim can be built to support encrypted SMTP connections, using the startTLs command as per RFC
2487. 1t can also support legacy clients that expect to start a TLS session immediately on connection
to a non-standard port (see the tls on_connect_ports runtime option and the -tls-on-connect com-
mand line option).

If you want to build Exim with TLS support, you must first install either the OpenSSL or GnuTLS
library. There is no cryptographic code in Exim itself for implementing SSL.

If OpenSSL is installed, you should set

SUPPORT_TLS=yes
TLS LIBS=-1ssl -lcrypto

in Local/Makefile. You may also need to specify the locations of the OpenSSL library and include
files. For example:

Exim 4.50 [19] building/installing (4)

SUPPORT_TLS=yes
TLS LI BS=-L/usr/local/openssl/lib -Issl -lcrypto
TLS I NCLUDE=-1/usr/ | ocal / openssl /i ncl ude/

If GnuTLS isinstalled, you should set

SUPPCRT_TLS=yes
USE_GNUTLS=yes
TLS LIBS=-Ignutls -lItasnl -|gcrypt

in Local/Makefile, and again you may need to specify the locations of the library and include files.
For example:

SUPPORT_TLS=yes

USE_GNUTLS=yes

TLS LIBS=-L/usr/gnu/lib -Ignutls -Itasnl -Igcrypt
TLS | NCLUDE=-1/usr/gnu/incl ude

You do not need to set TLs INcLUDE if the relevant directory is already specified in iNncLuDE. Details of
how to configure Exim to make use of TLS are given in chapter 38.

4.7 Use of tcpwrappers

Exim can be linked with the tcpwrappers library in order to check incoming SMTP calls using the
tcpwrappers control files. This may be a convenient aternative to Exim’s own checking facilities for
installations that are already making use of tcpwrappers for other purposes. To do this, you should set
USE_TCP_WRAPPERS in L ocal/M akefile, arrange for the file tcpd.h to be available at compile time, and
also ensure that the library libwrap.a is available at link time, typicaly by including -lwrap in
EXTRALIBS ExIM. For example, if tcpwrappers isinstalled in /usr/local, you might have

USE_TCP_WRAPPERS=yes
CFLAGS=-0O -1l /usr/local/include
EXTRALI BS_EXI M=-L/usr/local/lib -Iwap

in Local/M akefile. The name to use in the tcpwrappers control filesis ‘exim’. For example, the line
exim: LOCAL 192.168.1. .friendly.domin.exanple

in your /etc/hosts.allow file allows connections from the local host, from the subnet 192.168.1.0/24,
and from al hosts in friendly.domain.example. All other connections are denied. Consult the
tcpwrappers documentation for further details.

4.8 Including support for 1Pv6

Exim contains code for use on systems that have IPv6 support. Setting HAVE_IPV6=YES in
L ocal/M akefile causes the IPv6 code to be included; it may also be necessary to set i1pve_INCLUDE and
IPv6_LIBS 0N systems where the IPv6 support is not fully integrated into the normal include and library
files.

Two different types of DNS record for handling 1Pv6 addresses have been defined. AAAA records
(analagous to A records for |Pv4) are in use, and are currently seen as the mainstream. Another record
type called A6 was proposed as better than AAAA because it had more flexibility. However, it was felt
to be over-complex, and its status was reduced to ‘experimental’. It is not known if anyone is actualy
using A6 records. Exim has support for A6 records, but thisis included only if you set suPPORT_A6=YES
in Local/Makefile. The support has not been tested for some time.

4.9 The building process

Once Local/Makefile (and Local/eximon.conf, if required) have been created, run make at the top
level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 8, the directory build-SunOS5-5.8-sparc
is created. Symbolic links to relevant source files are installed in the build directory.

Exim 4.50 [20] building/installing (4)

Warning: The -j (paralel) flag must not be used with make; the building process fails if it is set.

If this is the first time make has been run, it calls a script that builds a make file inside the build
directory, using the configuration files from the Local directory. The new make file is then passed to
another instance of make. This does the rea work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if configured), a number of utility programs,
and finaly Exim itself. The command make makefile can be used to force a rebuild of the make file in
the build directory, should this ever be necessary.

If you have problems building Exim, check for any comments there may be in the README file
concerning your operating system, and also take a look at the FAQ, where some common problems are
covered.

4.10 Overriding build-time options for Exim

The main make file that is created at the beginning of the building process consists of the concat-
enation of a number of files which set configuration values, followed by a fixed set of make
instructions. If a value is set more than once, the last setting overrides any previous ones. This
provides a convenient way of overriding defaults. The files that are concatenated are, in order:

OS/M akefile-Default

OS/M akefile-<ostype>

L ocal/M akefile

L ocal/M akefile-<ostype>

L ocal/M akefile-<archtype>

L ocal/M akefil e-<ostype>-<archtype>
OS/M akefile-Base

where <ostype> is the operating system type and <archtype> is the architecture type. L ocal/M akefile
is required to exist, and the building process fails if it is absent. The other three Local files are
optional, and are often not needed.

The values used for <ostype> and <archtype> are obtained from scripts called scripts/os-type and
scriptg/arch-type respectively. If either of the environment variables ExiM_OSTYPE OF EXIM_ARCHTYPE iS
set, their values are used, thereby providing a means of forcing particular settings. Otherwise, the
scripts try to get values from the uname command. If this fails, the shell variables ostyre and
ARCHTYPE are inspected. A number of ad hoc transformations are then applied, to produce the standard
names that Exim expects. You can run these scripts directly from the shell in order to find out what
values are being used on your system.

OS/M akefile-Default contains comments about the variables that are set therein. Some (but not all)
are mentioned below. If there is something that needs changing, review the contents of this file and the
contents of the make file for your operating system (OS/M akefile-<ostype>) to see what the default
values are.

If you need to change any of the values that are set in OS/Makefile-Default or in
OS/M akefile-<ostype>, or to add any new definitions, you do not need to change the origina files.
Instead, you should make the changes by putting the new values in an appropriate Local file. For
example, when building Exim in many releases of the Tru64-Unix (formerly Digital UNIX, formerly
DEC-OSF1) operating system, it is necessary to specify that the C compiler is caled cc rather than
gce. Also, the compiler must be called with the option -std1, to make it recognize some of the features
of Standard C that Exim uses. (Most other compilers recognize Standard C by default.) To do this, you
should create a file called L ocal/M akefile-OSF1 containing the lines

CC=cc

CFLAGS=-stdl

If you are compiling for just one operating system, it may be easier to put these lines directly into
L ocal/M akefile.

Keeping all your local configuration settings separate from the distributed files makes it easy to
transfer them to new versions of Exim simply by copying the contents of the Local directory.

Exim 4.50 [21] building/installing (4)

Exim contains support for doing LDAP, NIS, NIS+, and other kinds of file lookup, but not all systems
have these components installed, so the default is not to include the relevant code in the binary. All the
different kinds of file and database lookup that Exim supports are implemented as separate code
modules which are included only if the relevant compile-time options are set. In the case of LDAP,
NIS, and NIS+, the settings for L ocal/M akefile are:

LOOKUP_LDAP=yes
LOOKUP_NI S=yes
LOOKUP_NI SPLUS=yes

and similar settings apply to the other lookup types. They are all listed in src/EDITME. In most cases
the relevant include files and interface libraries need to be installed before compiling Exim. However,
in the case of cdb, which is included in the binary only if

LOOKUP_CDB=yes

is set, the code is entirely contained within Exim, and no external include files or libraries are required.
When a lookup type is not included in the binary, attempts to configure Exim to use it cause run time
configuration errors.

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXI M_PERL=perl .o
must be defined in L ocal/M akefile. Details of this facility are given in chapter 12.

The location of the X11 libraries is something that varies a lot between operating systems, and of
course there are different versions of X11 to cope with. Exim itself makes no use of X11, but if you
are compiling the Exim monitor, the X11 libraries must be available. The following three variables are
set in OS/M akefile-Default:

X11=/ usr/ X11R6
XI NCLUDE=- | $(X11) /i ncl ude
XLFLAGS=- L$(X11)/1i b

These are overridden in some of the operating-system configuration files. For example, in
OS/M akefile-SUnOS5 there is

X11=/usr/ openw n
XI NCLUDE=- | $(X11) /i ncl ude
XLFLAGS=-L$(X11)/1ib -R$(X11)/1ib

If you need to override the default setting for your operating system, place a definition of al three of
these variables into your L ocal/M akefile-<ostype> file.

If you need to add any extra libraries to the link steps, these can be put in a variable called ExTRALIBS,
which appears in all the link commands, but by default is not defined. In contrast, EXTRALIBS EXIM iS
used only on the command for linking the main Exim binary, and not for any associated utilities.
There is also pemLiB, which appears in the link commands for binaries that use DBM functions (see
also section 4.3). Finally, there is exTrALIBS_ExIMON, Which appears only in the link step for the Exim
monitor binary, and which can be used, for example, to include additional X11 libraries.

The make file copes with rebuilding Exim correctly if any of the configuration files are edited.
However, if an optional configuration file is deleted, it is necessary to touch the associated non-
optional file (that is, L ocal/M akefile or L ocal/eximon.conf) before rebuilding.

4.11 OS-specific header files

The OS directory contains a number of files with names of the form os.h-<ostype>. These are system-
specific C header files that should not normally need to be changed. There is a list of macro settings
that are recognized in the file OS/os.configuring, which should be consulted if you are porting Exim
to a new operating system.

Exim 4.50 [22] building/installing (4)

4.12 Overriding build-time options for the monitor

A similar process is used for overriding things when building the Exim monitor, where the files that
are involved are

OS/eximon.conf-Default
OS/eximon.conf-<ostype>

L ocal/eximon.conf

L ocal/eximon.conf-<ostype>

L ocal/eximon.conf-<archtype>

L ocal/eximon.conf-<ostype>-<archtype>

As with Exim itself, the fina three files need not exist, and in this case the OS/eximon.conf-<ostype>
file is also optional. The default values in OS/eximon.conf-Default can be overridden dynamically by
setting environment variables of the same name, preceded by EximMon_. For example, setting
EXIMON_LOG_DEPTH in the environment overrides the value of Loc_DEPTH at run time.

4.13 Installing Exim binaries and scripts

The command make install runs the exim install script with no arguments. The script copies binaries
and utility scripts into the directory whose name is specified by the BIN_DIRECTORY setting in
L ocal/M akefile.

Exim’s run time configuration file is named by the conFIGURE_FILE setting in Local/M akefile. If this
names a single file, and the file does not exist, the default configuration file src/configure.default is
copied there by the installation script. If a run time configuration file already exists, it is left alone. If
CONFIGURE_FILE is a colon-separated list, naming several alternative files, no default is installed.

One change is made to the default configuration file when it is installed: the default configuration
contains a router that references a system aliases file. The path to this file is set to the value specified
by svstem_aLiases FILE in Local/M akefile (/etc/aliases by default). If the system aliases file does not
exist, the installation script creates it, and outputs a comment to the user.

The created file contains no aliases, but it does contain comments about the aliases a site should
normally have. Mail aliases have traditionally been kept in /etc/aliases. However, some operating
systems are now using /etc/mail/aliases. You should check if yours is one of these, and change Exim's
configuration if necessary.

The default configuration uses the local host’'s name as the only local domain, and is set up to do local
deliveries into the shared directory /var/mail, running as the local user. System aliases and .forward
files in users' home directories are supported, but no NIS or NIS+ support is configured. Domains
other than the name of the local host are routed using the DNS, with delivery over SMTP.

The install script copies files only if they are newer than the files they are going to replace. The Exim
binary is required to be owned by root and have the setuid bit set, for norma configurations.
Therefore, you must run make install as root so that it can set up the Exim binary in this way.
However, in some special situations (for example, if a host is doing no local deliveries) it may be
possible to run Exim without making the binary setuid root (see chapter 51 for details).

It is possible to install Exim for special purposes (such as building a binary distribution) in a private
part of the file system. You can do this by a command such as

make DESTDI R=/ sone/directory/ install

This has the effect of pre-pending the specified directory to all the file paths, except the name of the
system aliases file that appears in the default configuration. (If a default alias file is created, its name is
modified.) For backwards compatibility, RooT is used if DESTDIR iS not set, but this usage is deprecated.

Running make install does not copy the Exim 4 conversion script convertd4r4, or the pcretest test
program. You will probably run the first of these only once (if you are upgrading from Exim 3), and
the second isn't really part of Exim. None of the documentation files in the doc directory are copied,
except for the info files when you have set INFO_DIRECTORY, as described in section 4.14 below.

Exim 4.50 [23] building/installing (4)

For the utility programs, old versions are renamed by adding the suffix .O to their names. The Exim
binary itself, however, is handled differently. It is installed under a name that includes the version
number and the compile number, for example exim-4.50-1. The script then arranges for a symbolic
link called exim to point to the binary. If you are updating a previous version of Exim, the script takes
care to ensure that the name exim is never absent from the directory (as seen by other processes).

If you want to see what the make install will do before running it for real, you can pass the -n option
to the installation script by this command:

make | NSTALL_ARG=-n install

The contents of the variable INSTALL_ARG are passed to the installation script. You do not need to be
root to run this test. Alternatively, you can run the installation script directly, but this must be from
within the build directory. For example, from the top-level Exim directory you could use this
command:

(cd build-SunCS5-5.5. 1-sparc; ../scripts/eximinstall -n)
There are two other options that can be supplied to the installation script.

» -no_chown bypasses the call to change the owner of the installed binary to root, and the call to
make it a setuid binary.

* -no_symlink bypasses the setting up of the symbolic link exim to the installed binary.
INSTALL_ARG can be used to pass these options to the script. For example:
make | NSTALL_ARG=-no_symink install

The installation script can also be given arguments specifying which files are to be copied. For
example, to install just the Exim binary, and nothing else, without creating the symbolic link, you
could use:

make | NSTALL_ARG=' -no_sym ink exim install

4.14 Installing info documentation

Not all systems use the GNU info system for documentation, and for this reason, the Texinfo source of
Exim’s documentation is not included in the main distribution. Instead it is available separately from
the ftp site (see section 1.6).

If you have defined iNFO_DIRECTORY in L ocal/M akefile and the Texinfo source of the documentation is
found in the source tree, running make install automatically builds the info files and installs them.

4.15 Setting up the spool directory

When it starts up, Exim tries to create its spool directory if it does not exist. The Exim uid and gid are
used for the owner and group of the spool directory. Sub-directories are automatically created in the
spool directory as necessary.

4.16 Testing
Having installed Exim, you can check that the run time configuration file is syntactically valid by
running the following command, which assumes that the Exim binary directory is within your patH
environment variable:

exi m - bV

If there are any errors in the configuration file, Exim outputs error messages. Otherwise it outputs the
version number and build date, the DBM library that is being used, and information about which
drivers and other optional code modules are included in the binary. Some simple routing tests can be
done by using the address testing option. For example,

exi m - bt <local username>

Exim 4.50 [24] building/installing (4)

should verify that it recognizes a local mailbox, and
exi m - bt <remote address>

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

exi m-v postnmaster @our. domai n. exanpl e
From user @our. domai n. exanpl e

To: postmaster @our. domai n. exanpl e
Subj ect: Testing Exim

This is a test nessage.
"D

The -v option causes Exim to output some verification of what it is doing. In this case you should see
copies of three log lines, one for the message's arrival, one for its delivery, and one containing
‘Completed.

If you encounter problems, look at Exim's log files (mainlog and paniclog) to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the -d option. If a message is stuck on Exim's spool, you can force a delivery with
debugging turned on by a command of the form

exim-d - M <message-id>

You must be root or an ‘admin user’ in order to do this. The -d option produces rather a lot of output,
but you can cut this down to specific areas. For example, if you use -d-all+route only the debugging
information relevant to routing is included. (See the -d option in chapter 5 for more details.)

One specific problem that has shown up on some sites is the inability to do loca deliveries into a
shared mailbox directory, because it does not have the ‘sticky bit’ set on it. By default, Exim tries to
create a lock file before writing to a mailbox file, and if it cannot create the lock file, the delivery is
deferred. You can get round this either by setting the ‘sticky bit’ on the directory, or by setting a
specific group for local deliveries and allowing that group to create files in the directory (see the
comments above the local_delivery transport in the default configuration file). Another approach is to
configure Exim not to use lock files, but just to rely on fentl() locking instead. However, you should do
this only if al user agents also use fentl() locking. For further discussion of locking issues, see
chapter 26.

One thing that cannot be tested on a system that is aready running an MTA is the receipt of incoming
SMTP mail on the standard SMTP port. However, the -0X option can be used to run an Exim daemon
that listens on some other port, or inetd can be used to do this. The -bh option and the
exim_checkaccess utility can be used to check out policy controls on incoming SMTP mail.

Testing a new version on a system that is already running Exim can most easily be done by building a
binary with a different conFIGURE_FILE setting. From within the run time configuration, al other file
and directory names that Exim uses can be altered, in order to keep it entirely clear of the production
version.

4.17 Replacing another MTA with Exim

Building and installing Exim for the first time does not of itself put it in general use. The name by
which the system's MTA is called by mail user agents is either /usr/sbin/sendmail, or
/usr/lib/sendmail (depending on the operating system), and it is necessary to make this name point to
the exim binary in order to get the user agents to pass messages to Exim. This is normally done by
renaming any existing file and making /usr/sbin/sendmail or /usr/lib/sendmail a symbolic link to the
exim binary. It is a good idea to remove any setuid privilege and executable status from the old MTA.
It is then necessary to stop and restart the mailer daemon, if one is running.

Some operating systems have introduced alternative ways of switching MTAs. For example, if you are
running FreeBSD, you need to edit the file /etc/mail/mailer.conf instead of setting up a symbolic link
as just described. A typical example of the contents of this file for running Exim is as follows:

Exim 4.50 [25] building/installing (4)

sendmai | [usr/eximbin/exim

send- mai | [usr/eximbin/exim
mai | g [usr/eximbin/exim-bp
newal i ases fusr/bin/true

Once you have set up the symbolic link, or edited /etc/mail/mailer.conf, your Exim installation is
‘live’. Check it by sending a message from your favourite user agent.

You should consider what to tell your users about the change of MTA. Exim may have different
capabilities to what was previously running, and there are various operational differences such as the
text of messages produced by command line options and in bounce messages. If you allow your users
to make use of Exim’s filtering capabilities, you should make the document entitled Exim's interface to
mail filtering available to them.

4.18 Upgrading Exim

If you are already running Exim on your host, building and installing a new version automatically
makes it available to MUAS, or any other programs that call the MTA directly. However, if you are
running an Exim daemon, you do need to send it a HUP signal, to make it re-exec itself, and thereby
pick up the new binary. You do not need to stop processing mail in order to install a new version of
Exim.

4.19 Stopping the Exim daemon on Solaris
The standard command for stopping the mailer daemon on Solarisis

/etc/init.d/ sendmail stop

If /usr/lib/sendmail has been turned into a symbolic link, this script fails to stop Exim because it uses
the command ps -e and greps the output for the text ‘sendmail’; this is not present because the actual
program name (that is, ‘exim’) is given by the ps command with these options. A solution is to replace
the line that finds the process id with something like

pi d=' cat /var/spool /exi m exi m daenon. pi d*
to obtain the daemon'’s pid directly from the file that Exim savesit in.

Note, however, that stopping the daemon does not ‘stop Exim’. Messages can still be received from
local processes, and if automatic delivery is configured (the normal case), deliveries will still occur.

Exim 4.50 [26] building/installing (4)

5. The Exim command line

Exim’'s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are also some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name

If Exim is called under the name mailqg, it behaves as if the option -bp were present before any other
options. The -bp option requests a listing of the contents of the mail queue on the standard output.
This feature is for compatibility with some systems that contain a command of that name in one of the
standard libraries, symbolicaly linked to /usr/sbin/sendmail or /usr/lib/sendmail.

If Exim is called under the name rsmitp it behaves as if the option -bS were present before any other
options, for compatibility with Smail. The -bS option is used for reading in a number of messages in
batched SMTP format.

If Exim is called under the name rmail it behaves as if the -i and -oee options were present before any
other options, for compatibility with Smail. The name rmail is used as an interface by some UUCP
systems.

If Exim is called under the name runq it behaves as if the option -q were present before any other
options, for compatibility with Smail. The -q option causes a single queue runner process to be started.

If Exim is called under the name newaliases it behaves as if the option -bi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail’s aias file.
Exim does not have the concept of a single aias file, but can be configured to run a given command if
called with the -bi option.

5.2 Trusted and admin users

Some Exim options are available only to trusted users and others are available only to admin users. In
the description below, the phrases ‘Exim user’ and ‘Exim group’ mean the user and group defined by
ExiM_UseR and exiM_GRoup in L ocal/M akefile or set by the exim_user and exim_group options. These
do not necessarily have to use the name ‘exim’.

e The trusted users are root, the Exim user, any user listed in the trusted_users configuration
option, and any user whose current group or any supplementary group is one of those listed in
the trusted_groups configuration option. Note that the Exim group is not automatically trusted.

Trusted users are always permitted to use the -f option or a leading ‘From ’ line to specify the
envelope sender of a message that is passed to Exim through the local interface (see the -bm and
-f options below). See the untrusted_set_sender option for a way of permitting non-trusted users
to set envelope senders. For a trusted user, there is never any check on the contents of the From:
header line, and a Sender: line is never added. Furthermore, any existing Sender: line in
incoming local (non-TCP/IP) messages is not removed.

Trusted users may also specify a host name, host address, interface address, protocol name, ident
value, and authentication data when submitting a message locally. Thus, they are able to insert
messages into Exim’s queue locally that have the characteristics of messages received from a
remote host. Untrusted users may in some circumstances use -f, but can never set the other
values that are available to trusted users.

e The admin users are root, the Exim user, and any user that is a member of the Exim group or of
any group listed in the admin_groups configuration option. The current group does not have to
be one of these groups.

Exim 4.50 [27] command line (5)

Admin users are permitted to list the queue, and to carry out certain operations on messages, for
example, to force delivery failures. It is aso necessary to be an admin user in order to see the
full information provided by the Exim monitor, and full debugging output.

By default, the use of the -M, -q, -R, and -S options to cause Exim to attempt delivery of
messages on its queue is restricted to admin users. However, this restriction can be relaxed by
setting the prod_requires_admin option false (that is, specifying no_prod_requires_admin).

Similarly, the use of the -bp option to list al the messages in the queue is restricted to admin
users unless queue list_requires_admin is set false.

Warning: If you configure your system so that admin users are able to edit Exim'’s configuration file,
you are giving those users an easy way of getting root. There is further discussion of this issue at the
start of chapter 6.

5.3 Command line options
The command options are described in alphabetical order below.

--help

This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they
begin with hyphens.

This option causes Exim to output a few sentences stating what it is. The same output is
generated if the Exim binary is called with no options and no arguments.

-B<type>

-bd

-bdf

-be

This is a Sendmail option for selecting 7 or 8 bit processing. Exim is 8-bit clean; it ignores
this option.

This option runs Exim as a daemon, awaiting incoming SMTP connections. Usually the -bd
option is combined with the -g<time> option, to specify that the daemon should also initiate
periodic queue runs.

The -bd option can be used only by an admin user. If either of the -d (debugging) or -v
(verifying) options are set, the daemon does not disconnect from the controlling terminal.
When running this way, it can be stopped by pressing ctrl-C.

By default, Exim listens for incoming connections to the standard SMTP port on all the host’'s
running interfaces. However, it is possible to listen on other ports, on multiple ports, and only
on specific interfaces. Chapter 13 contains a description of the options that control this.

When a listening daemon is started without the use of -oX (that is, without overriding the
normal configuration), it writes its process id to a file called exim-daemon.pid in Exim’'s
spool directory. This location can be overridden by setting PiD_FILE_PATH in L ocal/M akefile.
The file is written while Exim is still running as root.

When -0X is used on the command line to start a listening daemon, the process id is not
written to the normal pid file path. However, -oP can be used to specify a path on the
command line if a pid file is required.

The sicHuP signal can be used to cause the daemon to re-exec itself. This should be done
whenever Exim’s configuration file, or any file that is incorporated into it by means of the
.Include facility, is changed, and also whenever a new version of Exim is installed. It is not
necessary to do this when other files that are referenced from the configuration (for example,
adlias files) are changed, because these are reread each time they are used.

This option has the same effect as -bd except that it never disconnects from the controlling
terminal, even when no debugging is specified.

Run Exim in expansion testing mode. Exim discards its root privilege, to prevent ordinary
users from using this mode to read otherwise inaccessible files. If no arguments are given,
Exim runs interactively, prompting for lines of data. If Exim was built with use READLINE=YES
in Local/Makefile, it tries to load the libreadline library dynamically whenever the -be

Exim 4.50 [28] command line (5)

option is used without command line arguments. If successful, it uses the readling() function,
which provides extensive line-editing facilities, for reading the test data. A line history is
supported.

Long expansion expressions can be split over several lines by using backslash continuations.
As in Exim’s run time configuration, whitespace at the start of continuation lines is ignored.
Each argument or data line is passed through the string expansion mechanism, and the result
is output. Variable values from the configuration file (for example, $qualify_domain) are
available, but no message-specific values (such as $domain) are set, because no message is
being processed.

-bF <filename>
This option is the same as -bf except that it assumes that the filter being tested is a system
filter. The additional commands that are available only in system filters are recognized.

-bf <filename>
This option runs Exim in user filter testing mode; the file is the filter file to be tested, and a
test message must be supplied on the standard input. If there are no message-dependent tests
in the filter, an empty file can be supplied. If you want to test a system filter file, use -bF
instead of -bf. You can use both -bF and -bf on the same command, in order to test a system
filter and a user filter in the same run. For example:

exim-bF /system filter -bf /user/filter </test/nessage

This is helpful when the system filter adds header lines or sets filter variables that are used by
the user filter.

If the test filter file does not begin with one of the special lines

Eximfilter
Sieve filter

it is taken to be a normal .forward file, and is tested for validity under that interpretation. See
sections 22.4 to 22.6 for a description of the possible contents of non-filter redirection lists.

The result of an Exim command that uses -bf, provided no errors are detected, is alist of the
actions that Exim would try to take if presented with the message for real. More details of
filter testing are given in the separate document entitled Exim's interfaces to mail filtering.

When testing afilter file, the envelope sender can be set by the -f option, or by a ‘From’ line
a the start of the test message. Various parameters that would normally be taken from the
envelope recipient address of the message can be set by means of additional command line
options (see the next four options).

-bfd <domain>
This sets the domain of the recipient address when a filter file is being tested by means of the
-bf option. The default is the value of $qualify_domain.

-bfl <local part>
This sets the local part of the recipient address when a filter file is being tested by means of
the -bf option. The default is the username of the process that calls Exim. A local part should
be specified with any prefix or suffix stripped, because that is how it appears to the filter
when a message is actually being delivered.

-bfp <prefix>
This sets the prefix of the local part of the recipient address when afilter file is being tested
by means of the -bf option. The default is an empty prefix.

-bfp <suffix>
This sets the suffix of the local part of the recipient address when a filter file is being tested
by means of the -bf option. The default is an empty suffix.

-bh <IP address>
This option runs a fake SMTP session as if from the given IP address, using the standard

Exim 4.50 [29] command line (5)

input and output. The IP address may include a port number at the end, after a full stop. For
example:

exim-bh 10.9.8.7.1234
exim-bh fe80::a00: 20ff: fe86: a061. 5678

When an IPv6 address is given, it is converted into canonical form. In the case of the second
example above, the value of $sender_host_address after conversion to the canonical form is
f e80: 0000: 0000: 0a00: 20f f: fe86: a061. 5678.

Comments as to what is going on are written to the standard error file. These include lines
beginning with ‘LOG’ for anything that would have been logged. This facility is provided
for testing configuration options for incoming messages, to make sure they implement the
required policy. For example, you can test your relay controls using -bh.

Warning 1. You cannot test features of the configuration that rely on ident (RFC 1413)
callouts. These cannot be done when testing using -bh because there is no incoming SMTP
connection.

Warning 2: Address verification callouts (see section 39.31) are also skipped when testing
using -bh. If you want these callouts to occur, use -bhc instead.

Messages supplied during the testing session are discarded, and nothing is written to any of
the real log files. There may be pauses when DNS (and other) lookups are taking place, and
of course these may time out. The -oMi option can be used to specify a specific IP interface
and port if this is important.

The exim_checkaccess utility is a ‘packaged’ version of -bh whose output just states whether
a given recipient address from a given host is acceptable or not. See section 49.8.

-bhc <IP address>

-bi

-bm

This option operates in the same way as -bh, except that address verification callouts are
performed if required. This includes consulting and updating the callout cache database.

Sendmail interprets the -bi option as a request to rebuild its aias file. Exim does not have the
concept of a single dlias file, and so it cannot mimic this behaviour. However, calls to
/usr/lib/sendmail with the -bi option tend to appear in various scripts such as NIS make files,
so the option must be recognized.

If -bi is encountered, the command specified by the bi_command configuration option is run,
under the uid and gid of the caller of Exim. If the -0A option is used, its value is passed to
the command as an argument. The command set by bi_command may not contain arguments.
The command can use the exim_dbmbuild utility, or some other means, to rebuild alias files if
thisis required. If the bi_command option is not set, caling Exim with -bi is a no-op.

This option runs an Exim receiving process that accepts an incoming, locally-generated
message on the current input. The recipients are given as the command arguments (except
when -t is also present — see below). Each argument can be a comma-separated list of RFC
2822 addresses. This is the default option for selecting the overall action of an Exim call; it is
assumed if no other conflicting option is present.

If any addresses in the message are ungualified (have no domain), they are qualified by the
values of the qualify_domain or qualify_recipient options, as appropriate. The -bng option
(see below) provides a way of suppressing this for special cases.

Policy checks on the contents of local messages can be enforced by means of the non-SMTP

ACL. See chapter 39 for details. The return code is zero if the message is successfully
accepted. Otherwise, the action is controlled by the -oex option setting — see below.

The format of the message must be as defined in RFC 2822, except that, for compatibility
with Sendmail and Smail, a line in one of the forms

From sender Fri Jan 5 12:55 GVI 1997
From sender Fri, 5 Jan 97 12:55:01

Exim 4.50 [30] command line (5)

-bng

-bP

_bp

(with the weekday optional, and possibly with additional text after the date) is permitted to
appear at the start of the message. There appears to be no authoritative specification of the
format of this line. Exim recognizes it by matching against the regular expression defined by
the uucp_from_pattern option, which can be changed if necessary. The specified sender is
treated as if it were given as the argument to the -f option, but if a -f option is also present,
its argument is used in preference to the address taken from the message. The caller of Exim
must be a trusted user for the sender of a message to be set in this way.

By default, Exim automatically qualifies unqualified addresses (those without domains) that
appear in messages that are submitted locally (that is, not over TCP/IP). This qualification
applies both to addresses in envelopes, and addresses in header lines. Sender addresses are
qualified using qualify_domain, and recipient addresses using qualify_recipient (which
defaults to the value of qualify_domain).

Sometimes, qualification is not wanted. For example, if -bS (batch SMTP) is being used to re-
submit messages that originally came from remote hosts after content scanning, you probably
do not want to qualify unqualified addresses in header lines. (Such lines will be present only
if you have not enabled a header syntax check in the appropriate ACL.)

The -bnq option suppresses all qualification of unqualified addresses in messages that orig-
inate on the local host. When this is used, unqualified addresses in the envelope provoke
errors (causing message rejection) and unqualified addresses in header lines are |eft alone.

If this option is given with no arguments, it causes the values of all Exim's main configur-
ation options to be written to the standard output. The values of one or more specific options
can be requested by giving their names as arguments, for example:

exi m -bP qualify_domai n hol d_domai ns

However, any option setting that is preceded by the word ‘hide’ in the configuration file is not
shown in full, except to an admin user. For other users, the output is as in this example:

nysql _servers = <val ue not di spl ayabl e>

If configure file is given as an argument, the name of the run time configuration file is
output. If alist of configuration files was supplied, the value that is output here is the name of
the file that was actually used.

If log_file_path or pid_file_path are given, the names of the directories where log files and
daemon pid files are written are output, respectively. If these values are unset, log files are
written in a sub-directory of the spool directory called log, and the pid file is written directly
into the spool directory.

If -bP is followed by a name preceded by +, for example,
exi m - bP +l ocal _domuai ns

it searches for a matching named list of any type (domain, host, address, or local part) and
outputs what it finds.

If one of the words router, transport, or authenticator is given, followed by the name of an
appropriate driver instance, the option settings for that driver are output. For example:

exim-DbP transport |ocal _delivery

The generic driver options are output first, followed by the driver’s private options. A list of
the names of drivers of a particular type can be obtained by using one of the words
router_list, transport_list, or authenticator_list, and a complete list of all drivers with their
option settings can be obtained by using routers, transports, or authenticators.

This option requests a listing of the contents of the mail queue on the standard output. If the
-bp option is followed by a list of message ids, just those messages are listed. By default, this
option can be used only by an admin user. However, the queue_list_requires_admin option
can be set false to allow any user to see the queue.

Exim 4.50 [31] command line (5)

-bpa

-bpc

-bpr

-bpra
-bpru
-bpu

-brt

-brw

-bS

Each message on the queue is displayed as in the following example:

25m 2. 9K 0t 5C6f - 0000c8- 00 <al i ce@wonderl and. fi ct. exanpl e>
red. ki ng@ ooki ng-gl ass. fict.exanple
<other addresses>

The first line contains the length of time the message has been on the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identifier for the message, and the
message sender, as contained in the envelope. For bounce messages, the sender address is
empty, and appears as ‘<>’. If the message was submitted locally by an untrusted user who
overrode the default sender address, the user’s login name is shown in parentheses before the
sender address. If the message is frozen (attempts to deliver it are suspended) then the text
‘*»xx frozen =**" is displayed at the end of this line.

The recipients of the message (taken from the envelope, not the headers) are displayed on
subsequent lines. Those addresses to which the message has already been delivered are
marked with the letter D. If an original address gets expanded into several addresses via an
alias or forward file, the original is displayed with a D only when deliveries for all of its child
addresses are complete.

This option operates like -bp, but in addition it shows delivered addresses that were generated
from the original top level address(es) in each message by alias or forwarding operations.
These addresses are flagged with ‘+D’ instead of just ‘D’.

This option counts the number of messages on the queue, and writes the total to the standard
output. It is restricted to admin users, unless queue list_requires_admin is set false.

This option operates like -bp, but the output is not sorted into chronological order of message
arrival. This can speed it up when there are lots of messages on the queue, and is particularly
useful if the output is going to be post-processed in a way that doesn’'t need the sorting.

This option is a combination of -bpr and -bpa.
This option is a combination of -bpr and -bpu.

This option operates like -bp but shows only undelivered top-level addresses for each mess-
age displayed. Addresses generated by aliasing or forwarding are not shown, unless the
message was deferred after processing by a router with the one_time option set.

This option is for testing retry rules, and it must be followed by up to three arguments. It
causes Exim to look for a retry rule that matches the values and to write it to the standard
output. For example:

exim-brt bach. conp. nus. exanpl e
Retry rule: *.conp.nus.exanple F,2h,15m F, 4d, 30m

See chapter 32 for a description of Exim’s retry rules. The first argument, which is required,
can be a complete address in the form local_part@domain, or it can be just a domain name.
The second argument is an optional second domain name; if no retry rule is found for the first
argument, the second is tried. This ties in with Exim’s behaviour when looking for retry rules
for remote hosts — if no rule is found that matches the host, one that matches the mail domain
is sought. The final argument is the name of a specific delivery error, as used in setting up
retry rules, for example ‘quota_3d'.

This option is for testing address rewriting rules, and it must be followed by a single
argument, consisting of either a local part without a domain, or a complete address with a
fully qualified domain. Exim outputs how this address would be rewritten for each possible
place it might appear. See chapter 31 for further details.

This option is used for batched SMTP input, which is an aternative interface for non-
interactive local message submission. A number of messages can be submitted in a single run.
However, despite its name, this is not really SMTP input. Exim reads each message's
envelope from SMTP commands on the standard input, but generates no responses. If the

Exim 4.50 [32] command line (5)

-bs

-bt

caller is trusted, or untrusted _set_sender is set, the senders in the SMTP mAIL commands are
believed; otherwise the sender is always the caller of Exim.

The message itself is read from the standard input, in SMTP format (leading dots doubled),
terminated by a line containing just a single dot. An error is provoked if the terminating dot is
missing. A further message may then follow.

As for other local message submissions, the contents of incoming batch SMTP messages can
be checked using the non-SMTP ACL (see chapter 39). Unqualified addresses are automati-
cally qualified using qualify_domain and qualify_recipient, as appropriate, unless the -bng
option is used.

Some other SMTP commands are recognized in the input. HELO and EHLO act as RSET; VRFY,
EXPN, ETRN, and HELP act as NooP; QuIT quits, ignoring the rest of the standard inpuit.

If any error is encountered, reports are written to the standard output and error streams, and
Exim gives up immediately. The return code is O if no error was detected; it is 1 if one or
more messages were accepted before the error was detected; otherwise it is 2.

More details of input using batched SMTP are given in section 44.12.

This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. SMTP policy controls, as
defined in ACLSs (see chapter 39) are applied.

Some user agents use this interface as a way of passing locally-generated messages to the
MTA. In this usage, if the caller of Exim is trusted, or untrusted_set_sender is set, the
senders of messages are taken from the SMTP maiL commands. Otherwise the content of
these commands is ignored and the sender is set up as the caling user. Unqualified addresses
are automatically qualified using qualify_domain and qualify_recipient, as appropriate, un-
less the -bnq option is used.

The -bs option is aso used to run Exim from inetd, as an aternative to using a listening
daemon. Exim can distinguish the two cases by checking whether the standard input is a
TCP/IP socket. When Exim is called from inetd, the source of the mail is assumed to be
remote, and the comments above concerning senders and qualification do not apply. In this
situation, Exim behaves in exactly the same way as it does when receiving a message via the
listening daemon.

This option runs Exim in address testing mode, in which each argument is taken as an address
to be tested for deliverability. The results are written to the standard output. If a test fails, and
the caller is not an admin user, no details of the failure are output, because these might
contain sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be tested. Unlike the -be test option, you cannot arrange for Exim to
use the readline() function, because it is running as root and there are security issues.

Each address is handled as if it were the recipient address of a message (compare the -bv
option). It is passed to the routers and the result is written to the standard output. However,
any router that has no address test set is bypassed. This can make -bt easier to use for
genuine routing tests if your first router passes everything to a scanner program.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at
least one could not be resolved for some reason. Return code O is given only when al
addresses succeed.

Warning: -bt can only do relatively simple testing. If any of the routers in the configuration
makes any tests on the sender address of a message, you can use the -f option to set an
appropriate sender when running -bt tests. Without it, the sender is assumed to be the calling
user at the default qualifying domain. However, if you have set up (for example) routers
whose behaviour depends on the contents of an incoming message, you cannot test those
conditions using -bt. The -N option provides a possible way of doing such tests.

Exim 4.50 [33] command line (5)

-bVv

-bv

-bvs

This option causes Exim to write the current version number, compilation number, and
compilation date of the exim binary to the standard output. It also lists the DBM library thisis
being used, the optional modules (such as specific lookup types), the drivers that are included
in the binary, and the name of the run time configuration file that isin use.

As part of its operation, -bV causes Exim to read and syntax check its configuration file.
However, this is a static check only. It cannot check values that are to be expanded. For
example, athough a misspelt ACL verb is detected, an error in the verb’s arguments is not.
You cannot rely on -bV aone to discover (for example) all the typos in the configuration;
some redligtic testing is needed. The -bh and -N options provide more dynamic testing
facilities.

This option runs Exim in address verification mode, in which each argument is taken as an
address to be verified. During normal operation, verification happens mostly as a consequence
processing a verify condition in an ACL (see chapter 39). If you want to test an entire ACL,
see the -bh option.

If verification fails, and the caler is not an admin user, no details of the failure are output,
because these might contain sensitive information such as usernames and passwords for
database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be verified. Unlike the -be test option, you cannot arrange for Exim
to use the readling() function, because it is running as exim and there are security issues.

Verification differs from address testing (the -bt option) in that routers that have no_verify set
are skipped, and if the address is accepted by a router that has fail verify set, verification
fails. The address is verified as a recipient if -bv is used; to test verification for a sender
address, -bvs should be used.

If the -v option is not set, the output consists of a single line for each address, stating whether
it was verified or not, and giving a reason in the latter case. Otherwise, more details are given
of how the address has been handled, and in the case of address redirection, all the generated
addresses are also considered. Without -v, generating more than one address by redirection
causes verification to end sucessfully.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at
least one could not be resolved for some reason. Return code O is given only when all
addresses succeed.

If any of the routers in the configuration makes any tests on the sender address of a message,
you should use the -f option to set an appropriate sender when running -bv tests. Without it,
the sender is assumed to be the calling user at the default qualifying domain.

This option acts like -bv, but verifies the address as a sender rather than a recipient address.
This affects any rewriting and qualification that might happen.

-C <fildist>

This option causes Exim to find the run time configuration file from the given list instead of
from the list specified by the conFIGURE_FILE compile-time setting. Usually, the list will consist
of just a single file name, but it can be a colon-separated list of names. In this case, the first
file that exists is used. Failure to open an existing file stops Exim from proceeding any further
along the list, and an error is generated.

When this option is used by a caller other than root or the Exim user, and the list is different
from the compiled-in list, Exim gives up its root privilege immediately, and runs with the real
and effective uid and gid set to those of the caller. However, if ALT_CONFIG_ROOT ONLY iS
defined in Local/M akefile, root privilege is retained for -C only if the caller of Exim is root.
That is, the Exim user is no longer privileged in this regard. This build-time option is not set
by default in the Exim source distribution tarbundle. However, if you are using a ‘ packaged’
version of Exim (source or binary), the packagers might have enabled it.

Exim 4.50 [34] command line (5)

Setting ALT_CONFIG_ROOT_ONLY locks out the possibility of testing a configuration using -C
right through message reception and delivery, even if the caller is root. The reception works,
but by that time, Exim is running as the Exim user, so when it re-execs to regain privilege for
the delivery, the use of -C causes privilege to be lost. However, root can test reception and
delivery using two separate commands (one to put a message on the queue, using -odq, and
another to do the delivery, using -M).

If ALT_conFIG_PREFIX IS defined in Local/Makefile, it specifies a prefix string with which any
file named in a -C command line option must start. In addition, the file name must not
contain the sequence / . . / . However, if the value of the -C option is identical to the value of
CONFIGURE_FILE in Local/Makefile, Exim ignores -C and proceeds as usual. There is no
default setting for ALT_coNFIG_PREFIX; When it is unset, any file name can be used with -C.

ALT_CONFIG_PREFIX Ccan be used to confine alternative configuration files to a directory to which
only root has access. This prevents someone who has broken into the Exim account from
running a privileged Exim with an arbitrary configuration file.

The -C facility is useful for ensuring that configuration files are syntactically correct, but
cannot be used for test deliveries, unless the caller is privileged, or unless it is an exotic
configuration that does not require privilege. No check is made on the owner or group of the
files specified by this option.

-D<macro>=<value>
This option can be used to override macro definitions in the configuration file (see section
6.4). However, like -C, if it is used by an unprivileged caller, it causes Exim to give up its
root privilege. If bisaBLE_D_opTION is defined in Local/M akefile, the use of -D is completely
disabled, and its use causes an immediate error exit.

The entire option (including equals sign if present) must all be within one command line item.
-D can be used to set the value of a macro to the empty string, in which case the equals sign
is optional. These two commands are synonymous:

exim-DABC ...

exi m - DABC= ...
To include spaces in a macro definition item, quotes must be used. If you use quotes, spaces
are permitted around the macro name and the equals sign. For example:

exim’-D ABC = sonet hi ng’
-D may be repeated up to 10 times on a command line.

-d<debug options>

This option causes debugging information to be written to the standard error stream. It is
restricted to admin users because debugging output may show database queries that contain
password information. Also, the details of users filter files should be protected. When -d is
used, -v is assumed. If -d is given on its own, a lot of standard debugging data is output. This
can be reduced, or increased to include some more rarely needed information, by following -d
with a string made up of names preceded by plus or minus characters. These add or remove
sets of debugging data, respectively. For example, -d+filter adds filter debugging, whereas -d-
all+filter selects only filter debugging. The available debugging categories are:

acl ACL interpretation

aut h authenticators

del i ver general delivery logic

dns DNS lookups (see also resolver)

dnsbl DNS black list (aka RBL) code

exec arguments for execv() cals

expand detailed debugging for string expansions
filter filter handling

hi nt s_| ookup hints data lookups
host _| ookup all types of name-to-1P address handling

Exim 4.50 [35] command line (5)

i dent ident lookup

interface lists of local interfaces

lists matching things in lists

| oad system load checks

| ocal _scan can be used by local_scan() (see chapter 41)
| ookup general lookup code and all lookups
nmenory memory handling

pid add pid to debug output lines

process_i nf o setting info for the process log
gueue_run gueue runs

receive general message reception logic

resol ver turn on the DNS resolver’s debugging output
retry retry handling

rewite address rewriting

route address routing

ti mestanp add timestamp to debug output lines

tls TLS logic

transport transports

ui d changes of uid/gid and looking up uid/gid
verify address verification logic

al | al of the above, and also -v

The r esol ver option produces output only if the DNS resolver was compiled with beBuG
enabled. This is not the case in some operating systems. Also, unfortunately, debugging
output from the DNS resolver is written to stdout rather than stderr.

The default (-d with no argument) omits expand, fil ter, i nterface, | oad, nenory,
pi d, resol ver, and ti mest anp. However, the pi d selector is forced when debugging is
turned on for a daemon, which then passes it on to any re-executed Exims. Exim also
automatically adds the pid to debug lines when several remote deliveries are run in paralel.

The ti mest anp selector causes the current time to be inserted at the start of all debug
output lines. This can be useful when trying to track down delays in processing.

If the debug_print option is set in any driver, it produces output whenever any debugging is
selected, or if -v is used.

-dd<debug options>

-dropcr

This option behaves exactly like -d except when used on a command that starts a daemon
process. In that case, debugging is turned off for the subprocesses that the daemon creates.
Thus, it is useful for monitoring the behaviour of the daemon without creating as much output
as full debugging does.

This is an obsolete option that is now a no-op. It used to affect the way Exim handled CR and
LF characters in incoming messages. What happens now is described in section 43.2.

This option specifies that an incoming message is a locally-generated delivery failure report.
It is used internally by Exim when handling delivery failures and is not intended for external
use. Its only effect is to stop Exim generating certain messages to the postmaster, as otherwise
message cascades could occur in some situations. As part of the same option, a message id
may follow the characters -E. If it does, the log entry for the receipt of the new message
contains the id, following ‘R=", as a cross-reference.

There are a number of Sendmail options starting with -oe which seem to be called by various
programs without the leading o in the option. For example, the vacation program uses -€q.
Exim treats all options of the form -ex as synonymous with the corresponding -oex options.

-F <string>

This option sets the sender’s full name for use when a locally-generated message is being

Exim 4.50 [36] command line (5)

accepted. In the absence of this option, the user’s gecos entry from the password data is used.
As users are generally permitted to alter their gecos entries, no security considerations are
involved. White space between -F and the <string> is optional.

-f <address>
This option sets the address of the envelope sender of a locally-generated message (also
known as the return path). The option can normally be used only by a trusted user, but
untrusted_set_sender can be set to allow untrusted users to use it. Processes running as root
or the Exim user are always trusted. Other trusted users are defined by the trusted_users or
trusted_groups options.

In the absence of -f, or if the caler is not trusted, the sender of a local message is set to the
caller’s login name at the default qualify domain.

There is one exception to the restriction on the use of -f: an empty sender can be specified by
any user, trusted or not, to create a message that can never provoke a bounce. An empty
sender can be specified either as an empty string, or as a pair of angle brackets with nothing
between them, as in these examples of shell commands:

exim-f '<> user @onai n
exim-f "" user @onuain

In addition, the use of -f is not restricted when testing a filter file with -bf or when testing or
verifying addresses using the -bt or -bv options.

Allowing untrusted users to change the sender address does not of itself make it possible to
send anonymous mail. Exim still checks that the From: header refers to the local user, and
if it does not, it adds a Sender: header, though this can be overridden by setting
no_local_from_check.

White space between -f and the <address> is optiona (that is, they can be given as two
arguments or one combined argument). The sender of a locally-generated message can aso be
set (when permitted) by an initia ‘From ’ line in the message — see the description of -bm
above — but if -f is also present, it overrides ‘From'.

-G This is a Sendmail option which is ignored by Exim.

-h <number>
This option is accepted for compatibility with Sendmail, but has no effect. (In Sendmail it
overrides the *hop count’ obtained by counting Received: headers.)

i This option, which has the same effect as -oi, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. | can find no documentation for this option in
Solaris 2.4 Sendmail, but the mailx command in Solaris 2.4 uses it. See also -ti.

-M <message id> <messageid> ...

This option requests Exim to run a delivery attempt on each message in turn. If any of the
messages are frozen, they are automatically thawed before the delivery attempt. The settings
of queue_domains, queue_smtp_domains, and hold_domains are ignored. Retry hints for
any of the addresses are overridden — Exim tries to deliver even if the normal retry time has
not yet been reached. This option requires the caller to be an admin user. However, there is an
option called prod_requires_admin which can be set false to relax this restriction (and also
the same requirement for the -q, -R, and -S options).

-Mar <messageid> <address> <address> ...
This option requests Exim to add the addresses to the list of recipients of the message (‘ar’
for ‘add recipients’). The first argument must be a message id, and the remaining ones must
be email addresses. However, if the message is active (in the middle of a delivery attempt), it
is not altered. This option can be used only by an admin user.

-MC <transport> <hostname> <sequence number> <message id>
This option is not intended for use by externa callers. It is used internally by Exim to invoke

Exim 4.50 [37] command line (5)

-MCA

-MCP

“MCQ

-MCS

-MCT

another instance of itself to deliver a waiting message using an existing SMTP connection,
which is passed as the standard input. Details are given in chapter 44. This must be the fina
option, and the caller must be root or the Exim user in order to use it.

This option is not intended for use by external calers. It is used internally by Exim in
conjunction with the -MC option. It signifies that the connection to the remote host has been
authenti cated.

This option is not intended for use by external calers. It is used internally by Exim in
conjunction with the -MC option. It signifies that the server to which Exim is connected
supports pipelining.

<process id> <pipe fd>

This option is not intended for use by external calers. It is used internally by Exim in
conjunction with the -M C option when the original delivery was started by a queue runner. It
passes on the process id of the queue runner, together with the file descriptor number of an
open pipe. Closure of the pipe signals the final completion of the sequence of processes that
are passing messages through the same SMTP connection.

This option is not intended for use by external callers. It is used internally by Exim in
conjunction with the -M C option, and passes on the fact that the SMTP size option should be
used on messages delivered down the existing connection.

This option is not intended for use by external callers. It is used internally by Exim in
conjunction with the -MC option, and passes on the fact that the host to which Exim is
connected supports TLS encryption.

-Mc <message id> <message id> ...

This option requests Exim to run a delivery attempt on each message in turn, but unlike the
-M option, it does check for retry hints, and respects any that are found. This option is not
very useful to external calers. It is provided mainly for internal use by Exim when it needs to
re-invoke itself in order to regain root privilege for a delivery (see chapter 51). However, -Mc
can be useful when testing, in order to run a delivery that respects retry times and other
options such as hold_domains that are overridden when -M is used. Such a delivery does not
count as a queue run. If you want to run a specific delivery as if in a queue run, you should
use -q with a message id argument. A distinction between queue run deliveries and other
deliveries is made in one or two places.

-Mes <message id> <address>

This option requests Exim to change the sender address in the message to the given address,
which must be a fully qualified address or ‘<>’ (‘es for ‘edit sender’). There must be exactly
two arguments. The first argument must be a message id, and the second one an emall
address. However, if the message is active (in the middle of a delivery attempt), its status is
not altered. This option can be used only by an admin user.

-Mf <message id> <messageid> ...

This option requests Exim to mark each listed message as ‘frozen’. This prevents any delivery
attempts taking place until the message is ‘thawed’, either manually or as a result of the
auto_thaw configuration option. However, if any of the messages are active (in the middle of
a delivery attempt), their status is not altered. This option can be used only by an admin user.

-Mg <message id> <message id> ...

This option requests Exim to give up trying to deliver the listed messages, including any that
are frozen. However, if any of the messages are active, their status is not altered. For non-
bounce messages, a delivery error message is sent to the sender, containing the text ‘cancelled
by administrator’. Bounce messages are just discarded. This option can be used only by an
admin user.

-Mmad <message id> <messageid> ...

This option requests Exim to mark all the recipient addresses in the messages as already

Exim 4.50 [38] command line (5)

delivered (‘mad’ for ‘mark all delivered’). However, if any message is active (in the middle
of a delivery attempt), its status is not altered. This option can be used only by an admin user.

-Mmd <message id> <address> <address> ...
This option requests Exim to mark the given addresses as already delivered (‘md’ for ‘mark
delivered’). The first argument must be a message id, and the remaining ones must be email
addresses. These are matched to recipient addresses in the message in a case-sensitive manner.
If the message is active (in the middle of a delivery attempt), its status is not altered. This
option can be used only by an admin user.

-Mrm <message id> <message id> ...
This option requests Exim to remove the given messages from the queue. No bounce
messages are sent; each message is simply forgotten. However, if any of the messages are
active, their status is not atered. This option can be used only by an admin user or by the
user who originally caused the message to be placed on the queue.

-Mt <message id> <message id> ...
This option requests Exim to ‘thaw’ any of the listed messages that are ‘frozen’, so that
delivery attempts can resume. However, if any of the messages are active, their status is not
altered. This option can be used only by an admin user.

-Mvb <message id>
This option causes the contents of the message body (-D) spool file to be written to the
standard output. This option can be used only by an admin user.

-Mvh <message id>
This option causes the contents of the message headers (-H) spool file to be written to the
standard output. This option can be used only by an admin user.

-Mvl <message id>
This option causes the contents of the message log spool file to be written to the standard
output. This option can be used only by an admin user.

-m This is apparently a synonym for -om that is accepted by Sendmail, so Exim treats it that
way too.

-N This is a debugging option that inhibits delivery of a message at the transport level. It implies
-v. Exim goes through many of the motions of delivery — it just doesn’t actually transport the
message, but instead behaves as if it had successfully done so. However, it does not make any
updates to the retry database, and the log entries for deliveries are flagged with ‘*>' rather
than ‘=>’.

Because -N discards any message to which it applies, only root or the Exim user are allowed
to use it with -bd, -g, -R or -M. In other words, an ordinary user can use it only when
supplying an incoming message to which it will apply. Although transportation never fails
when -N is set, an address may be deferred because of a configuration problem on a transport,
or a routing problem. Once -N has been used for a delivery attempt, it sticks to the message,
and applies to any subsequent delivery attempts that may happen for that message.

-n This option is interpreted by Sendmail to mean ‘no aliasing’. It is ignored by Exim.
-O <data>
This option is interpreted by Sendmail to mean ‘set option‘. It is ignored by Exim.

-0A <file name>
This option is used by Sendmail in conjunction with -bi to specify an alternative alias file
name. Exim handles -bi differently; see the description above.

-oB <n>
This is a debugging option which limits the maximum number of messages that can be
delivered down one SMTP connection, overriding the value set in any smtp transport. If <n>
is omitted, the limit is set to 1.

Exim 4.50 [39] command line (5)

-odb

-odf

-odi
-odq

-odgs

-0em

_Oep

-0eq

This option applies to all modes in which Exim accepts incoming messages, including the
listening daemon. It requests ‘background’ delivery of such messages, which means that the
accepting process automatically starts a delivery process for each message received, but does
not wait for the delivery processes to finish. When all the messages have been received, the
reception process exits, leaving the delivery processes to finish in their own time. The
standard output and error streams are closed at the start of each delivery process. This is the
default action if none of the -od options are present.

If one of the queueing options in the configuration file (queue only or queue only file, for
example) is in effect, -odb overrides it if queue only override is set true, which is the
default setting. If queue only override is set false, -odb has no effect.

This option requests ‘foreground’ (synchronous) delivery when Exim has accepted a locally-
generated message. (For the daemon it is exactly the same as -odb.) A delivery process is
automatically started to deliver the message, and Exim waits for it to complete before
proceeding. The original Exim reception process does not finish until the delivery process for
the fina message has ended. The standard error stream is left open during deliveries.
However, like -odb, this option has no effect if queue_only_override is false and one of the
gueueing options in the configuration file is in effect.

If there is a temporary delivery error during foreground delivery, the message is left on the
gueue for later delivery, and the original reception process exists. See chapter 47 for a way of
setting up a restricted configuration that never queues messages.

This option is synonymous with -odf. It is provided for compatibility with Sendmail.

This option applies to all modes in which Exim accepts incoming messages, including the
listening daemon. It specifies that the accepting process should not automatically start a
delivery process for each message received. Messages are placed on the queue, and remain
there until a subsequent queue runner process encounters them. There are severa configur-
ation options (such as queue only) that can be used to queue incoming messages under
certain conditions. This option overrides al of them and aso -odgs. It always forces
gueueing.

This option is a hybrid between -odb/-odi and -odg. However, like -odb and -odi, this option
has no effect if queue only_override is false and one of the queueing options in the
configuration file is in effect.

When -odqgs does operate, a delivery process is started for each incoming message, in the
background by default, but in the foreground if -odi is also present. The recipient addresses
are routed, and local deliveries are done in the normal way. However, if any SMTP deliveries
are required, they are not done at this time, so the message remains on the queue until a
subsequent queue runner process encounters it. Because routing was done, Exim knows which
messages are waiting for which hosts, and so a number of messages for the same host can be
sent in a single SMTP connection. The queue_smtp_domains configuration option has the
same effect for specific domains. See also the -qq option.

If an error is detected while a non-SMTP message is being received (for example, a mal-
formed address), the error is reported to the sender in a mail message. Provided this error
message is successfully sent, the Exim receiving process exits with a return code of zero. If
not, the return code is 2 if the problem is that the original message has no recipients, or 1 any
other error. Thisis the default -oex option if Exim is called as rmail.

This is the same as -oee, except that Exim always exits with a non-zero return code, whether
or not the error message was successfully sent. This is the default -oex option, unless Exim is
called as rmail.

If an error is detected while a non-SMTP message is being received, the error is reported by
writing a message to the standard error file (stderr). The return code is 1 for all errors.

This option is supported for compatibility with Sendmail, but has the same effect as -oep.

Exim 4.50 [40] command line (5)

-oew This option is supported for compatibility with Sendmail, but has the same effect as -oem.

-0i This option, which has the same effect as -i, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. Otherwise, a single dot does terminate, though
Exim does no specia processing for other lines that start with a dot. This option is set by
default if Exim is called as rmail. See also -ti.

-oitrue This option is treated as synonymous with -oi.

-oMa <host address>
A number of options starting with -oM can be used to set values associated with remote hosts
on locally-submitted messages (that is, messages not received over TCP/IP). These options
can be used by any caller in conjunction with the -bh, -be, -bf, -bF, -bt, or -bv testing
options. In other circumstances, they are ignored unless the caller is trusted.

The -oMa option sets the sender host address. This may include a port number at the end,
after a full stop (period). For example:

exim-bs -oMa 10.9.8.7.1234

An aternative syntax is to enclose the IP address in sguare brackets, followed by a colon and
the port number:

exim-bs -oMva [10.9.8.7]:1234

The IP address is placed in the $sender_host_address variable, and the port, if present, in
$sender_host_port.

-oMaa <name>
See -oMa above for general remarks about the -oM options. The -oM aa option sets the value
of $sender_host_authenticated (the authenticator name). See chapter 33 for a discussion of
SMTP authentication.

-oMai <string>
See -oMa above for general remarks about the -oM options. The -oMai option sets the value
of $authenticated_id (the id that was authenticated). This overrides the default value (the
caler's login id) for messages from local sources. See chapter 33 for a discussion of
authenticated ids.

-oMas <address>
See -oMa above for general remarks about the -oM options. The -oMas option sets the
authenticated sender value in $authenticated_sender. It overrides the sender address that is
created from the caller’s login id for messages from local sources. See chapter 33 for a
discussion of authenticated senders.

-oMi <interface address>
See -oMa above for general remarks about the -oM options. The -oMi option sets the IP
interface address value. A port number may be included, using the same syntax as for -oMa.
The interface address is placed in $interface address and the port number, if present, in
$interface port.

-oMr <protocol name>
See -oMa above for genera remarks about the -oM options. The -oMr option sets the
received protocol value that is stored in $received_protocol. However, this applies only when
-bs is not used. For interactive SMTP input (-bs), the protocol is aways ‘local-’ followed by
one of the standard SMTP protocol names (see the description of $received protocol in
section 11.9). For -bS (batch SMTP) however, the protocol can be set by -oMr.

-oMs <host name>
See -oM a above for general remarks about the -oM options. The -oM s option sets the sender
host name in $sender_host_name. When this option is present, Exim does not attempt to
look up a host name from an IP address; it uses the name it is given.

Exim 4.50 [41] command line (5)

-oMt <ident string>
See -oMa above for general remarks about the -oM options. The -oMt option sets the sender
ident value in $sender _ident. The default setting for local callers is the login id of the calling
process.

-om In Sendmail, this option means ‘me too’, indicating that the sender of a message should
receive a copy of the message if the sender appears in an aias expansion. Exim always does
this, so the option does nothing.

-00 This option is ignored. In Sendmail it specifies ‘old style headers', whatever that means.

-oP <path>
This option is useful only in conjunction with -bd or -q with a time value. The option
specifies the file to which the process id of the daemon is written. When -oX is used with
-bd, or when -q with a time is used without -bd, this is the only way of causing Exim to
write a pid file, because in those cases, the normal pid file is not used.

-or <time>
This option sets a timeout value for incoming non-SMTP messages. If it is not set, Exim will
wait forever for the standard input. The value can also be set by the receive_timeout option.
The format used for specifying times is described in section 6.11.

-0s <time>
This option sets a timeout value for incoming SMTP messages. The timeout applies to each
SMTP command and block of data. The value can also be set by the smtp_receive timeout
option; it defaults to 5 minutes. The format used for specifying times is described in section
6.11.

-ov This option has exactly the same effect as -v.

-oX <number or string>
This option is relevant only when the -bd (start listening daemon) option is also given. It
controls which ports and interfaces the daemon uses. Details of the syntax, and how it
interacts with configuration file options, are given in chapter 13. When -oX is used to start a
daemon, no pid file is written unless -oP is also present to specify a pid file name.

-pd This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12).
It overrides the setting of the perl_at_start option, forcing the starting of the interpreter to be
delayed until it is needed.

-ps This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12).
It overrides the setting of the perl_at_start option, forcing the starting of the interpreter to
occur as soon as Exim is started.

-p<rval>:<sval>
For compatibility with Sendmail, this option is equivalent to

-oM <rval> -oMs <sval>

It sets the incoming protocol and host name (for trusted callers). The host name and its colon
can be omitted when only the protocol is to be set. Note the Exim already has two private
options, -pd and -ps, that refer to embedded Perl. It is therefore impossible to set a protocol
value of p or s using this option (but that does not seem a real limitation).

-q This option is normally restricted to admin users. However, there is a configuration option
called prod_requires admin which can be set false to relax this restriction (and aso the
same reguirement for the -M, -R, and -S options).

The -q option starts one queue runner process. This scans the queue of waiting messages, and
runs a delivery process for each one in turn. It waits for each delivery process to finish before
starting the next one. A delivery process may not actually do any deliveries if the retry times
for the addresses have not been reached. Use -gf (see below) if you want to override this. If

Exim 4.50 [42] command line (5)

the delivery process spawns other processes to deliver other messages down passed SMTP
connections, the queue runner waits for these to finish before proceeding.

When all the queued messages have been considered, the original queue runner process
terminates. In other words, a single pass is made over the waiting mail, one message at a
time. Use -q with a time (see below) if you want this to be repeated periodically.

Exim processes the waiting messages in an unpredictable order. It isn't very random, but it is
likely to be different each time, which is all that matters. If one particular message screws up
aremote MTA, other messages to the same MTA have a chance of getting through if they get
tried first.

It is possible to cause the messages to be processed in lexical message id order, which is
essentially the order in which they arrived, by setting the queue run_in_order option, but
this is not recommended for normal use.

-g<dgflags>

-q[qfi...

The -q option may be followed by one or more flag letters that change its behaviour. They are
all optional, but if more than one is present, they must appear in the correct order. Each flag
is described in a separate item below.

An option starting with -qq reguests a two-stage queue run. In the first stage, the queue is
scanned as if the queue_smtp_domains option matched every domain. Addresses are routed,
local deliveries happen, but no remote transports are run. The hints database that remembers
which messages are waiting for specific hosts is updated, as if delivery to those hosts had
been deferred. After this is complete, a second, normal queue scan happens, with routing and
delivery taking place as normal. Messages that are routed to the same host should mostly be
delivered down a single SMTP connection because of the hints that were set up during the
first queue scan. This option may be useful for hosts that are connected to the Internet
intermittently.

If thei flag is present, the queue runner runs delivery processes only for those messages that
haven't previously been tried. (i stands for ‘initial delivery’.) This can be helpful if you are
putting messages on the queue using -odg and want a queue runner just to process the new
messages.

-q[a][ilf...

If one f flag is present, a delivery attempt is forced for each non-frozen message, whereas
without f only those non-frozen addresses that have passed their retry times are tried.

-q[a][ilff...

If ff is present, a delivery attempt is forced for every message, whether frozen or not.

-q[a] (LA

The | (the letter ‘ell’) flag specifies that only local deliveries are to be done. If a message
requires any remote deliveries, it remains on the queue for later delivery.

-g<dflags> <start id> <end id>

When scanning the queue, Exim can be made to skip over messages whose ids are lexically
less than a given value by following the -q option with a starting message id. For example:

exi m -q Ot 5C6f-0000c8-00

Messages that arrived earlier than Ot 5C6f - 0000c8- 00 are not inspected. If a second
message id is given, messages whose ids are lexically greater than it are also skipped. If the
same id is given twice, for example,

exi m -q Ot 5C6f-0000c8-00 Ot 5C6f-0000c8-00

just one delivery process is started, for that message. This differs from -M in that retry datais
respected, and it also differs from -Mc in that it counts as a delivery from a queue run. Note
that the selection mechanism does not affect the order in which the messages are scanned.

Exim 4.50 [43] command line (5)

There are also other ways of selecting specific sets of messages for delivery in a queue run —
see -R and -S.

-g<gflags><time>
When a time value is present, the -q option causes Exim to run as a daemon, starting a queue
runner process at intervals specified by the given time value (whose format is described in
section 6.11). This form of the -q option is commonly combined with the -bd option, in
which case a single daemon process handles both functions. A common way of starting up a
combined daemon at system boot time is to use a command such as

[usr/eximbin/exim-bd -q30m

Such a daemon listens for incoming SMTP calls, and also starts a queue runner process every
30 minutes.

When a daemon is started by -q with a time value, but without -bd, no pid file is written
unless one is explicitly requested by the -oP option.

-gR<rsflags> <string>
This option is synonymous with -R. It is provided for Sendmail compatibility.

-qS<rsflags> <string>
This option is synonymous with -S.

-R<rsflags> <string>
The <rsflags> may be empty, in which case the white space before the string is optional,
unless the string is f, ff, r, rf, or rff, which are the possible values for <rsflags>. White space
isrequired if <rsflags> is not empty.

This option is similar to -q with no time value, that is, it causes Exim to perform a single
gueue run, except that, when scanning the messages on the queue, Exim processes only those
that have at least one undelivered recipient address containing the given string, which is
checked in a case-independent way. If the <rsflags> start with r, <string> is interpreted as a
regular expression; otherwise it is a literal string.

Once a message is selected, all its addresses are processed. For the first selected message,
Exim overrides any retry information and forces a delivery attempt for each undelivered
address. This means that if delivery of any address in the first message is successful, any
existing retry information is deleted, and so delivery attempts for that address in subsequently
selected messages (which are processed without forcing) will run. However, if delivery of any
address does not succeed, the retry information is updated, and in subsequently selected
messages, the failing address will be skipped.

If the <rsflags> contain f or ff, the delivery forcing applies to al selected messages, not just
the first; frozen messages are included when ff is present.

The -R option makes it straightforward to initiate delivery of all messages to a given domain
after a host has been down for some time. When the SMTP command ETRN is accepted by its
ACL (see chapter 39), its default effect is to run Exim with the -R option, but it can be
configured to run an arbitrary command instead.

-r This is a documented (for Sendmail) obsolete alternative name for -f.

-S<rsflags> <string>
This option acts like -R except that it checks the string against each message’s sender instead
of against the recipients. If -R is also set, both conditions must be met for a message to be
selected. If either of the options has f or ff in its flags, the associated action is taken.

-Tqt <times>
This an option that is exclusively for use by the Exim testing suite. It is not recognized when

Exim is run normally. It allows for the setting up of explicit ‘queue times so that various
warning/retry features can be tested.

Exim 4.50 [44] command line (5)

-ti

When Exim is receiving a locally-generated, non-SMTP message on its standard input, the -t
option causes the recipients of the message to be obtained from the To:, Cc:, and Bcc: header
lines in the message instead of from the command arguments. The addresses are extracted
before any rewriting takes place.

If the command has any arguments, they specify addresses to which the message is not to be
delivered. That is, the argument addresses are removed from the recipients list obtained from
the headers. This is compatible with Smail 3 and in accordance with the documented behav-
iour of several versions of Sendmail, as described in man pages on a number of operating
systems (e.g. Solaris 8, IRIX 6.5, HP-UX 11). However, some versions of Sendmail add
argument addresses to those obtained from the headers, and the O'Reilly Sendmail book
documents it that way. Exim can be made to add argument addresses instead of subtracting
them by setting the option extract_addresses remove_arguments false.

If a Bce: header line is present, it is removed from the message unless there is no To: or Cc:,
in which case a Bcc: line with no data is created. This is necessary for conformity with the
original RFC 822 standard; the requirement has been removed in RFC 2822, but that is till
Very new.

If there are any Resent- header lines in the message, Exim extracts recipients from all Resent-
To:, Resent-Cc:, and Resent-Bcc: header lines instead of from To:, Cc:, and Bcc:. Thisis for
compatibility with Sendmail and other MTAs. (Prior to release 4.20, Exim gave an error if -t
was used in conjunction with Resent- header lines.)

RFC 2822 talks about different sets of Resent- header lines (for when a message is resent
several times). The RFC also specifies that they should be added at the front of the message,
and separated by Received: lines. It is not at al clear how -t should operate in the present of
multiple sets, nor indeed exactly what constitutes a ‘set’. In practice, it seems that MUASs do
not follow the RFC. The Resent- lines are often added at the end of the header, and if a
message is resent more than once, it is common for the original set of Resent- headers to be
renamed as X-Resent- when a new set is added. This removes any possible ambiguity.

This option is exactly equivalent to -t -i. It is provided for compatibility with Sendmail.

-tls-on-connect

This option is available when Exim is compiled with TLS support. It forces al incoming
SMTP connections to behave as if the incoming port is listed in the tls_on_connect_ports
option. See section 13.4 and chapter 38 for further details.

Sendmail uses this option for ‘initial message submission’, and its documentation states that
in future releases, it may complain about syntactically invalid messages rather than fixing
them when this flag is not set. Exim ignores this option.

This option causes Exim to write information to the standard error stream, describing what it
is doing. In particular, it shows the log lines for receiving and delivering a message, and if an
SMTP connection is made, the SMTP dialogue is shown. Some of the log lines shown may
not actually be written to the log if the setting of log_selector discards them. Any relevant
selectors are shown with each log line. If none are shown, the logging is unconditional.

AlIX uses -x for a private purpose (‘mail from a local mail program has National Language
Support extended characters in the body of the mail item’). It sets -x when calling the MTA
from its mail command. Exim ignores this option.

Exim 4.50 [45] command line (5)

6. The Exim run time configuration file

Exim uses a single run time configuration file that is read whenever an Exim binary is executed. Note
that in normal operation, this happens frequently, because Exim is designed to operate in a distributed
manner, without central control.

If a syntax error is detected while reading the configuration file, Exim writes a message on the
standard error, and exits with a non-zero return code. The message is aso written to the panic log.
Note: only simple syntax errors can be detected at this time. The values of any expanded options are
not checked until the expansion happens, even when the expansion does not actually ater the string.

The name of the configuration file is compiled into the binary for security reasons, and is specified by
the coNFIGURE_FILE compilation option. In most configurations, this specifies a single file. However, it
is permitted to give a colon-separated list of file names, in which case Exim uses the first existing file
in the list.

The run time configuration file must be owned by root or by the user that is specified at compile time
by the exim_user option, or by the user that is specified at compile time by the cCONFIGURE OWNER
option (if set). The configuration file must not be world-writeable or group-writeable, unless its group
is the one specified at compile time by the Exim_croup option or by the CoNFIGURE_GRouP option.

Warning: In a conventional configuration, where the Exim binary is setuid to root, anybody who is
able to edit the run time configuration file has an easy way to run commands as root. If you make your
mail administrators members of the Exim group, but do not trust them with root, make sure that the
run time configuration is not group writeable.

A default configuration file, which will work correctly in simple situations, is provided in the file
src/configure.default. If conFIGURE_FILE defines just one file name, the installation process copies the
default configuration to a new file of that name if it did not previously exist. If CONFIGURE_FILE iS
a list, no default is automatically installed. Chapter 7 is a ‘walk-through’ discussion of the default
configuration.

6.1 Using a different configuration file

A one-off alternate configuration can be specified by the -C command line option, which may specify
asinglefile or alist of files. However, when -C is used, Exim gives up its root privilege, unless called
by root or the Exim user (or unless the argument for -C is identica to the built-in value from
CONFIGURE_FILE). -C is useful mainly for checking the syntax of configuration files before installing
them. No owner or group checks are done on a configuration file specified by -C.

The privileged use of -C by the Exim user can be locked out by setting ALT_CONFIG_ROOT_ONLY in
L ocal/M akefile when building Exim. However, if you do this, you also lock out the possibility of
testing a configuration using -C right through message reception and delivery, even if the caller is root.
The reception works, but by that time, Exim is running as the Exim user, so when it re-execs to regain
privilege for the delivery, the use of -C causes privilege to be lost. However, root can test reception
and delivery using two separate commands (one to put a message on the queue, using -odq, and
another to do the delivery, using -M).

If ALT_conFiG_PrReFIX is defined in Local/Makefile, it specifies a prefix string with which any file
named in a -C command line option must start. In addition, the file name must not contain the
sequence / . . /. There is no default setting for ALT_coNFIG_PREFIX; When it is unset, any file name can
be used with -C.

One-off changes to a configuration can be specified by the -D command line option, which defines and
overrides values for macros used inside the configuration file. However, like -C, the use of this option
by a non-privileged user causes Exim to discard its root privilege. If pisaBLE_D_oprTIiON is defined in
L ocal/M akefile, the use of -D is completely disabled, and its use causes an immediate error exit.

Exim 4.50 [46] configuration file (6)

Some sites may wish to use the same Exim binary on different machines that share a file system,
but to use different configuration files on each machine. If coNFIGURE_FILE_USE NODE is defined in
L ocal/M akefile, Exim first looks for a file whose name is the configuration file name followed by a
dot and the machine's node name, as obtained from the uname() function. If this file does not exist, the
standard name is tried. This processing occurs for each file name in the list given by coNFIGURE_FILE OF
-C.

In some esoteric situations different versions of Exim may be run under different effective uids and the
CONFIGURE_FILE_USE_EUID is defined to help with this. See the comments in src/EDITME for details.

6.2 Configuration file format

Exim's configuration file is divided into a number of different parts. General option settings must
always appear at the start of the file. The other parts are al optional, and may appear in any order.
Each part other than the first is introduced by the word ‘begin’ followed by the name of the part. The
optiona parts are:

* ACL: Access control lists for controlling incoming SMTP mail.

e authenticators: Configuration settings for the authenticator drivers. These are concerned with the
SMTP autH command (see chapter 33).

e routers. Configuration settings for the router drivers. Routers process addresses and determine
how the message is to be delivered.

e transports: Configuration settings for the transport drivers. Transports define mechanisms for
copying messages to destinations.

e retry: Retry rules, for use when a message cannot be immediately delivered.

* rewrite: Global address rewriting rules, for use when a message arrives and when new addresses
are generated during delivery.

* local_scan: Private options for the local_scan() function. If you want to use this feature, you
must set

LOCAL_SCAN_HAS_OPTI ONS=yes

in Local/Makefile before building Exim. Full details of the local_scan() facility are given in
chapter 41.

Leading and trailing whitespace in configuration lines is always ignored. Blank lines in the file, and
lines starting with a # character (ignoring leading white space) are treated as comments and are
ignored. Note: a # character other than at the beginning of a line is not treated specially, and does not
introduce a comment.

Any non-comment line can be continued by ending it with a backslash. Note that the genera rule for
whitespace means that trailing white space after the backslash is ignored, and leading white space at
the start of continuation lines is also ignored. Comment lines beginning with # (but not empty lines)
may appear in the middle of a sequence of continuation lines.

A convenient way to create a configuration file is to start from the default, which is supplied in
src/configure.default, and add, delete, or change settings as required.

The ACLs, retry rules, and rewriting rules have their own syntax which is described in chapters 39,
32, and 31, respectively. The other parts of the configuration file have some syntactic items in
common, and these are described below, from section 6.6 onwards. Before that, the inclusion, macro,
and conditional facilities are described.

6.3 Fileinclusions in the configuration file
You can include other files inside Exim’s run time configuration file by using this syntax:

. i nclude <file name>

Exim 4.50 [47] configuration file (6)

or
.include_ if_exists <file name>

on a line by itself. Double quotes round the file name are optional. If you use the first form, a
configuration error occurs if the file does not exist; the second form does nothing for non-existent files.

Includes may be nested to any depth, but remember that Exim reads its configuration file often, so it is
a good idea to keep them to a minimum. If you change the contents of an included file, you must HUP
the daemon, because an included file is read only when the configuration itself is read.

The processing of inclusions happens early, at a physical line level, so, like comment lines, an
inclusion can be used in the middle of an option setting, for example:

hosts_l ookup = a.b.c \
.include /some/file

Include processing happens after macro processing (see below). Its effect is to process the lines of the
file asif they occurred inline where the inclusion appears.

6.4 Macros in the configuration file

If alinein the main part of the configuration (that is, before the first *begin’ line) begins with an upper
case letter, it is taken as a macro definition, and must be of the form

<name> = <rest of line>

The name must consist of letters, digits, and underscores, and need not al be in upper case, though
that is recommended. The rest of the line, including any continuations, is the replacement text, and has
leading and trailing white space removed. Quotes are not removed. The replacement text can never
end with a backslash character, but this doesn't seem to be a serious limitation.

Once a macro is defined, al subsequent lines in the file (and any included files) are scanned for the
macro name; if there are severa macros, the line is scanned for each in turn, in the order in which
they are defined. The replacement text is not re-scanned for the current macro, though it is scanned for
subsequently defined macros. For this reason, a macro name may not contain the name of a previously
defined macro as a substring. You could, for example, define

ABCD XYZ = <<sonet hi ng>>
ABCD = <<sonet hing el se>>

but putting the definitions in the opposite order would provoke a configuration error.

Macro expansion is applied to individual lines from the file, before checking for line continuation or
file inclusion (see below). If aline consists solely of a macro name, and the expansion of the macro is
empty, the line is ignored. A macro at the start of a line may turn the line into a comment line or a
. i ncl ude line.

As an example of macro usage, consider a configuration where aliases are looked up in a MySQL
database. It helps to keep the file less cluttered if long strings such as SQL statements are defined
Separately as macros, for example:

ALI AS QUERY = sel ect mail box from user where \
| ogi n=%{ quot e_nysql : $l ocal _part};

This can then be used in aredirect router setting like this:
data = ${| ookup nysql { ALI AS_QUERY}}

In earlier versions of Exim macros were sometimes used for domain, host, or address lists. In Exim 4
these are handled better by named lists — see section 10.5.

Macros in the configuration file can be overridden by the -D command line option, but Exim gives up
its root privilege when -D is used, unless called by root or the Exim user.

Exim 4.50 [48] configuration file (6)

6.5 Conditional skipsin the configuration file

You can use the directives . i fdef, .ifndef,.elifdef,.elifndef,.else,and.endif to
dynamically include or exclude portions of the configuration file. The processing happens whenever
the file is read (that is, when an Exim binary starts to run).

The implementation is very simple. Instances of the first four directives must be followed by text that
includes the names of one or macros. The condition that is tested is whether or not any macro
substitution has taken place in the line. Thus:

i fdef AAA

nmessage_size limt = 50M
.el se

message_size limt = 100M
.endif

sets a message size limit of 50M if the macro AAA is defined, and 100M otherwise. If there is more
than one macro named on the line, the condition is true if any of them are defined. That is, it isan ‘or’
condition. To obtain an *and’ condition, you need to use nested . i f def s.

Although you can use a macro expansion to generate one of these directives, it is not very useful,
because the condition ‘there was a macro substitution in this line’ will aways be true.

Text following . el se and . endi f isignored, and can be used as comment to clarify complicated
nestings.

6.6 Common option syntax

For the main set of options, driver options, and local_scan() options, each setting is on a line by itself,
and starts with a name consisting of lower-case letters and underscores. Many options require a data
value, and in these cases the name must be followed by an equals sign (with optional white space) and
then the value. For example:

qual i fy_domai n = nmydomai n. exanpl e. com

Some option settings may contain sensitive data, for example, passwords for accessing databases. To
stop non-admin users from using the -bP command line option to read these values, you can precede
the option settings with the word ‘hide’. For example:

hi de nysql _servers = | ocal host/users/adm n/ secr et -password
For non-admin users, such options are displayed like this:
nmysql _servers = <val ue not di spl ayabl e>
If ‘hide’ is used on adriver option, it hides the value of that option on all instances of the same driver.

The following sections describe the syntax used for the different data types that are found in option
settings.

6.7 Boolean options

Options whose type is given as boolean are on/off switches. There are two different ways of specifying
such options: with and without a data value. If the option name is specified on its own without data,
the switch is turned on; if it is preceded by ‘no_’ or ‘not_’ the switch is turned off. However, boolean
options may optionally be followed by an equals sign and one of the words ‘true’, ‘false’, ‘yes, or
‘no’, as an aternative syntax. For example, the following two settings have exactly the same effect:

gueue_only
gueue_only = true

The following two lines also have the same (opposite) effect:
no_queue_only
gueue_only = fal se

Exim 4.50 [49] configuration file (6)

You can use whichever syntax you prefer.

6.8 Integer values

If an integer data item starts with the characters ‘Ox’, the remainder of it is interpreted as a
hexadecimal number. Otherwise, it is treated as octal if it starts with the digit O, and decimal if not. If
an integer value is followed by the letter K, it is multiplied by 1024; if it is followed by the letter M, it
is multiplied by 1024x1024.

When the values of integer option settings are output, values which are an exact multiple of 1024 or
1024x1024 are sometimes, but not always, printed using the letters K and M. The printing style is
independent of the actual input format that was used.

6.9 Octal integer values

The value of an option specified as an octal integer is always interpreted in octal, whether or not it
starts with the digit zero. Such options are always output in octal.

6.10 Fixed point number values

A fixed point number consists of a decimal integer, optionally followed by a decimal point and up to
three further digits.

6.11 Time interval values

A time interval is specified as a sequence of numbers, each followed by one of the following letters,
with no intervening white space:

seconds

minutes

hours

days

weeks

For example, *3h50m’ specifies 3 hours and 50 minutes. The values of time intervals are output in the
same format. Exim does not restrict the values; it is perfectly acceptable, for example, to specify
‘90m’ instead of ‘1h30m’.

sasgow

6.12 String values

If a string data item does not start with a double-quote character, it is taken as consisting of the
remainder of the line plus any continuation lines, starting at the first character after any leading white
space, with trailing white space characters removed, and with no interpretation of the characters in the
string. Because Exim removes comment lines (those beginning with #) at an early stage, they can
appear in the middle of a multi-line string. The following settings are therefore equivalent:

trusted_users = uucp: mai l

trusted_users uucp:\

This coment line is ignored

mai |

If astring does start with a double-quote, it must end with a closing double-quote, and any backslash
characters other than those used for line continuation are interpreted as escape characters, as follows:

\\ single backslash
\n newline

\'r carriage return
\'t tab

\ <octal digits> up to 3 octal digits specify one character
\ x<hex digits> up to 2 hexadecimal digits specify one character

Exim 4.50 [50] configuration file (6)

If a backdash is followed by some other character, including a double-quote character, that character
replaces the pair.

Quoting is necessary only if you want to make use of the backslash escapes to insert specid
characters, or if you need to specify a value with leading or trailing spaces. These cases are rare, SO
guoting is almost never needed in current versions of Exim. In versions of Exim before 3.14, quoting
was required in order to continue lines, so you may come across older configuration files and examples
that apparently quote unnecessarily.

6.13 Expanded strings

Some strings in the configuration file are subjected to string expansion, by which means various parts
of the string may be changed according to the circumstances (see chapter 11). The input syntax for
such strings is as just described; in particular, the handling of backslashes in quoted strings is done as
part of the input process, before expansion takes place. However, backslash is also an escape character
for the expander, so any backdashes that are required for that reason must be doubled if they are
within a quoted configuration string.

6.14 User and group names

User and group names are specified as strings, using the syntax described above, but the strings are
interpreted specially. A user or group name must either consist entirely of digits, or be a name that can
be looked up using the getpwnam() or getgrnam() function, as appropriate.

6.15 List construction

The data for some configuration options is a list of items, with colon as the default separator. Many of
these options are shown with type ‘string list’ in the descriptions later in this document. Others are
listed as ‘domain list’, ‘host list’, ‘address list’, or ‘local part list’. Syntactically, they are all the same;
however, those other than ‘string list’ are subject to particular kinds of interpretation, as described in
chapter 10.

In all these cases, the entire list is treated as a single string as far as the input syntax is concerned. The
trusted_users setting in section 6.12 above is an example. If a colon is actualy needed in an itemin a
list, it must be entered as two colons. Leading and trailing white space on each item in a list is
ignored. This makes it possible to include items that start with a colon, and in particular, certain forms
of IPv6 address. For example, the list

| ocal interfaces = 127.0.0.1 : ::::1

contains two IP addresses, the IPv4 address 127.0.0.1 and the IPv6 address ::1. Doubling colons in
IPv6 addresses is an unwelcome chore, so a mechanism was introduced to alow the separator
character to be changed. If a list begins with a left angle bracket, followed by any punctuation
character, that character is used instead of colon as the list separator. For example, the list above can
be rewritten to use a semicolon separator like this:

| ocal interfaces = <; 127.0.0.1 ; ::1

This facility applies to all lists, with the exception of the list in log_file path. It is recommended that
the use of non-colon separators be confined to circumstances where they really are needed.

6.16 Empty itemsin lists

An empty item at the end of alist is aways ignored. In other words, trailing separator characters are
ignored. Thus, the list in

senders = user @onmain :

contains only a single item. If you want to include an empty string as one item in alist, it must not be
the last item. For example, this list contains three items, the second of which is empty:

senders = userl@omain : : user2@onain

Exim 4.50 [51] configuration file (6)

Note: there must be whitespace between the two colons, as otherwise they are interpreted as represent-
ing a single colon data character (and the list would then contain just one item). If you want to specify
alist that contains just one, empty item, you can do it as in this example:

senders = :
In this case, the first item is empty, and the second is discarded because it is at the end of the list.

6.17 Format of driver configurations

There are separate parts in the configuration for defining routers, transports, and authenticators. In each
part, you are defining a number of driver instances, each with its own set of options. Each driver
instance is defined by a sequence of lines like this:

<instance name>:
<option>

<option>
In the following example, the instance name is localuser, and it is followed by three options settings:
| ocal user:
driver = accept

check | ocal _user
transport = | ocal _delivery

For each driver instance, you specify which Exim code module it uses — by the setting of the driver
option — and (optionally) some configuration settings. For example, in the case of transports, if you
want a transport to deliver with SMTP you would use the smtp driver; if you want to deliver to a
local file you would use the appendfile driver. Each of the drivers is described in detail in its own
separate chapter later in this manual.

You can have several routers, transports, or authenticators that are based on the same underlying driver
(each must have a different name).

The order in which routers are defined is important, because addresses are passed to individual routers
one by one, in order. The order in which transports are defined does not matter at all. The order in
which authenticators are defined is used only when Exim, as a client, is searching them to find one
that matches an authentication mechanism offered by the server.

Within a driver instance definition, there are two kinds of option: generic and private. The generic
options are those that apply to al drivers of the same type (that is, all routers, all transports or all
authenticators). The driver option is a generic option that must appear in every definition. The private
options are special for each driver, and none need appear, because they al have default values.

The options may appear in any order, except that the driver option must precede any private options,
since these depend on the particular driver. For this reason, it is recommended that driver always be
the first option.

Driver instance names, which are used for reference in log entries and elsewhere, can be any sequence
of letters, digits, and underscores (starting with a letter) and must be unique among drivers of the same
type. A router and a transport (for example) can each have the same name, but no two router instances
can have the same name. The name of a driver instance should not be confused with the name of the
underlying driver module. For example, the configuration lines:

renot e_snt p:
driver = sntp

create an instance of the smtp transport driver whose name is remote_smtp. The same driver code can
be used more than once, with different instance names and different option settings each time. A
second instance of the smtp transport, with different options, might be defined thus:

Exim 4.50 [52] configuration file (6)

speci al _snt p:
driver = sntp
port = 1234
command_timeout = 10s

The names remote_smtp and special_smtp would be used to reference these transport instances from
routers, and these names would appear in log lines.

Comment lines may be present in the middle of driver specifications. The full list of option settings for

any particular driver instance, including all the defaulted values, can be extracted by making use of the
-bP command line option.

Exim 4.50 [53] configuration file (6)

7. The default configuration file

The default configuration file supplied with Exim as src/configure.default is sufficient for a host with
simple mail requirements. As an introduction to the way Exim is configured, this chapter ‘walks
through’ the default configuration, giving brief explanations of the settings. Detailed descriptions of the
options are given in subsequent chapters. The default configuration file itself contains extensive
comments about ways you might want to modify the initial settings. However, note that there are
many options that are not mentioned at al in the default configuration.

7.1 Main configuration settings

The main (global) configuration option settings must aways come first in the file. The first thing you'll
see in the file, after some initial comments, is the line

primary_host nane =

This is a commented-out setting of the primary_hostname option. Exim needs to know the official,
fully qualified name of your host, and this is where you can specify it. However, in most cases you do
not need to set this option. When it is unset, Exim uses the uname() system function to obtain the host
name.

The first three non-comment configuration lines are as follows:

domai nlist | ocal _donains = @
domai nlist relay_to_domains =
host | i st relay fromhosts = 127.0.0.1

These are not, in fact, option settings. They are definitions of two named domain lists and one named
host list. Exim allows you to give names to lists of domains, hosts, and email addresses, in order to
make it easier to manage the configuration file (see section 10.5).

The first line defines a domain list called local_domains; this is used later in the configuration to
identify domains that are to be delivered on the local host. There is just one item in this list, the string
‘@'. Thisis a special form of entry which means ‘the name of the local host’. Thus, if the local host is
caled a.host.example, mail to any.user @a.host.example is expected to be delivered locally. Because
the local host's name is referenced indirectly, the same configuration file can be used on different
hosts.

The second line defines a domain list called relay_to_domains, but the list itself is empty. Later in the
configuration we will come to the part that controls mail relaying through the local host; it allows
relaying to any domains in this list. By default, therefore, no relaying on the basis of a mail domain is
permitted.

The third line defines a host list called relay_from_hosts. This list is used later in the configuration to
permit relaying from any host or IP address that matches the list. The default contains just the IP
address of the IPv4 loopback interface, which means that processes on the local host are able to submit
mail for relaying by sending it over TCP/IP to that interface. No other hosts are permitted to submit
messages for relaying.

Just to be sure there’s no misunderstanding: at this point in the configuration we aren’t actually setting
up any controls. We are just defining some domains and hosts that will be used in the controls that are
specified later.

The next configuration line is a genuine option setting:
acl _smp_rcpt = acl _check_rcpt

This option specifies an Access Control List (ACL) which is to be used during an incoming SMTP
sesson for every recipient of a message (every rcpet command). The name of the list is
acl_check rcpt, and we will come to its definition below, in the ACL section of the configuration.

Exim 4.50 [54] default configuration (7)

ACLs control which recipients are accepted for an incoming message — if a configuration does not
provide an ACL to check recipients, no SMTP mail can be accepted.

Two commented-out options settings are next:

qualify_domain =
qualify_recipient =

The first of these specifies a domain that Exim uses when it constructs a complete email address from
a local login name. This is often needed when Exim receives a message from a local process. If you
do not set qualify_domain, the value of primary_hostname is used. If you set both of these options,
you can have different qualification domains for sender and recipient addresses. If you set only the first
one, its value is used in both cases.

The following line must be uncommented if you want Exim to recognize addresses of the form
user@[10.11.12.13] that is, with a ‘domain literal’ (an IP address) instead of a named domain.

allow domain literals

The RFCs till require this form, but many people think that in the modern Internet it makes little
sense to permit mail to be sent to specific hosts by quoting their IP addresses. This ancient format has
been used by people who try to abuse hosts by using them for unwanted relaying. However, some
people believe there are circumstances (for example, messages addressed to postmaster) where domain
literals are still useful.

The next configuration line is a kind of trigger guard:
never _users = root

It specifies that no delivery must ever be run as the root user. The normal convention is to set up root
as an dlias for the system administrator. This setting is a guard against dlips in the configuration. The
list of users specified by never_usersis not, however, the complete list; the build-time configuration in
L ocal/M akefile has an option called FIXED_NEVER USERS specifying a list that cannot be overridden.
The contents of never_users are added to this list. By default Fixep_NEVER_USERS also specifies root.

When a remote host connects to Exim in order to send mail, the only information Exim has about the
host’s identity is its IP address. The next configuration line,

host _| ookup = *

specifies that Exim should do a reverse DNS lookup on all incoming connections, in order to get a
host name. This improves the quality of the logging information, but if you feel it is too expensive,
you can remove it entirely, or restrict the lookup to hosts on ‘nearby’ networks. Note that it is not
always possible to find a host name from an IP address, because not all DNS reverse zones are
maintained, and sometimes DNS servers are unreachable.

The next two lines are concerned with ident callbacks, as defined by RFC 1413 (hence their names):

rfcldal3 hosts = *
rfclda13 _query_tinmeout = 30s

These settings cause Exim to make ident callbacks for al incoming SMTP calls. You can limit the
hosts to which these calls are made, or change the timeout that is used. If you set the timeout to zero,
al ident calls are disabled. Although they are cheap and can provide useful information for tracing
problem messages, some hosts and firewalls have problems with ident calls. This can result in a
timeout instead of an immediate refused connection, leading to delays on starting up an incoming
SMTP session.

When Exim receives messages over SMTP connections, it expects all addresses to be fully qualified
with a domain, as required by the SMTP definition. However, if you are running a server to which
simple clients submit messages, you may find that they send unqualified addresses. The two com-
mented-out options:

sender _unqualified_hosts =
recipient_unqualified_hosts =

Exim 4.50 [55] default configuration (7)

show how you can specify hosts that are permitted to send unqualified sender and recipient addresses,
respectively.

The percent_hack_domains option is a'so commented out:
percent _hack_domai ns =

It provides a list of domains for which the ‘percent hack’ is to operate. Thisis an almost obsolete form
of explicit email routing. If you do not know anything about it, you can safely ignore this topic.

The last two settings in the main part of the default configuration are concerned with messages that
have been ‘frozen’ on Exim's queue. When a message is frozen, Exim no longer continues to try to
deliver it. Freezing occurs when a bounce message encounters a permanent failure because the sender
address of the origina message that caused the bounce is invalid, so the bounce cannot be delivered.
This is probably the most common case, but there are also other conditions that cause freezing, and
frozen messages are not always bounce messages.

i gnore_bounce_errors_after = 2d
ti meout _frozen_ after = 7d

The first of these options specifies that failing bounce messages are to be discarded after 2 days on the
gueue. The second specifies that any frozen message (whether a bounce message or not) is to be timed
out (and discarded) after a week. In this configuration, the first setting ensures that no failing bounce
message ever lasts a week.

7.2 ACL configuration
In the default configuration, the ACL section follows the main configuration. It starts with the line

begi n acl

and it contains the definition of one ACL called acl_check rcpt that was referenced in the setting of
acl_smtp_rcpt above. This ACL is used for every rcpr command in an incoming SMTP message.
Each rcPr command specifies one of the message’s recipients. The ACL statements are considered in
order, until the recipient address is either accepted or rejected. The rceT command is then accepted or
rejected, according to the result of the ACL processing.

acl _check_rcpt:
This line, consisting of a name terminated by a colon, marks the start of the ACL, and names it.
accept hosts =:

This ACL statement accepts the recipient if the sending host matches the list. But what does that
strange list mean? It doesn't actually contain any host names or IP addresses. The presence of the
colon puts an empty item in the list; Exim matches this only if the incoming message didn't come
from a remote host. The colon is important. Without it, the list itself is empty, and can never match
anything.

What this statement is doing is to accept unconditionally all recipients in messages that are submitted
by SMTP from local processes using the standard input and output (that is, not using TCP/IP). A
number of MUAS operate in this manner.

deny domai ns
| ocal _parts

+l ocal _domai ns

LT rr[@]]

| +| ocal _donai ns

AT 2 M @8] o ARV

These statements are concerned with local parts that contain any of the characters ‘@', ‘%', ‘!", ‘/", ‘[,
or dots in unusual places. Although these characters are entirely legal in local parts (in the case of ‘@’
and leading dots, only if correctly quoted), they do not commonly occur in Internet mail addresses.

deny domai ns
| ocal _parts

The first three have in the past been associated with explicitly routed addresses (percent is till
sometimes used — see the percent_hack_domains option). Addresses containing these characters are

Exim 4.50 [56] default configuration (7)

regularly tried by spammers in an attempt to bypass relaying restrictions, and also by open relay
testing programs. Unless you really need them it is safest to reject these characters at this early stage.
This configuration is heavy-handed in rejecting these characters for all messages it accepts from
remote hosts. This is a deliberate policy of being as safe as possible.

The first rule above is stricter, and is applied to messages that are addressed to one of the local
domains handled by this host. This is implemented by the first condition, which restricts it to domains
that are listed in the local_domains domain list. The ‘+' character is used to indicate a reference to a
named list. In this configuration, there is just one domain in local_domains, but in general there may
be many.

The second condition on the first statement uses two regular expressions to block local parts that begin
with a dot or contain ‘@', ‘%', ‘!’, */’, or ‘|". If you have local accounts that include these characters,
you will have to modify this rule.

Empty components (two dots in a row) are not valid in RFC 2822, but Exim allows them because
they have been encountered in practice. (Consider local parts constructed as ‘first-initial.second-
initial .family-name’ when applied to someone like the author of Exim, who has no second initial.)
However, a local part starting with a dot or containing ‘/../ can cause trouble if it is used as part of a
file name (for example, for a mailing list). This is aso true for local parts that contain slashes. A pipe
symbol can aso be troublesome if the local part is incorporated unthinkingly into a shell command
line.

The second rule above applies to al other domains, and is less strict. This alows your own users to
send outgoing messages to sites that use slashes and vertical bars in their local parts. It blocks local
parts that begin with a dot, slash, or vertical bar, but alows these characters within the local part.
However, the sequence ‘/../" is barred. The use of ‘@', ‘%', and ‘!" is blocked, as before. The
motivation here is to prevent your users (or your users viruses) from mounting certain kinds of attack
on remote sites.

accept local _parts
domai ns

post mast er
+|l ocal _donai ns

This statement, which has two conditions, accepts an incoming address if the local part is postmaster
and the domain is one of those listed in the local_domains domain list. The ‘+' character is used to
indicate a reference to a named list. In this configuration, there is just one domain in local_domains,
but in general there may be many.

The presence of this statement means that mail to postmaster is never blocked by any of the
subsequent tests. This can be helpful while sorting out problems in cases where the subsequent tests
are incorrectly denying access.

require verify = sender

This statement requires the sender address to be verified before any subsequent ACL statement can be
used. If verification fails, the incoming recipient address is refused. Verification consists of trying to
route the address, to see if a bounce message could be delivered to it. In the case of remote addresses,
basic verification checks only the domain, but callouts can be used for more verification if required.
Section 39.30 discusses the details of address verification.

deny nmessage = rejected because $sender _host _address is \
in a black list at $dnslist_domai n\n\

$dnsl i st _text

dnslists = bl ack.list.exanple

#

warn nmessage = X-Warning: $sender _host_address is \

in a black list at $dnslist_domain

| og_nessage = found in $dnslist_donmain

dnslists = bl ack.list.exanple

Exim 4.50 [57] default configuration (7)

These commented-out lines are examples of how you could configure Exim to check sending hosts
against a DNS black list. The first statement rejects messages from blacklisted hosts, whereas the
second merely inserts a warning header line.

accept domains +l ocal _domai ns

endpass
nessage = unknown user
verify = recipi ent

This statement accepts the incoming recipient address if its domain is one of the local domains, but
only if the address can be verified. Verification of local addresses normally checks both the local part
and the domain. The endpass line needs some explanation: if the condition above endpass fails, that
is, if the address is not in alocal domain, control is passed to the next ACL statement. However, if the
condition below endpass fails, that is, if a recipient in a local domain cannot be verified, access is
denied and the recipient is rejected. The message modifier provides a customized error message for the
failure.

accept domains +rel ay_t o_domai ns

endpass
nmessage = unr out eabl e address
verify = recipi ent

This statement accepts the incoming recipient address if its domain is one of the domains for which
this host is a relay, but again, only if the address can be verified.

accept hosts = +relay_from hosts

Control reaches this statement only if the recipient’s domain is neither a local domain, nor a relay
domain. The statement accepts the address if the message is coming from one of the hosts that are
defined as being allowed to relay through this host. Recipient verification is omitted here, because in
many cases the clients are dumb MUASs that do not cope well with SMTP error responses. If you are
actually relaying out from MTAS, you should probably add recipient verification here.

accept authenticated = *

Control reaches here for attempts to relay to arbitrary domains from arbitrary hosts. The statement
accepts the address only if the client host has authenticated itself. The default configuration does not
define any authenticators, which means that no client can in fact authenticate. You will need to add
authenticator definitions if you want to make use of this ACL statement.

deny nmessage = relay not permtted

The final statement denies access, giving a specific error message. Reaching the end of the ACL also
causes access to be denied, but with the generic message ‘administrative prohibition’.

7.3 Router configuration
The router configuration comes next in the default configuration, introduced by the line

begin routers

Routers are the modules in Exim that make decisions about where to send messages. An address is
passed to each router in turn, until it is either accepted, or failed. This means that the order in which
you define the routers matters. Each router is fully described in its own chapter later in this manual.
Here we give only brief overviews.

domain_ literal:

driver = ipliteral

domai ns = ! +|l ocal _domai ns
transport = renote_sntp

This router is commented out because the majority of sites do not want to support domain literal
addresses (those of the form user@[10.9.8.7]). If you uncomment this router, you also need to
uncomment the setting of allow_domain_literals in the main part of the configuration.

Exim 4.50 [58] default configuration (7)

dnsl ookup:
driver = dnsl ookup
domains = ! +l ocal donmi ns
transport = renote_sntp
ignore_target_hosts = 0.0.0.0 : 127.0.0.0/8
no_nor e

The first uncommented router handles addresses that do not involve any local domains. This is
specified by the line

domains = ! +l ocal donmi ns

The domains option lists the domains to which this router applies, but the exclamation mark is a
negation sign, so the router is used only for domains that are not in the domain list called
local_domains (which was defined at the start of the configuration). The plus sign before
local_domains indicates that it is referring to a named list. Addresses in other domains are passed on
to the following routers.

The name of the router driver is dnslookup, and is specified by the driver option. Do not be confused
by the fact that the name of this router instance is the same as the name of the driver. The instance
name is arbitrary, but the name set in the driver option must be one of the driver modules that is in
the Exim binary.

The dnslookup router routes addresses by looking up their domains in the DNS in order to obtain a
list of hosts to which the address is routed. If the router succeeds, the address is queued for the
remote_smtp transport, as specified by the transport option. If the router does not find the domain in
the DNS, no further routers are tried because of the no_more setting, so the address fails and is
bounced.

The ignore_target_hosts option specifies a list of IP addresses that are to be entirely ignored. This
option is present because a number of cases have been encountered where MX records in the DNS
point to host hames whose IP addresses are 0.0.0.0 or are in the 127 subnet (typically 127.0.0.1).
Completely ignoring these |P addresses causes Exim to fail to route the email address, so it bounces.
Otherwise, Exim would log a routing problem, and continue to try to deliver the message periodically
until the address timed out.

system al i ases:
driver = redirect

all ow fail
al | ow_defer
data = ${| ookup{$l ocal _part}lsearch{/etc/aliases}}

user = exim
file_transport
pi pe_transport

address _file
addr ess_pi pe

Control reaches this and subsequent routers only for addresses in the local domains. This router checks
to see whether the local part is defined as an alias in the /etc/aliases file, and if so, redirects it
according to the data that it looks up from that file. If no data is found for the local part, the value of
the data option is empty, causing the address to be passed to the next router.

/etc/aliases is a conventional name for the system aliases file that is often used. That is why it is
referenced by from the default configuration file. However, you can change this by setting
SYSTEM_ALIASES FILE in Local/M akefile before building Exim.

Exim 4.50 [59] default configuration (7)

user f orwar d:
driver = redirect
check | ocal _user
file = $hone/.forward
no_verify
no_expn
check_ancest or

allowfilter
file_transport address _file
pi pe_transport addr ess_pi pe
reply_transport = address_reply

This is the most complicated router in the default configuration. It is another redirection router, but this
time it is looking for forwarding data set up by individual users. The check_local_user setting means
that the first thing it does is to check that the local part of the address is the login name of alocal user.
If it is not, the router is skipped. When a local user is found, the file called .forward in the user’'s
home directory is consulted. If it does not exist, or is empty, the router declines. Otherwise, the
contents of .forward are interpreted as redirection data (see chapter 22 for more details).

Traditional .forward files contain just a list of addresses, pipes, or files. Exim supports this by default.
However, if allow _filter is set (it is commented out by default), the contents of the file are interpreted
as a set of Exim or Sieve filtering instructions, provided the file begins with ‘#Exim filter’ or ‘#Sieve
filter’, respectively. User filtering is discussed in the separate document entitled Exim's interfaces to
mail filtering.

The no_verify and no_expn options mean that this router is skipped when verifying addresses, or
when running as a consequence of an SMTP expn command. There are two reasons for doing this:

(1) Whether or not alocal user has a .forward file is not really relevant when checking an address
for validity; it makes sense not to waste resources doing unnecessary work.

(2) More importantly, when Exim is verifying addresses or handling an expn command during an
SMTP session, it is running as the Exim user, not as root. The group is the Exim group, and no
additional groups are set up. It may therefore not be possible for Exim to read users’ .forward
files at this time.

The setting of check_ancestor prevents the router from generating a new address that is the same as
any previous address that was redirected. (This works round a problem concerning a bad interaction
between aliasing and forwarding — see section 22.5).

The final three option settings specify the transports that are to be used when forwarding generates a
direct delivery to afile, or to a pipe, or sets up an auto-reply, respectively. For example, if a .forward
file contains

a. not her @l sewher e. exanpl e, /hone/spqr/archive
the delivery to /home/spqr/archive is done by running the address_file transport.

| ocal user:
driver = accept
check | ocal _user
transport = | ocal _delivery

The final router sets up delivery into local mailboxes, provided that the local part is the name of a
local login, by accepting the address and queuing it for the local_delivery transport. Otherwise, we
have reached the end of the routers, so the address is bounced.

7.4 Transport configuration

Transports define mechanisms for actually delivering messages. They operate only when referenced
from routers, so the order in which they are defined does not matter. The transports section of the
configuration starts with

Exim 4.50 [60] default configuration (7)

begin transports
One remote transport and four local transports are defined.

renot e_snt p:
driver = sntp

This transport is used for delivering messages over SMTP connections. All its options are defaulted.
The list of remote hosts comes from the router.

| ocal _delivery:
driver = appendfile
file = /var/mail/$l ocal _part
del i very_dat e_add
envel ope_t o_add
return_path_add

group = mai

node = 0660

This appendfile transport is used for local delivery to user mailboxes in traditional BSD mailbox
format. By default it runs under the uid and gid of the local user, which requires the sticky bit to be
set on the /var/mail directory. Some systems use the alternative approach of running mail deliveries
under a particular group instead of using the sticky bit. The commented options show how this can be
done.

Exim adds three headers to the message as it delivers it: Delivery-date:, Envelope-to: and Return-
path:. This action is requested by the three similarly-named options above.

addr ess_pi pe:
driver = pipe
ret urn_out put

This transport is used for handling deliveries to pipes that are generated by redirection (aliasing or
users .forward files). The return_output option specifies that any output generated by the pipe is to
be returned to the sender.

address_fil e:
driver = appendfile
del i very_dat e_add
envel ope_t o_add
return_path_add

This transport is used for handling deliveries to files that are generated by redirection. The name of the
file is not specified in this instance of appendfile, because it comes from the redirect router.

address_reply:
driver = autoreply

This transport is used for handling automatic replies generated by users’ filter files.

7.5 Default retry rule

The retry section of the configuration file contains rules which affect the way Exim retries deliveries
that cannot be completed at the first attempt. It is introduced by the line

begin retry
In the default configuration, there is just one rule, which applies to all errors:
* * F, 2h, 15m G 16h, 1h,1.5; F, 4d, 6h

This causes any temporarily failing address to be retried every 15 minutes for 2 hours, then at intervals
starting at one hour and increasing by a factor of 1.5 until 16 hours have passed, then every 6 hours up
to 4 days. If an address is not delivered after 4 days of failure, it is bounced.

Exim 4.50 [61] default configuration (7)

7.6 Rewriting configuration
The rewriting section of the configuration, introduced by

begin rewite

contains rules for rewriting addresses in messages as they arrive. There are no rewriting rules in the
default configuration file.

7.7 Authenticators configuration
The authenticators section of the configuration, introduced by

begi n aut henticators

defines mechanisms for the use of the SMTP autH command. No authenticators are specified in the
default configuration file.

Exim 4.50 [62] default configuration (7)

8. Regular expressions

Exim supports the use of regular expressions in many of its options. It uses the PCRE regular
expression library; this provides regular expression matching that is compatible with Perl 5. The
syntax and semantics of regular expressions is discussed in many Perl reference books, and aso in
Jeffrey Friedl’s Mastering Regular Expressions (O’ Reilly, ISBN 0-596-00289-0).

The documentation for the syntax and semantics of the regular expressions that are supported by
PCRE is included in plain text in the file doc/pcrepattern.txt in the Exim distribution, and aso in the
HTML tarbundle of Exim documentation, and as an appendix to the Exim book. It describes in detail
the features of the regular expressions that PCRE supports, so no further description is included here.
The PCRE functions are called from Exim using the default option settings (that is, with no PCRE
options set), except that the PcRe_caseLESs option is set when the matching is required to be case-
insengitive.

In most cases, when a regular expression is required in an Exim configuration, it has to start with a
circumflex, in order to distinguish it from plain text or an ‘ends with’ wildcard. In this example of a
configuration setting, the second item in the colon-separated list is a regular expression.

domains = a.b.c : M\d{3} : *.y.z :

The doubling of the backslash is required because of string expansion that precedes interpretation —
see section 11.1 for more discussion of this issue, and a way of avoiding the need for doubling
backslashes. The regular expression that is eventually used in this example contains just one backslash.
The circumflex is included in the regular expression, and has the normal effect of ‘anchoring’ it to the
start of the string that is being matched.

There are, however, two cases where a circumflex is not required for the recognition of a regular
expression: these are the match condition in a string expansion, and the matches condition in an Exim
filter file. In these cases, the relevant string is always treated as a regular expression; if it does not start
with a circumflex, the expression is not anchored, and can match anywhere in the subject string.

In al cases, if you want a regular expression to match at the end of a string, you must code the $
metacharacter to indicate this. For example:

domai ns = M\ d{3}\\.exampl e
matches the domain 123.example, but it also matches 123.example.com. You need to use:
domai ns = M\ d{3}\\.exanmpl e\$

if you want example to be the top-level domain. (The backslash before the $ is another artefact of
string expansion.)

8.1 Testing regular expressions

A program called pcretest forms part of the PCRE distribution and is built with PCRE during the
process of building Exim. It is primarily intended for testing PCRE itself, but it can aso be used for
experimenting with regular expressions. After building Exim, the binary can be found in the build
directory (it is not installed anywhere automatically). There is documentation of various options in
doc/pcretest.txt, but for simple testing, none are needed. This is the output of a sample run of
pcretest:

Exim 4.50 [63] regular expressions (8)

re> /N["@+)@+\.(ac|edu)\.(?!kr)[a-z]{2}%/

data> x@. ac. uk

0: xX@. ac. uk

1: x

2: ac
data> x@. ac. kr

No mat ch
dat a> x@. edu. com
No mat ch
dat a> x@. edu. co
0: X@. edu.co

1: x

2: edu

Input typed by the user is shown in bold face. After the ‘re>’ prompt, a regular expression enclosed in
delimiters is expected. If this compiles without error, ‘data> prompts are given for strings against
which the expression is matched. An empty data line causes a new regular expression to be read. If the
match is successful, the captured substring values (that is, what would be in the variables $0, $1, $2,
etc.) are shown. The above example tests for an email address whose domain ends with either ‘ac’ or
‘edu’ followed by a two-character top-level domain that is not ‘kr’. The local part is captured in $1
and the ‘ac’ or ‘edu’ in $2.

Exim 4.50 [64] regular expressions (8)

9. File and database lookups

Exim can be configured to look up data in files or databases as it processes messages. Two different
kinds of syntax are used:

(1) A string that is to be expanded may contain explicit lookup requests. These cause parts of the
string to be replaced by data that is obtained from the lookup.

(2) Lists of domains, hosts, and email addresses can contain lookup requests as a way of avoiding
excessively long linear lists. In this case, the data that is returned by the lookup is often (but not
always) discarded; whether the lookup succeeds or fails is what really counts. These kinds of list
are described in chapter 10.

It is easy to confuse the two different kinds of lookup, especialy as the lists that may contain the
second kind are always expanded before being processed as lists. Therefore, they may also contain
lookups of the first kind. Be careful to distinguish between the following two examples:

domai ns
domai ns

${| ookup{ $sender _host _addr ess}| search{/sone/file}}
| search;/sone/file

The first uses a string expansion, the result of which must be a domain list. String expansions are
described in detail in chapter 11. The expansion takes place first, and the file that is searched could
contain lines like this:

192. 168. 3. 4: donmainl : donmi n2 :
192.168.1.9: donmain3 : donmi nd :

Thus, the result of the expansion is a list of domains (and possibly other types of item that are allowed
in domain lists).

In the second case, the lookup is a single item in a domain list. It causes Exim to use a lookup to see
if the domain that is being processed can be found in the file. The file could contains lines like this:

domai nl:
domai n2:

Any data that follows the keys is not relevant when checking that the domain matches the list item.
It is possible to use both kinds of lookup at once. Consider a file containing lines like this:
192.168.5.6: |search;/another/file

If the value of $sender_host_address is 192.168.5.6, expansion of the first domains setting above
generates the second setting, which therefore causes a second lookup to occur.

The rest of this chapter describes the different lookup types that are available. Any of them can be
used in either of the circumstances described above. The syntax requirements for the two cases are
described in chapters 11 and 10, respectively.

9.1 Lookup types
Two different styles of data lookup are implemented:
* The single-key style requires the specification of a file in which to look, and a single key to

search for. The key must be a non-empty string for the lookup to succeed. The lookup type
determines how the file is searched.

e The query style accepts a generalized database query. No particular key value is assumed by
Exim for query-style lookups. You can use whichever Exim variable(s) you need to construct the
database query.

The code for each lookup type isin a separate source file that is included in the binary of Exim only if
the corresponding compile-time option is set. The default settings in src/EDITME are:

Exim 4.50 [65] file/database lookups (9)

LOOKUP_DBMryes
LOOKUP_LSEARCH=yes

which means that only linear searching and DBM lookups are included by default. For some types of
lookup (e.g. SQL databases), you need to install appropriate libraries and header files before building
Exim.

9.2 Single-key lookup types
The following single-key lookup types are implemented:

e cdb: The given file is searched as a Constant DataBase file, using the key string without a
terminating binary zero. The cdb format is designed for indexed files that are read frequently and
never updated, except by total re-creation. As such, it is particulary suitable for large files
containing aliases or other indexed data referenced by an MTA. Information about cdb can be
found in several places:

http://www.pobox.com/~djb/cdb.html
ftp://ftp.cor pit.ru/pub/tinycdb/
http://packages.debian.or g/stable/utilg/freecdb.html

A cdb distribution is not needed in order to build Exim with cdb support, because the code for
reading cdb files is included directly in Exim itself. However, no means of building or testing cdb
files is provided with Exim, so you need to obtain a cdb distribution in order to do this.

* dbm: Calls to DBM library functions are used to extract data from the given DBM file by
looking up the record with the given key. A terminating binary zero is included in the key that is
passed to the DBM library. See section 4.3 for a discussion of DBM libraries. For all versions of
Berkeley DB, Exim uses the ps_HAsH style of database when building DBM files using the
exim_dbmbuild utility. However, when using Berkeley DB versions 3 or 4, it opens existing
databases for reading with the pB_unknownN option. This enables it to handle any of the types of
database that the library supports, and can be useful for accessing DBM files created by other
applications. (For earlier DB versions, bB_HASH is always used.)

» dbmnz: Thisis the same as dbm, except that a terminating binary zero is not included in the key
that is passed to the DBM library. You may need this if you want to look up data in files that are
created by or shared with some other application that does not use terminating zeros. For
example, you need to use dbmnz rather than dbm if you want to authenticate incoming SMTP
cals using the passwords from Courier’s /etc/userdbshadow.dat file. Exim’s utility program for
creating DBM files (exim_dbmbuild) includes the zeros by default, but has an option to omit
them (see section 49.9).

» dsearch: The given file must be a directory; this is searched for a file whose name is the key.
The key may not contain any forward slash characters. The result of a successful lookup is the
name of the file. An example of how this lookup can be used to support virtual domains is given
in section 46.6.

* iplsearch: The given file is a text file containing keys and data. A key is terminated by a colon
or white space or the end of the line. The keys in the file must be IP addresses, or IP addresses
with CIDR masks. Keys that involve IPv6 addresses must be enclosed in quotes to prevent the
first internal colon being interpreted as a key terminator. For example:

1.2.3.4: data for 1.2.3.4
192. 168. 0. 0/ 16 data for 192.168.0.0/ 16
"abcd: : cdab": data for abcd::cdab

"abcd: abcd: : /32" data for abcd: abcd::/32

The key for an iplsearch lookup must be an IP address (without a mask). The file is searched
linearly, using the CIDR masks where present, until a matching key is found. The first key that
matches is used; there is no attempt to find a ‘best’” match. Apart from the way the keys are
matched, the processing for iplsearch is the same as for |search.

Exim 4.50 [66] file/database lookups (9)

Warning 1: Unlike most other single-key lookup types, a file of data for iplsearch can not be
turned into a DBM or cdb file, because those lookup types support only literal keys.

Warning 2: In a host list, you must always use net-iplsearch so that the implicit key is the
host’s | P address rather than its name (see section 10.12).

* Isearch: The given file is a text file that is searched linearly for a line beginning with the search
key, terminated by a colon or white space or the end of the line. The first occurrence that is
found in the file is used. White space between the key and the colon is permitted. The remainder
of the line, with leading and trailing white space removed, is the data. This can be continued onto
subsequent lines by starting them with any amount of white space, but only a single space
character is included in the data at such a junction. If the data begins with a colon, the key must
be terminated by a colon, for example:

baduser: cfail:

Empty lines and lines beginning with # are ignored, even if they occur in the middle of an item.
This is the traditional textual format of aias files. Note that the keys in an Isearch file are literal
strings. There is no wildcarding of any kind.

In most Isearch files, keys are not required to contain colons or # characters, or whitespace.
However, if you need this feature, it is available. If a key begins with a doubleguote character, it
is terminated only by a matching quote (or end of line), and the normal escaping rules apply to
its contents (see section 6.12). An optiona colon is permitted after quoted keys (exactly as for
unquoted keys). There is no special handling of quotes for the data part of an Isearch line.

* nis: The given file is the name of a NIS map, and a NIS lookup is done with the given key,
without a terminating binary zero. There is a variant called nisO which does include the terminat-
ing binary zero in the key. This is reportedly needed for Sun-style alias files. Exim does not
recognize NIS aliases; the full map names must be used.

e wildlsearch or nwildlsearch: These search a file linearly, like Isearch, but instead of being
interpreted as a literal string, each key may be wildcarded. The difference between these two
lookup types is that for wildlsearch, each key in the file is string-expanded before being used,
whereas for nwildlsearch, no expansion takes place.

Like Isearch, the testing is done case-insensitively. The following forms of wildcard are
recognized:

* The string may begin with an asterisk to mean ‘ends with’. For example:

*.a.b.c data for anything.a.b.c
*fish data for anythingfish

* The string may begin with a circumflex to indicate a regular expression. For example, for
wildlsearch:

M N d+\.a\l.b\N data for <digits> a.b

Note the use of \ N to disable expansion of the contents of the regular expression. If you are
using nwildlsearch, where the keys are not string-expanded, the equivalent entry is:

Md+\.a\l.b data for <digits> a.b

If the regular expression contains white space or colon characters, you must either quote it
(see Isearch above), or represent these characters in other ways. For example, \' s can be
used for white space and \ x3A for a colon. This may be easier than quoting, because if you
quote, you have to escape all the backslashes inside the quotes.

* Although | cannot see it being of much use, the general matching function that is used to
implement (n)wildlsearch means that the string may begin with a lookup name terminated
by a semicolon, and followed by lookup data. For example:

cdb; /sone/file data for keys that match the file

Exim 4.50 [67] file/database |ookups (9)

The data that is obtained from the nested lookup is discarded.

Keys that do not match any of these patterns are interpreted literally. The continuation rules for
the data are the same as for Isearch, and keys may be followed by optional colons.

Warning: Unlike most other single-key lookup types, afile of data for (n)wildlsearch can not be
turned into a DBM or cdb file, because those lookup types support only literal keys.

9.3 Query-style lookup types

The supported query-style lookup types are listed below. Further details about many of them are given
in later sections.

dnsdb: This does a DNS search for one or more records whose domain names are given in the
supplied query. The resulting data is the contents of the records. See section 9.9.

ibase: This does alookup in an Interbase database.

Idap: This does an LDAP lookup using a query in the form of a URL, and returns attributes from
a single entry. There is a variant called Idapm that permits values from multiple entries to be
returned. A third variant called Idapdn returns the Distinguished Name of a single entry instead
of any attribute values. See section 9.11.

mysgl: The format of the query is an SQL statement that is passed to a MySQL database. See
section 9.18.

nisplus: This does a NIS+ lookup using a query that can specify the name of the field to be
returned. See section 9.17.

oracle: The format of the query is an SQL statement that is passed to an Oracle database. See
section 9.18.

passwd is a query-style lookup with queries that are just user names. The lookup calls
getpwnam() to interrogate the system password data, and on success, the result string is the same
as you would get from an Isearch lookup on a traditional /etc/passwd file, though with * for the
password value. For example:

*:42:42: King Rat:/home/ kr:/bin/bash

pgsgl: The format of the query is an SQL statement that is passed to a PostgreSQL database. See
section 9.18.

testdb: This is alookup type that is used for testing Exim. It is not likely to be useful in normal
operation.

whoson: Whoson (http://whoson.sourceforge.net) is a proposed Internet protocol that allows
Internet server programs to check whether a particular (dynamically allocated) IP address is
currently allocated to a known (trusted) user and, optionally, to obtain the identity of the said
user. In Exim, this can be used to implement ‘POP before SMTP checking using ACL state-
ments such as

require condition =\
${| ookup whoson {$sender_host _address}{yes}{no}}

The query consists of a single IP address. The value returned is the name of the authenticated
uSser.

9.4 Temporary errorsin lookups

Lookup functions can return temporary error codes if the lookup cannot be completed. For example, a
NIS or LDAP database might be unavailable. For this reason, it is not advisable to use a lookup that
might do this for critical options such as alist of local domains.

Exim 4.50 [68] file/database |ookups (9)

When a lookup cannot be completed in a router or transport, delivery of the message (to the relevant
address) is deferred, as for any other temporary error. In other circumstances Exim may assume the
lookup has failed, or may give up altogether.

9.5 Default valuesin single-key lookups

In this context, a ‘default value' is a value specified by the administrator that is to be used if alookup
fails.

If ‘»* is added to a single-key lookup type (for example, Isearch*) and the initial lookup fails, the key
‘+’ is looked up in the file to provide a default value. See also the section on partial matching bel ow.

Alternatively, if ‘*@’ is added to a single-key lookup type (for example dbm+@) then, if the initial
lookup fails and the key contains an @ character, a second lookup is done with everything before the
last @ replaced by *. This makes it possible to provide per-domain defaults in dlias files that include
the domains in the keys. If the second lookup fails (or doesn’t take place because there isno @ in the
key), ‘+’ islooked up. For example, a redirect router might contain:

data = ${| ookup{$l ocal _part @domai n}| search* @/ et c/ m xed- al i ases}}

Suppose the address that is being processed is jane@eyre.example. Exim looks up these keys, in this
order:

j ane@yre. exanpl e
*@yre. exanmpl e

The data is taken from whichever key it finds first. Note: in an Isearch file, this does not mean the first
of these keys in the file. A complete scan is done for each key, and only if it is not found at all does
Exim move on to try the next key.

9.6 Partial matching in single-key lookups

The normal operation of a single-key lookup is to search the file for an exact match with the given
key. However, in a number of situations where domains are being looked up, it is useful to be able to
do partial matching. In this case, information in the file that has a key starting with ‘*." is matched by
any domain that ends with the components that follow the full stop. For example, if a key in a DBM
fileis

* dates.fict.exanple

then when partial matching is enabled this is matched by (amongst others) 2001.dates.fict.example and
1984.dates fict.example. It is also matched by dates.fict.example, if that does not appear as a separate
key in the file.

Note: Partial matching is not available for query-style lookups. It is also not available for any lookup
items in address lists (see section 10.18).

Partial matching is implemented by doing a series of separate lookups using keys constructed by
modifying the original subject key. This means that it can be used with any of the single-key lookup
types, provided that partial matching keys beginning with a specia prefix (default ‘+.”) are included in
the data file. Keys in the file that do not begin with the prefix are matched only by unmodified subject
keys when partial matching is in use.

Partial matching is requested by adding the string ‘partial-" to the front of the name of a single-key
lookup type, for example, partial-dbm. When this is done, the subject key is first looked up
unmodified; if that fails, ‘+.” is added at the start of the subject key, and it is looked up again. If that
fails, further lookups are tried with dot-separated components removed from the start of the subject
key, one-by-one, and ‘+.” added on the front of what remains.

A minimum number of two non-+ components are required. This can be adjusted by including a
number before the hyphen in the search type. For example, partial3-Isearch specifies a minimum of
three non-+ components in the modified keys. Omitting the number is equivalent to ‘partial2-’. If the

Exim 4.50 [69] file/database |ookups (9)

subject key is 2250.dates.fict.example then the following keys are looked up when the minimum
number of non-+ components is two:

2250. dates. fict. exanpl e
* 2250. dates.fict.exanple
* dates.fict.exanple

* fict.exampl e

As soon as one key in the sequence is successfully looked up, the lookup finishes.

The use of ‘*.” as the partial matching prefix is a default that can be changed. The motivation for this
feature is to allow Exim to operate with file formats that are used by other MTAs. A different prefix
can be supplied in parentheses instead of the hyphen after ‘partia’. For example:

domains = partial (.)lsearch;/sone/file

In this example, if the domain is a.b.c, the sequence of lookupsisa.b.c, .a.b.c,and . b. c (the
default minimum of 2 non-wild components is unchanged). The prefix may consist of any punctuation
characters other than a closing parenthesis. It may be empty, for example:

domains = partial 1()cdb;/sone/file
For this example, if the domain is a.b.c, the sequence of lookupsisa. b. c, b. ¢, and c.

If ‘partial0’ is specified, what happens at the end (when the lookup with just one non-wild component
has failed, and the original key is shortened right down to the null string) depends on the prefix:

» If the prefix has zero length, the whole lookup fails.

» If the prefix has length 1, a lookup for just the prefix is done. For example, the final lookup for
‘partial0(.)’ isfor . aone.

» Otherwise, if the prefix ends in a dot, the dot is removed, and the remainder is looked up. With
the default prefix, therefore, the final lookup is for ‘** on its own.

e Otherwise, the whole prefix is looked up.

If the search type ends in ‘** or ‘*@’ (see section 9.5 above), the search for an ultimate default that
this implies happens after al partial lookups have failed. If ‘partia0’ is specified, adding ‘*’ to the
search type has no effect with the default prefix, because the ‘*’ key is aready included in the
sequence of partial lookups. However, there might be a use for lookup types such as
‘partial O(.)lsearch*’.

The use of ‘*’ in lookup partial matching differs from its use as a wildcard in domain lists and the
like. Partial matching works only in terms of dot-separated components; a key such as
*fict.exanpl e in a database file is useless, because the asterisk in a partial matching subject key
is always followed by a dot.

9.7 Lookup caching

Exim caches all lookup results in order to avoid needless repetition of lookups. However, because
(apart from the daemon) Exim operates as a collection of independent, short-lived processes, this
caching applies only within a single Exim process. There is no inter-process caching facility.

For single-key lookups, Exim keeps the relevant files open in case there is another lookup that needs
them. In some types of configuration this can lead to many files being kept open for messages with
many recipients. To avoid hitting the operating system limit on the number of simultaneously open
files, Exim closes the least recently used file when it needs to open more files than its own internal
limit, which can be changed via the lookup_open_max option.

The single-key lookup files are closed and the lookup caches are flushed at strategic points during
delivery — for example, after al routing is complete.

Exim 4.50 [70] file/database |ookups (9)

9.8 Quoting lookup data

When data from an incoming message is included in a query-style lookup, there is the possibility of
special characters in the data messing up the syntax of the query. For example, a NIS+ query that
contains

[name=$l ocal _part]

will be broken if the local part happens to contain a closing square bracket. For NIS+, data can be
enclosed in double quotes like this:

[name="$l ocal _part"]

but this till leaves the problem of a double quote in the data. The rule for NIS+ is that double quotes
must be doubled. Other lookup types have different rules, and to cope with the differing requirements,
an expansion operator of the following form is provided:

${ quot e_<lookup-type>: <string>}
For example, the safest way to write the NIS+ query is
[name="${ quot e_ni spl us: $l ocal _part}"]

See chapter 11 for full coverage of string expansions. The quote operator can be used for all lookup
types, but has no effect for single-key lookups, since no quoting is ever needed in their key strings.

9.9 More about dnsdb
The dnsdb lookup type uses the DNS as its database. A ssimple query consists of a record type and a
domain name, separated by an equals sign. For example, an expansion string could contain:

${| ookup dnsdb{nx=a. b. exanpl e}{$val ue}fail}

The supported DNS record types are A, CNAME, MX, NS, PTR, SRV, and TXT, and, when Exim is
compiled with 1Pv6 support, AAAA (and A6 if that is also configured). If no type is given, TXT is
assumed. When the type is PTR, the data can be an IP address, written as normal; inversion and the
addition of in-addr.arpa or ip6.ar pa happens automatically. For example:

${1 ookup dnsdb{ptr=192. 168. 4. 5}{$val ue}fail}

If the data for a PTR record is not a syntactically valid IP address, it is not altered and nothing is
added.

For any record type, if multiple records are found (or, for A6 lookups, if a single record leads to
multiple addresses), the data is returned as a concatenation, with newline as the default separator. The
order, of course, depends on the DNS resolver. You can specify a different separator character between
multiple records by putting a right angle-bracket followed immediately by the new separator at the
start of the query. For example:

${I ookup dnsdb{>: a=host 1. exanpl e}}
It is permitted to specify a space as the separator character. Further whitespace is ignored.

For SRV records, the priority, weight, port, and host name are returned for each record, separated by
spaces.

For MX records, both the preference value and the host name are returned for each record, separated
by a space. However, if you want only host names, you can use the pseudo-type MXH:

${1 ookup dnsdb{nxh=a. b. exanpl e}}
In this case, the preference values are omitted.

Another pseudo-type is ZNS (for ‘zone NS'). It performs a lookup for NS records on the given
domain, but if none are found, it removes the first component of the domain name, and tries again.
This process continues until NS records are found or there are no more components left (or there is a
DNS error). In other words, it may return the name servers for a top-level domain, but it never returns

Exim 4.50 [71] file/database lookups (9)

the root name servers. If there are no NS records for the top-level domain, the lookup fails. Consider
these examples:

${1 ookup dnsdb{zns=xxx. quercite.cont}
${I ookup dnsdb{zns=xxx. edu}}

Assuming that in each case there are no NS records for the full domain name, the first returns the
name servers for quercite.com, and the second returns the name servers for edu.

You should be careful about how you use this lookup because, unless the top-level domain does not
exist, the lookup always returns some host names. The sort of use to which this might be put is for
seeing if the name servers for a given domain are on a blacklist. You can probably assume that the
name servers for the high-level domains such as com or co.uk are not going to be on such alist.

9.10 Multiple dnsdb lookups

In the previous section, dnsdb lookups for a single domain are described. However, you can specify a
list of domains or IP addresses in a single dnsdb lookup. The list is specified in the normal Exim way,
with colon as the default separator, but with the ability to change this. For example:

${| ookup dnsdb{one. domai n. com t wo. dorai n. con} }
${| ookup dnsdb{a=one. host.com two. host. con}}
${| ookup dnsdb{ptr = <; 1.2.3.4 ; 4.5.6.8}}

In order to retain backwards compatibility, there is one special case: if the lookup type is PTR and no
change of separator is specified, Exim looks to see if the rest of the string is precisely one IPv6
address. In this case, it does not treat it as alist.

The data from each lookup is concatenated, with newline separators by default, in the same way that
multiple DNS records for a single item are handled. A different separator can be specified, as
described above.

The dnsdb lookup fails only if al the DNS lookups fail. If there is atemporary DNS error for any of
them, the behaviour is controlled by an optional keyword followed by a comma that may appear
before the record type. The possible keywords are ‘defer_strict’, ‘defer_never’, and ‘defer_lax’. With
‘strict’ behaviour, any temporary DNS error causes the whole lookup to defer. With ‘never’ behaviour,
a temporary DNS error is ignored, and the behaviour is as if the DNS lookup failed to find anything.
With ‘lax’ behaviour, all the queries are attempted, but a temporary DNS error causes the whole
lookup to defer only if none of the other lookups succeed. The default is ‘lax’, so the following
lookups are equivalent:

${I1 ookup dnsdb{def er | ax, a=one. host. com two. host. cont}
${| ookup dnsdb{a=one. host.com two. host. con}}

Thus, in the default case, as long as at least one of the DNS lookups yields some data, the lookup
succeeds.

9.11 More about LDAP

The original LDAP implementation came from the University of Michigan; this has become ‘Open
LDAP, and there are now two different releases. Another implementation comes from Netscape, and
Solaris 7 and subsequent releases contain inbuilt LDAP support. Unfortunately, though these are all
compatible at the lookup function level, their error handling is different. For this reason it is necessary
to set a compile-time variable when building Exim with LDAP, to indicate which LDAP library is in
use. One of the following should appear in your L ocal/M akefile:

LDAP_LI B_TYPE=UM CH GAN
LDAP_LI B_TYPE=COPENLDAP1
LDAP_LI B_TYPE=CPENLDAP2
LDAP_LI B_TYPE=NETSCAPE
LDAP_LI B_TYPE=SOLARI S

Exim 4.50 [72] file/database lookups (9)

If LbAP LIB_TYPE IS not set, Exim assumes OPENLDAP1, which has the same interface as the
University of Michigan version.

There are three LDAP lookup types in Exim. These behave dightly differently in the way they handle
the results of a query:

* ldap requires the result to contain just one entry; if there are more, it gives an error.

* Idapdn aso requires the result to contain just one entry, but it is the Distinguished Name that is
returned rather than any attribute values.

e Ildapm permits the result to contain more than one entry; the attributes from all of them are
returned.

For Idap and Idapm, if a query finds only entries with no attributes, Exim behaves as if the entry did
not exist, and the lookup fails. The format of the data returned by a successful lookup is described in
the next section. First we explain how LDAP queries are coded.

9.12 Format of LDAP queries

An LDAP query takes the form of a URL as defined in RFC 2255. For example, in the configuration
of aredirect router one might have this setting:

data = ${| ookup I dap \
{lI dap:///cn=$l ocal _part, o=Uni versit y%®20of ¥%20Canbri dge, \
c=UK?mai | box?base?}}

The URL may begin with | dap or | daps if your LDAP library supports secure (encrypted) LDAP
connections. The second of these ensures that an encrypted TLS connection is used.

9.13 LDAP quoting

Two levels of quoting are required in LDAP queries, the first for LDAP itself and the second because
the LDAP query is represented as a URL. Furthermore, within an LDAP query, two different kinds of
quoting are required. For this reason, there are two different LDAP-specific quoting operators.

The quote |dap operator is designed for use on strings that are part of filter specifications.
Conceptually, it first does the following conversions on the string:

* = \2A
(= \28
) = \29

\ => \5C

in accordance with RFC 2254. The resulting string is then quoted according to the rules for URLS, that
is, all characters except

Fs$ - . _ () * +
are converted to their hex values, preceded by a percent sign. For example:
${quote_l dap: a(bc)*, a<yz>; }
yields
%20a%bC28bc¥bC29%% C2 A% CY20a¥%B8Cy z Y8EYBBYR20
Removing the URL quoting, thisis (with a leading and a trailing space):
a\ 28bc\ 29\ 2A, a<yz>;

The quote_ldap_dn operator is designed for use on strings that are part of base DN specifications in
gueries. Conceptualy, it first converts the string by inserting a backdlash in front of any of the
following characters:

, + "N < >

Exim 4.50 [73] file/database |ookups (9)

It aso inserts a backslash before any leading spaces or # characters, and before any trailing spaces.
(These rules are in RFC 2253.) The resulting string is then quoted according to the rules for URLSs.
For example:

${quote_l dap_dn: a(bc)*, a<yz>; }
yields
%% C¥20a(be) * %6 CYR2CY¥20a%b CY3Cy z %6 CYBEYS CY8BYG CY20
Removing the URL quoting, thisis (with a trailing space):
\ a(bc)*\, al<yz\>\;\
There are some further comments about quoting in the section on LDAP authentication below.

9.14 L DAP connections

The connection to an LDAP server may either be over TCF/IP, or, when OpenLDAP is in use, via a
Unix domain socket. The example given above does not specify an LDAP server. A server that is
reached by TCP/IP can be specified in a query by starting it with

| dap: / / <hostname>: <port>/ . . .

If the port (and preceding colon) are omitted, the standard LDAP port (389) is used. When no server is
specified in a query, a list of default servers is taken from the |dap_default_servers configuration
option. This supplies a colon-separated list of servers which are tried in turn until one successfully
handles a query, or there is a serious error. Successful handling either returns the requested data, or
indicates that it does not exist. Serious errors are syntactical, or multiple values when only a single
value is expected. Errors which cause the next server to be tried are connection failures, bind failures,
and timeouts.

For each server name in the list, a port number can be given. The standard way of specifing a host and
port is to use a colon separator (RFC 1738). Because Idap_default_servers is a colon-separated list,
such colons have to be doubled. For example

| dap_defaul t _servers = | dapl. exanpl e. com : 145: | dap2. exanpl e. com

If Idap_default_serversis unset, a URL with no server name is passed to the LDAP library with no
server name, and the library’s default (normally the local host) is used.

If you are using the OpenLDAP library, you can connect to an LDAP server using a Unix domain
socket instead of a TCP/IP connection. This is specified by using | dapi instead of | dap in LDAP
gueries. What follows here applies only to OpenLDAP. If Exim is compiled with a different LDAP
library, this feature is not available.

For this type of connection, instead of a host name for the server, a pathname for the socket is
required, and the port number is not relevant. The pathname can be specified either as an item in
Idap_default_servers, or inline in the query. In the former case, you can have settings such as

| dap_defaul t _servers = /tnp/| dap.sock : backup.|dap.your. domain

When the pathname is given in the query, you have to escape the slashes as %2F to fit in with the
LDAP URL syntax. For example:

${| ookup | dap {I dapi://%RFt mp%2Fl dap. sock/o=. ..

When Exim processes an LDAP lookup and finds that the ‘hostname’ is really a pathname, it uses the
Unix domain socket code, even if the query actually specifies | dap or | daps. In particular, no
encryption is used for a socket connection. This behaviour means that you can use a setting of
Idap_default_servers such as in the example above with traditional | dap or | daps queries, and it
will work. First, Exim tries a connection via the Unix domain socket; if that fails, it tries a TCP/IP
connection to the backup host.

If an explicit | dapi type is given in a query when a host name is specified, an error is diagnosed.
However, if there are more itemsin Idap_default_servers, they are tried. In other words:

Exim 4.50 [74] file/database |ookups (9)

* Using a pathname with | dap or | daps forces the use of the Unix domain interface.
e Using | dapi with a host name causes an error.

Using | dapi with no host or path in the query, and no setting of ldap_default_servers, does
whatever the library does by default.

9.15 L DAP authentication and control infor mation

The LDAP URL syntax provides no way of passing authentication and other control information to the
server. To make this possible, the URL in an LDAP query may be preceded by any number of
‘<name>=<value>’ settings, separated by spaces. If a value contains spaces it must be enclosed in
double quotes, and when double quotes are used, backslash is interpreted in the usual way inside them.
The following names are recognized:

DEREFERENCE set the dereferencing parameter

NETTI ME set atimeout for a network operation

USER set the DN, for authenticating the LDAP bind
PASS set the password, likewise

SI ZE set the limit for the number of entries returned
TI ME set the maximum waiting time for a query

The value of the bERerERENCE parameter must be one of the words ‘never’, ‘searching’, ‘finding’, or
‘aways'.

The name conNECT iS an obsolete name for NeTTIME, retained for backwards compatibility. This
timeout (specified as a number of seconds) is enforced from the client end for operations that can be
carried out over a network. Specifically, it applies to network connections and calls to the Idap_result()
function. If the value is greater than zero, it is used if LbAP oPT_NETWORK_TIMEOUT is defined in the
LDAP headers (OpenLDAP), or if LbAP x_oPT_conNNECT_TIMEOUT iS defined in the LDAP headers
(Netscape SDK 4.1). A value of zero forces an explicit setting of ‘no timeout’ for Netscape SDK; for
OpenLDAP no action is taken.

The TiIME parameter (also a number of seconds) is passed to the server to set a server-side limit on the
time taken to complete a search.

Here is an example of an LDAP query in an Exim lookup that uses some of these values. This is a
single ling, folded for ease of reading:

${1 ookup | dap
{user ="cn=manager, o=Uni versity of Canbridge, c=UK" pass=secr et
| dap:/// o=Uni versit yo%20of ¥20Canbri dge, c=UK?sn?sub?(cn=f 00) }
{$val ue}fail}

The encoding of spaces as %20 is a URL thing which should not be done for any of the auxiliary data.
Exim configuration settings that include lookups which contain password information should be
preceded by ‘hide’ to prevent non-admin users from using the -bP option to see their values.

The auxiliary data items may be given in any order. The default is no connection timeout (the system
timeout is used), no user or password, no limit on the number of entries returned, and no time limit on
gueries.

When a DN is quoted in the user= setting for LDAP authentication, Exim removes any URL quoting
that it may contain before passing it LDAP. Apparently some libraries do this for themselves, but some
do not. Removing the URL quoting has two advantages:

* |t makes it possible to use the same quote |dap_dn expansion for user= DNs as with DNs inside
actual queries.

e |t permits spaces inside user= DNs.
For example, a setting such as
USER=cn=${ quot e_| dap_dn: $1}

Exim 4.50 [75] file/database lookups (9)

should work even if $1 contains spaces.

Expanded data for the rass= value should be quoted using the quote expansion operator, rather than
the LDAP quote operators. The only reason this field needs quoting is to ensure that it conforms to the
Exim syntax, which does not alow unquoted spaces. For example:

PASS=${ quot e: $3}

The LDAP authentication mechanism can be used to check passwords as part of SMTP authentication.
See the Idapauth expansion string condition in chapter 11.

9.16 Format of data returned by LDAP

The Idapdn lookup type returns the Distinguished Name from a single entry as a sequence of values,
for example

cn=manager, o=University of Canbridge, c=UK

The Idap lookup type generates an error if more than one entry matches the search filter, whereas
Idapm permits this case, and inserts a newline in the result between the data from different entries. It
is possible for multiple values to be returned for both Idap and Idapm, but in the former case you
know that whatever values are returned al came from a single entry in the directory.

In the common case where you specify a single attribute in your LDAP query, the result is not quoted,
and does not contain the attribute name. If the attribute has multiple values, they are separated by
commeas.

If you specify multiple attributes, the result contains space-separated, quoted strings, each preceded by
the attribute name and an equals sign. Within the quotes, the quote character, backslash, and newline
are escaped with backslashes, and commas are used to separate multiple values for the attribute. Apart
from the escaping, the string within quotes takes the same form as the output when a single attribute is
requested. Specifying no attributes is the same as specifying all of an entry’s attributes.

Here are some examples of the output format. The first line of each pair is an LDAP query, and the
second is the data that is returned. The attribute called attr1 has two values, whereas attr2 has only
one value:

| dap: /// o=base?attr1?sub?(ui d=fred)

val uel. 1, valuel.?2

| dap: /// o=base?attr2?sub?(ui d=fred)

val ue two

| dap: /// o=base?attr1, attr2?sub?(ui d=fred)

attrl="valuel.1, valuel.?2" attr2="val ue two"

| dap: /// o=base??sub?(ui d=fred)

obj ect O ass="top" attrl="valuel.1, valuel.2" attr2="value two"
The extract operator in string expansions can be used to pick out individual fields from data that

consists of key=value pairs. You can make use of Exim'’s -be option to run expansion tests and thereby
check the results of LDAP lookups.

9.17 More about NIS+

NIS+ queries consist of a NIS+ indexed name followed by an optional colon and field name. If thisis
given, the result of a successful query is the contents of the named field; otherwise the result consists
of a concatenation of field-name=field-value pairs, separated by spaces. Empty values and values
containing spaces are quoted. For example, the query

[nanme=ngy1456] , passwd. org_di r
might return the string

Exim 4.50 [76] file/database |ookups (9)

nane=ngl456 passwd="" ui d=999 gi d=999 gcos="Martin Guerre"
honme=/ hone/ ng1456 shel | =/ bi n/ bash shadow=""

(split over two lines here to fit on the page), whereas
[name=ngl1456] , passwd. org_di r: gcos
would just return
Martin Querre

with no quotes. A NIS+ lookup fails if NIS+ returns more than one table entry for the given indexed
key. The effect of the quote _nisplus expansion operator is to double any quote characters within the
text.

9.18 More about MySQL, PostgreSQL, Oracle, and Interbase

If any MySQL, PostgreSQL, Oracle, or Interbase lookups are used, the mysql_servers, pgsql_servers,
oracle servers, or ibase_servers option (as appropriate) must be set to a colon-separated list of server
information. Each item in the list is a dash-separated list of four items: host name, database name,
user name, and password. In the case of Oracle, the host name field is used for the ‘service name’, and
the database name field is not used and should be empty. For example:

hi de oracl e_servers = oracle. pl c. exanpl e//ph10/ abcdwxyz

Because password data is sensitive, you should always precede the setting with ‘hide’, to prevent non-
admin users from obtaining the setting via the -bP option. Here is an example where two MySQL
servers are listed:

hi de nysql _servers = | ocal host/users/root/secret:\
ot her host / user s/ root/ ot hersecr et

For MySQL and PostgreSQL, a host may be specified as <name>:<port> but because this is a colon-
separated list, the colon has to be doubled.

For each query, these parameter groups are tried in order until a connection and a query succeeds.
Queries for these databases are SQL statements, so an example might be

${I ookup nysql {sel ect mail box fromusers where id=" phl0’ }{$val ue}fail}

If the result of the query contains more than one field, the data for each field in the row is returned,
preceded by its name, so the result of

${1 ookup pgsql {sel ect hone, nane from users where i d="phl0’}{$val ue}}
might be
home=/ hone/ ph10 name="Phi lip Hazel"

Values containing spaces and empty values are double quoted, with embedded quotes escaped by a
backslash.

If the result of the query contains just one field, the value is passed back verbatim, without a field
name, for example:

Philip Hazel

If the result of the query yields more than one row, it is all concatenated, with a newline between the
data for each row.

The quote_mysgl, quote pgsgl, and quote_oracle expansion operators convert newline, tab, carriage
return, and backspace to \n, \t, \r, and \b respectively, and the characters single-quote, double-quote,
and backdlash itself are escaped with backsashes. The quote pgsql expansion operator, in addition,
escapes the percent and underscore characters. This cannot be done for MySQL because these escapes
are not recognized in contexts where these characters are not special.

Exim 4.50 [77] file/database |ookups (9)

9.19 Special MySQL features

For MySQL, an empty host name or the use of ‘localhost’ in mysql_servers causes a connection to
the server on the local host by means of a Unix domain socket. An aternate socket can be specified in
parentheses. The full syntax of each item in mysqgl_serversis:

<hostname>: : <port>(<socket name>) / <database>/ <user>/ <password>

Any of the three sub-parts of the first field can be omitted. For normal use on the local host it can be
left blank or set to just ‘localhost’.

No database need be supplied — but if it is absent here, it must be given in the queries.

If a MySQL query is issued that does not request any data (an insert, update, or delete command), the
result of the lookup is the number of rows affected. Warning: this can be misleading. If an update
does not actually change anything (for example, setting a field to the value it aready has), the result is
zero because no rows are affected.

9.20 Special PostgreSQL features

PostgreSQL lookups can also use Unix domain socket connections to the database. This is usualy
faster and costs less CPU time than a TCP/IP connection. However it can be used only if the mail
server runs on the same machine as the database server. A configuration line for PostgreSQL via Unix
domain sockets looks like this:

hi de pgsql _servers = (/tnp/.s. PGSQ.. 5432)/ db/ user/ password :

In other words, instead of supplying a host name, a path to the socket is given. The path name is
enclosed in parentheses so that its slashes aren’'t visually confused with the delimiters for the other
server parameters.

If a PostgreSQL query is issued that does not request any data (an insert, update, or delete command),
the result of the lookup is the number of rows affected.

Exim 4.50 [78] file/database |ookups (9)

10. Domain, host, address, and local part lists

A number of Exim configuration options contain lists of domains, hosts, email addresses, or local
parts. For example, the hold_domains option contains a list of domains whose delivery is currently
suspended. These lists are also used as data in ACL statements (see chapter 39).

Each item in one of these lists is a pattern to be matched against a domain, host, email address, or
local part, respectively. In the sections below, the different types of pattern for each case are described,
but first we cover some general facilities that apply to al four kinds of list.

10.1 Expansion of lists

Each list is expanded as a single string before it is used. The result of expansion must be a list,
possibly containing empty items, which is split up into separate items for matching. By default, colon
is the separator character, but this can be varied if necessary. See sections 6.15 and 6.16 for details of
the list syntax; the second of these discusses the way you specify empty list items.

If the string expansion is forced to fail, Exim behaves as if the item it is testing (domain, host, address,
or local part) is not in the list. Other expansion failures cause temporary errors.

If anitemin alist is a regular expression, backslashes, dollars and possibly other special charactersin
the expression must be protected against misinterpretation by the string expander. The easiest way to
do thisis to use the \ N expansion feature to indicate that the contents of the regular expression should
not be expanded. For example, in an ACL you might have:

deny senders = \ N\ d{8}\w@ *\ . baddonai n\ . exanpl e$\ N :
${| ookup{ $domai n} | sear ch{/ badsender s/ bydonai n}}

The first item is a regular expression that is protected from expansion by \ N, whereas the second uses
the expansion to obtain a list of unwanted senders based on the receiving domain.

10.2 Negated itemsiin lists

Items in a list may be positive or negative. Negative items are indicated by a leading exclamation
mark, which may be followed by optional white space. A list defines a set of items (domains, etc).
When Exim processes one of these lists, it is trying to find out whether a domain, host, address, or
local part (respectively) isin the set that is defined by the list. It works like this:

The list is scanned from left to right. If a positive item is matched, the subject that is being checked is
in the set; if a negative item is matched, the subject is not in the set. If the end of the list is reached
without the subject having matched any of the patterns, it is in the set if the last item was a negative
one, but not if it was a positive one. For example, the list in

domai nlist relay domains = 'a.b.c : *.b.c

matches any domain ending in .b.c except for a.b.c. Domains that match neither a.b.c nor *.b.c do not
match, because the last item in the list is positive. However, if the setting were

domai nlist relay _domains = la.b.c

then all domains other than a.b.c would match because the last item in the list is negative. In other
words, a list that ends with a negative item behaves as if it had an extraitem : * on the end.

Another way of thinking about positive and negative items in lists is to read the connector as ‘or’ after
a positive item and as ‘and’ after a negative item.

10.3 File names in lists

If anitem in a domain, host, address, or local part list is an absolute file name (beginning with a slash
character), each line of the file is read and processed as if it were an independent item in the ligt,

Exim 4.50 [79] domain, host, and address lists (10)

except that further file names are not alowed, and no expansion of the data from the file takes place.
Empty lines in the file are ignored, and the file may also contain comment lines:

e For domain and host lists, if a # character appears anywhere in a line of the file, it and all
following characters are ignored.

* Because local parts may legitimately contain # characters, a comment in an address list or local
part list file is recognized only if # is preceded by white space or the start of the line. For
example:

not #conment @&. y. z # but this is a coment

Putting a file name in a list has the same effect as inserting each line of the file as an item in the list
(blank lines and comments excepted). However, there is one important difference: the file is read each
time the list is processed, o if its contents vary over time, Exim'’s behaviour changes.

If afile name is preceded by an exclamation mark, the sense of any match within the file is inverted.
For example, if

hol d_domai ns = !/etc/ nohol d- donmai ns
and the file contains the lines

la.b.c
*. b.c

then a.b.c is in the set of domains defined by hold_domains, whereas any domain matching *. b. c
is not.

10.4 An Isearch fileis not an out-of-line list

As will be described in the sections that follow, lookups can be used in lists to provide indexed
methods of checking list membership. There has been some confusion about the way Isearch lookups
work in lists. Because an Isearch file contains plain text and is scanned sequentialy, it is sometimes
thought that it is allowed to contain wild cards and other kinds of non-constant pattern. This is not the
case. The keys in an Isearch file are always fixed strings, just as for any other single-key lookup type.

If you want to use a file to contain wild-card patterns that form part of a list, just give the file name on
its own, without a search type, as described in the previous section.

10.5 Named lists

A list of domains, hosts, email addresses, or local parts can be given a name which is then used to
refer to the list elsewhere in the configuration. This is particularly convenient if the same list is
required in severa different places. It also allows lists to be given meaningful names, which can
improve the readability of the configuration. For example, it is conventional to define a domain list
caled local_domains for all the domains that are handled localy on a host, using a configuration line
such as

domai nli st |ocal _domains = | ocal host: ny. dom exanpl e

Named lists are referenced by giving their name preceded by a plus sign, so, for example, a router that
is intended to handle local domains would be configured with the line

domai ns = +l ocal _domai ns

The first router in a configuration is often one that handles al domains except the local ones, using a
configuration with a negated item like this:

dnsl ookup:
driver = dnsl ookup
domai ns = ! +l ocal _domai ns
transport = renote_sntp
no_nore

Exim 4.50 [80] domain, host, and address lists (10)

The four kinds of named list are created by configuration lines starting with the words domainlist,
hostlist, addresdlist, or localpartlist, respectively. Then there follows the name that you are defining,
followed by an equals sign and the list itself. For example:

192.168.23.0/24 : ny.friend. exanpl e
cdb; / et ¢/ badsender s

host | i st rel ay_hosts
addressli st bad _senders

A named list may refer to other named lists:

domai nli st doml
domai nli st donk
domai nli st donB

first.exanple : second. exanpl e
+doml : third. exanmpl e
fourth.exanple : +don? : fifth.exanple

Warning: If the last item in a referenced list is a negative one, the effect may not be what you
intended, because the negation does not propagate out to the higher level. For example, consider:

la. b
+donml : *.Db

The second list specifies ‘either in the dom1l list or *.b'. The first list specifies just ‘not a.b’, so the
domain x.y matches it. That means it matches the second list as well. The effect is not the same as

domainlist don2 =la.b: *.b
where x.y does not match. It's best to avoid negation altogether in referenced lists if you can.

domai nli st doml
domai nli st donk

Named lists may have a performance advantage. When Exim is routing an address or checking an
incoming message, it caches the result of tests on named lists. So, if you have a setting such as

domai ns = +l ocal _donai ns

on severa of your routers or in several ACL statements, the actual test is done only for the first one.
However, the caching works only if there are no expansions within the list itself or any sublists that it
references. In other words, caching happens only for lists that are known to be the same each time
they are referenced.

By default, there may be up to 16 named lists of each type. This limit can be extended by changing a
compile-time variable. The use of domain and host lists is recommended for concepts such as local
domains, relay domains, and relay hosts. The default configuration is set up like this.

10.6 Named lists compared with macros

At first sight, named lists might seem to be no different from macros in the configuration file.
However, macros are just textual substitutions. If you write

ALI ST = host1 : host2
aut h_advertise hosts = ' ALI ST

it probably won’t do what you want, because that is exactly the same as
aut h_advertise hosts = 'hostl : host2
Notice that the second host name is not negated. However, if you use a host list, and write

hostlist alist = hostl : host2
aut h_advertise hosts = ! +ali st

the negation applies to the whole list, and so that is equivalent to
auth_advertise hosts = 'hostl : !host2

10.7 Named list caching

While processing a message, Exim caches the result of checking a named list if it is sure that the list is
the same each time. In practice, this means that the cache operates only if the list contains no $
characters, which guarantees that it will not change when it is expanded. Sometimes, however, you

Exim 4.50 [81] domain, host, and address lists (10)

may have an expanded list that you know will be the same each time within a given message. For
example:

domai nli st special _domains =\
${| ookup{ $sender _host _addr ess}cdb{/sone/fil e}}

This provides a list of domains that depends only on the sending host’s IP address. If this domain list
is referenced a number of times (for example, in several ACL lines, or in several routers) the result of
the check is not cached by default, because Exim does not know that it is going to be the same list
each time.

By appending _cache to domai nl i st you can tell Exim to go ahead and cache the result anyway.
For example:

domai nl i st_cache speci al _dormai ns = ${I| ookup{. ..

If you do this, you should be absolutely sure that caching is going to do the right thing in all cases.
When in doubt, leave it out.

10.8 Domain lists

Domain lists contain patterns that are to be matched against a mail domain. The following types of
item may appear in domain lists:

e |If a pattern consists of a single @ character, it matches the local host name, as set by the
primary_hostname option (or defaulted). This makes it possible to use the same configuration
file on several different hosts that differ only in their names.

* If a pattern consists of the string @] it matches any local IP interface address, enclosed in
square brackets, as in an email address that contains a domain literal. In today’s Internet, the use
of domain literals is controversial.

* If a pattern consists of the string @x_any it matches any domain that has an MX record
pointing to the local host or to any host that is listed in hosts treat_as local. The items
@x_primary and @x_secondary are similar, except that the first matches only when a
primary MX target is the local host, and the second only when no primary MX target is the local
host, but a secondary MX target is. ‘Primary’ means an MX record with the lowest preference
value — there may of course be more than one of them.

The MX lookup that takes place when matching a pattern of this type is performed with the
resolver options for widening names turned off. Thus, for example, a single-component domain
will not be expanded by adding the resolver’'s default domain. See the qualify_single and
search_parents options of the dnslookup router for a discussion of domain widening.

Sometimes you may want to ignore certain |P addresses when using one of these patterns. You
can specify this by following the pattern with /i gnor e=<ip list>, where <ip list> is a list
of IP addresses. These addresses are ignored when processing the pattern (compare the
ignore_target_hosts option on a router). For example:

domai ns = @mwx_any/ignore=127.0.0.1

This example matches any domain that has an MX record pointing to one of the local host’s IP
addresses other than 127.0.0.1.

The list of IP addresses is in fact processed by the same code that processes host lists, so it may
contain CIDR-coded network specifications and it may also contain negative items.

Because the list of 1P addresses is a sublist within a domain list, you have to be careful about
delimiters if there is more than one address. Like any other list, the default delimiter can be
changed. Thus, you might have:

domai ns = @x_any/ignore=<;127.0.0.1;0.0.0.0 : \
an. ot her. domai n :

Exim 4.50 [82] domain, host, and address lists (10)

S0 that the sublist uses semicolons for delimiters. When |Pv6 addresses are involved, it is easiest
to change the delimiter for the main list as well:

domai ns = <? @mx_any/ignore=<;127.0.0.1;::1 ? \
an.other.domain ? ...

e |If apattern starts with an asterisk, the remaining characters of the pattern are compared with the
terminating characters of the domain. The use of ‘*’ in domain lists differs from its use in partial
matching lookups. In a domain list, the character following the asterisk need not be a dot,
whereas partial matching works only in terms of dot-separated components. For example, a
domain list item such as * key. ex matches donkey.ex as well as cipher.key.ex.

e |If apattern starts with a circumflex character, it is treated as a regular expression, and matched
against the domain using a regular expression matching function. The circumflex is treated as
part of the regular expression. References to descriptions of the syntax of regular expressions are
given in chapter 8.

Warning: Because domain lists are expanded before being processed, you must escape any
backslash and dollar characters in the regular expression, or use the special \ N sequence (see
chapter 11) to specify that it is not to be expanded (unless you really do want to build a regular
expression by expansion, of course).

e |If a pattern starts with the name of a single-key lookup type followed by a semicolon (for
example, ‘dom;’ or ‘Isearch;’), the remainder of the pattern must be a file name in a suitable
format for the lookup type. For example, for ‘cdb;’ it must be an absolute path:

domai ns = cdb;/etc/nail/l ocal _domai ns. cdb

The appropriate type of lookup is done on the file using the domain name as the key. In most
cases, the data that is looked up is not used; Exim is interested only in whether or not the key is
present in the file. However, when a lookup is used for the domains option on a router or a
domains condition in an ACL statement, the data is preserved in the $domain_data variable and
can be referred to in other router options or other statements in the same ACL.

e Any of the single-key lookup type names may be preceded by ‘partial<n>-', where the <n> is
optional, for example,

domains = partial -dbm/partial /domai ns

This causes partial matching logic to be invoked; a description of how this works is given in
section 9.6.

e Any of the single-key lookup types may be followed by an asterisk. This causes a default lookup
for a key consisting of a single asterisk to be done if the origina lookup fails. This is not a
useful feature when using a domain list to select particular domains (because any domain would
match), but it might have value if the result of the lookup is being used via the $domain_data
expansion variable.

e |If the pattern starts with the name of a query-style lookup type followed by a semicolon (for
example, ‘nisplus;’ or ‘ldap;’), the remainder of the pattern must be an appropriate query for the
lookup type, as described in chapter 9. For example:

hol d_domai ns = nysql ; sel ect domain from holdlist \
where domain = ' $dommi n’ ;

In most cases, the data that is looked up is not used (so for an SQL query, for example, it doesn’t
matter what field you select). Exim is interested only in whether or not the query succeeds.
However, when a lookup is used for the domains option on a router, the data is preserved in the
$domain_data variable and can be referred to in other options.

* |If none of the above cases apply, a caseless textual comparison is made between the pattern and
the domain.

Here is an example that uses several different kinds of pattern:

Exim 4.50 [83] domain, host, and address lists (10)

domai nli st funny_domains =\
@: \
[ib.unseen.edu : \
*.foundation.fict.exanple : \
\NM[1-2]\d{3}\.fict\.exanpl e$\ N : \
partial -dbm / opt/ dat a/ pengui n/ book : \
ni s; domai ns. bynane : \
ni spl us; [name=$donai n, st at us=l ocal], domai ns. org_di r

There are obvious processing trade-offs among the various matching modes. Using an asterisk is faster
than a regular expression, and listing a few names explicitly probably is too. The use of a file or
database lookup is expensive, but may be the only option if hundreds of names are required. Because
the patterns are tested in order, it makes sense to put the most commonly matched patterns earlier.

10.9 Host lists

Host lists are used to control what remote hosts are alowed to do. For example, some hosts may be
allowed to use the local host as a relay, and some may be permitted to use the SMTP ETRn command.
Hosts can be identified in two different ways, by name or by IP address. In a host list, some types of
pattern are matched to a host name, and some are matched to an IP address. You need to be
particularly careful with this when single-key lookups are involved, to ensure that the right value is
being used as the key.

10.10 Special host list patterns

If a host list item is the empty string, it matches only when no remote host is involved. This is the
case when a message is being received from alocal process using SMTP on the standard input, that is,
when a TCP/IP connection is not used.

The special pattern “+’ in a host list matches any host or no host. Neither the 1P address nor the name
is actually inspected.

10.11 Hogt list patterns that match by IP address

If an IPv4 host calls an IPv6 host and the call is accepted on an IPv6 socket, the incoming address
actually appears in the IPv6 host as ‘::f f f f :<vdaddress>’. When such an address is tested against a
host list, it is converted into a traditional 1Pv4 address first. (Not all operating systems accept 1Pv4
calls on IPv6 sockets, as there have been some security concerns.)

The following types of pattern in a host list check the remote host by inspecting its |P address:

e |f the pattern is a plain domain name (not a regular expression, not starting with *, not a lookup
of any kind), Exim calls the operating system function to find the associated |P address(es). Exim
uses the newer getipnodebyname() function when available, otherwise gethostbyname(). This
typically causes a forward DNS lookup of the name. The result is compared with the IP address
of the subject host.

If there is a temporary problem (such as a DNS timeout) with the host name lookup, a temporary
error occurs. For example, if the list is being used in an ACL condition, the ACL gives a ‘defer’
response, usually leading to a temporary SMTP error code. If no IP address can be found for the
host name, what happens is described in section 10.14 below.

e |f the pattern is ‘@', the primary host name is substituted and used as a domain name, as just
described.

o |If the pattern is an IP address, it is matched against the IP address of the subject host. IPv4
addresses are given in the normal ‘dotted-quad’ notation. IPv6 addresses can be given in colon-
separated format, but the colons have to be doubled so as not to be taken as item separators when
the default list separator is used. 1Pv6 addresses are recognized even when Exim is compiled
without 1Pv6 support. This means that if they appear in a host list on an IPv4-only host, Exim
will not treat them as host names. They are just addresses that can never match a client host.

Exim 4.50 [84] domain, host, and address lists (10)

e |If the pattern is ‘@[]’, it matches the IP address of any IP interface on the loca host. For
example, if the local host is an IPv4 host with one interface address 10.45.23.56, these two ACL
statements have the same effect:

accept hosts 127.0.0.1 : 10.45.23.56
accept hosts @l

* If the pattern is an |P address followed by a slash and a mask length (for example 10.11.42.0/24),
it is matched against the IP address of the subject host under the given mask. This allows, an
entire network of hosts to be included (or excluded) by a single item. The mask uses CIDR
notation; it specifies the number of address bits that must match, starting from the most signifi-
cant end of the address.

Note: the mask is not a count of addresses, nor is it the high number of a range of addresses. It is
the number of bits in the network portion of the address. The above example specifies a 24-bit
netmask, so it matches all 256 addresses in the 10.11.42.0 network. An item such as

192. 168. 23. 236/ 31

matches just two addresses, 192.168.23.236 and 192.168.23.237. A mask value of 32 for an IPv4
address is the same as no mask at all; just a single address matches.

Here is another example which shows an IPv4 and an 1Pv6 network:

reci pi ent _unqual ified_hosts = 192.168.0.0/16: \
3ffe::ffff::836f::::/48

The doubling of list separator characters applies only when these items appear inline in a host
list. It is not required when indirecting via afile. For example,

reci pi ent _unqual i fi ed_hosts = /opt/exi nfunqual nets
could make use of afile containing

172.16.0.0/ 12
3ffe:ffff:836f::/48

to have exactly the same effect as the previous example. When listing |Pv6 addresses inline, it is
usually more convenient to use the facility for changing separator characters. This list contains
the same two networks:

reci pient_unqualified_hosts = <; 172.16.0.0/12; \
3ffe: ffff:836f::/48

The separator is changed to semicolon by the leading ‘<;’ at the start of the list.

10.12 Host list patterns for single-key lookups by host address

When a host is to be identified by a single-key lookup of its complete |P address, the pattern takes this
form:

net - <single-key-search-type>; <search-data>
For example:
host s_I ookup = net-cdb;/hosts-by-ip.db

The text form of the IP address of the subject host is used as the lookup key. 1Pv6 addresses are
converted to an unabbreviated form, using lower case letters, with dots as separators because colon is
the key terminator in Isearch files. [Colons can in fact be used in keys in Isearch files by quoting the
keys, but this is a facility that was added later.] The data returned by the lookup is not used.

Single-key lookups can also be performed using masked I P addresses, using patterns of this form:
net <number>- <single-key-search-type>; <search-data>
For example:

Exim 4.50 [85] domain, host, and address lists (10)

net 24- dbm / net wor ks. db

The IP address of the subject host is masked using <number> as the mask length. A textual string is
constructed from the masked value, followed by the mask, and this is used as the lookup key. For
example, if the host’s IP address is 192.168.34.6, the key that is looked up for the above example is
192.168.34.0/24’ . 1Pv6 addresses are converted to a text value using lower case letters and dots as
separators instead of the more usual colon, because colon is the key terminator in Isearch files. Full,
unabbreviated |Pv6 addresses are always used.

Warning: Specifing net32- (for an I1Pv4 address) or net128- (for an IPv6 address) is not the same as
specifing just net- without a number. In the former case the key strings include the mask value,
whereas in the latter case the IP address is used on its own.

10.13 Host list patterns that match by host name

There are several types of pattern that require Exim to know the name of the remote host. These
are either wildcard patterns or lookups by name. (If a complete hostname is given without any
wildcarding, it is used to find an IP address to match against, as described in the section 10.11 above.)

If the remote host name is not already known when Exim encounters one of these patterns, it has to be
found from the IP address. Although many sites on the Internet are conscientious about maintaining
reverse DNS data for their hosts, there are also many that do not do this. Consequently, a name cannot
always be found, and this may lead to unwanted effects. Take care when configuring host lists with
wildcarded name patterns. Consider what will happen if a name cannot be found.

Because of the problems of determining host names from IP addresses, matching against host names is
not as common as matching against | P addresses.

By default, in order to find a host name, Exim first does a reverse DNS lookup; if no name is found in
the DNS, the system function (gethostbyaddr() or getipnodebyaddr() if available) is tried. The order in
which these lookups are done can be changed by setting the host_lookup_order option.

There are some options that control what happens if a host name cannot be found. These are described
in section 10.14 below.

As a result of aiasing, hosts may have more than one name. When processing any of the following
types of pattern, all the host’'s names are checked:

e |If apattern starts with ‘+’ the remainder of the item must match the end of the host name. For
example, *. b. ¢ matches all hosts whose names end in .b.c. This specia simple form is
provided because this is a very common requirement. Other kinds of wildcarding require the use
of aregular expression.

e |If the item starts with ‘' it is taken to be a regular expression which is matched against the host
name. For example,

A(alb)\.c\.d$

is a regular expression that matches either of the two hosts a.c.d or b.c.d. When a regular
expression is used in a host list, you must take care that backslash and dollar characters are not
misinterpreted as part of the string expansion. The simplest way to do this is to use \ N to mark
that part of the string as non-expandable. For example:

sender _unqual i fi ed_hosts = \N'(a|b)\.c\.d$\ N :

Warning: If you want to match a complete host name, you must include the $ terminating
metacharacter in the regular expression, as in the above example. Without it, a match at the start
of the host name is al that is required.

Exim 4.50 [86] domain, host, and address lists (10)

10.14 Behaviour when an |IP address or name cannot be found

While processing a host list, Exim may need to look up an IP address from a name (see section 10.11),
or it may need to look up a host name from an IP address (see section 10.13). In either case, the
behaviour when it fails to find the information it is seeking is the same.

By default, Exim behaves as if the host does not match the list. This may not aways be what you
want to happen. To change Exim’'s behaviour, the special items +i ncl ude_unknown or
+i gnor e_unknown may appear in the list (at top level — they are not recognized in an indirected
file).

* If any item that follows +i ncl ude_unknown requires information that cannot found, Exim
behaves as if the host does match the list. For example,

host _rej ect _connection = +i ncl ude_unknown: *. eneny. ex

rejects connections from any host whose name matches *. eneny. ex, and also any hosts whose
name it cannot find.

* If any item that follows +i gnor e_unknown requires information that cannot be found, Exim
ignores that item and proceeds to the rest of the list. For example:

accept hosts = +ignore_unknown : friend.exanple : \
192.168.4.5

accepts from any host whose name is friend.example and from 192.168.4.5, whether or not its
host name can be found. Without +i gnore_unknown, if no name can be found for
192.168.4.5, it is rejected.

Both +i ncl ude_unknown and +i gnor e_unknown may appear in the same list. The effect of
each one lasts until the next, or until the end of the list.

Note: This section applies to permanent lookup failures. It does not apply to temporary DNS errors.
They always cause a defer action.

10.15 Host list patterns for single-key lookups by host name
If apattern is of the form

<single-key-search-type>; <search-data>
for example

dbm / host/ accept/1i st

a single-key lookup is performend, using the host name as its key. If the lookup succeeds, the host
matches the item. The actual data that is looked up is not used.

Reminder: With this kind of pattern, you must have host names as keys in the file, not IP addresses. If
you want to do lookups based on IP addresses, you must precede the search type with ‘net-’ (see
section 10.12). There is, however, no reason why you could not use two items in the same list, one
doing an address lookup and one doing a name lookup, both using the same file.

10.16 Host list patterns for query-style lookups
If apattern is of the form
<query-style-search-type>; <query>

the query is obeyed, and if it succeeds, the host matches the item. The actual data that is looked up is
not used. The variables $sender _host_address and $sender_host_name can be used in the query. For
example:

hosts_| ookup = pgsql;\
select ip fromhostlist where ip="$sender_host _address’

Exim 4.50 [87] domain, host, and address lists (10)

The value of $sender_host_address for an |Pv6 address contains colons. You can use the sg expan-
sion item to change this if you need to. If you want to use masked IP addresses in database queries,
you can use the mask expansion operator.

If the query contains a reference to $sender_host_name, Exim automatically looks up the host name
if has not aready done so. (See section 10.13 for comments on finding host names.)

Historical note: prior to release 4.30, Exim would always attempt to find a host name before running
the query, unless the search type was preceded by net - . This is no longer the case. For backwards
compatibility, net - is still recognized for query-style lookups, but its presence or absence has no
effect. (Of course, for single-key lookups, net - is important. See section 10.12.)

10.17 Mixing wildcarded host names and addresses in host lists

If you have name lookups or wildcarded host names and IP addresses in the same host list, you should
normally put the IP addresses first. For example, in an ACL you could have:

accept hosts = 10.9.8.7 : *.friend. exanple

The reason for this lies in the left-to-right way that Exim processes lists. It can test |P addresses
without doing any DNS lookups, but when it reaches an item that requires a host name, it fails if it
cannot find a host name to compare with the pattern. If the above list is given in the opposite order,
the accept statement fails for a host whose name cannot be found, even if its IP address is 10.9.8.7.

If you really do want to do the name check first, and still recognize the IP address, you can rewrite the
ACL like this:

accept hosts
accept hosts

* friend. exanpl e
10.9.8.7

If the first accept fails, Exim goes on to try the second one. See chapter 39 for details of ACLSs.

10.18 Address lists

Address lists contain patterns that are matched against mail addresses. There is one special case to be
considered: the sender address of a bounce message is always empty. You can test for this by
providing an empty item in an address list. For example, you can set up a router to process bounce
messages by using this option setting:

senders = :

The presence of the colon creates an empty item. If you do not provide any data, the list is empty and
matches nothing. The empty sender can aso be detected by a regular expression that matches an
empty string, and by a query-style lookup that succeeds when $sender_address is empty.

The following kinds of address list pattern can match any address, including the empty address that is
characteristic of bounce message senders:

* Asexplained above, if a pattern item is empty, it matches the empty address (and no others).

o |If (after expansion) a pattern starts with ‘', a regular expression match is done against the
complete address, with the pattern as the regular expression. You must take care that backslash
and dollar characters are not misinterpreted as part of the string expansion. The simplest way to
do thisisto use\ N to mark that part of the string as non-expandable. For example:

deny senders = \N'\d{8}. +@pamhaus. exanpl e$\ N :

The \ N seguences are removed by the expansion, so the item does start with ‘~' by the time it is
being interpreted as an address pattern.

e Complete addresses can be looked up by using a pattern that starts with a lookup type terminated
by a semicolon, followed by the data for the lookup. For example:

Exim 4.50 [88] domain, host, and address lists (10)

deny senders = cdb;/etc/bl ocked. senders : \
nysql ; sel ect address from bl ocked where \
addr ess=" ${ quot e_nysql : $sender _addr ess}’

Both query-style and single-key lookup types can be used. For a single-key lookup type, Exim
uses the complete address as the key. However, empty keys are not supported for single-key
lookups, so a match against the empty address always fails. This restriction does not apply to
query-style lookups.

Partial matching for single-key lookups (section 9.6) cannot be used, and is ignored if specified,
with an entry being written to the panic log. However, you can configure lookup defaults, as
described in section 9.5, but this is useful only for the ‘*@’ type of default. For example, with
this lookup:

accept senders = | search*@/sone/file
the file could contains lines like this:

user 1@onai nl. exanpl e
* @onai n2. exanpl e

and for the sender address nimrod@jaeger.example, the sequence of keys that are tried is:

ni nrod@ aeger . exanpl e
* @ aeger . exanpl e
*

Warning 1. Do not include a line keyed by ‘*’ in the file, because that would mean that every
address matches, thus rendering the test useless.

Warning 2: Do not confuse these two kinds of item:

deny recipients dbmr @/ sone/file
deny recipients *@bm / sone/file

The first does a whole address lookup, with defaulting, as just described, because it starts with a
lookup type. The second matches the local part and domain independently, as described in a
bullet point below.

The following kinds of address list pattern can match only non-empty addresses. If the subject address
is empty, a match against any of these pattern types aways fails.

If a pattern starts with ‘@@ followed by a single-key lookup item (for example,
@@ sear ch; /sone/fil e), the address that is being checked is split into a local part and a
domain. The domain is looked up in the file. If it is not found, there is no match. If it is found,
the data that is looked up from the file is treated as a colon-separated list of local part patterns,
each of which is matched against the subject local part in turn.

The lookup may be a partial one, and/or one involving a search for a default keyed by ‘+’ (see
section 9.5). The local part patterns that are looked up can be regular expressions or begin with
“+’or even be further lookups. They may also be independently negated. For example, with

deny senders = @@bm /etc/reject-by-donain
the data from which the DBM file is built could contain lines like
baddomai n. com ! postnaster : *

to regject all senders except postmaster from that domain. If alocal part that actually begins with
an exclamation mark is required, it has to be specified using a regular expression. In Isearch
files, an entry may be split over several lines by indenting the second and subsequent lines, but
the separating colon must till be included at line breaks. White space surrounding the colons is
ignored. For example:

aol .com spamerl : spamer2 : ~[0-9]+$:
spammer 3 . spammer4

Exim 4.50 [89] domain, host, and address lists (10)

Asin al colon-separated lists in Exim, a colon can be included in an item by doubling.

If the last item in the list starts with a right angle-bracket, the remainder of the item is taken as a
new key to look up in order to obtain a continuation list of local parts. The new key can be any
sequence of characters. Thus one might have entries like

aol .com spanmerl : spamer 2 : >*
Xyz.com spamer3 : >*
*: A\ d{ 8} $

in a file that was searched with @@dbm=*, to specify a match for 8-digit local parts for all
domains, in addition to the specific local parts listed for each domain. Of course, using this
feature costs another lookup each time a chain is followed, but the effort needed to maintain the
datais reduced. It is possible to construct loops using this facility, and in order to catch them, the
chains may be no more than fifty items long.

* The @@<lookup> style of item can also be used with a query-style lookup, but in this case, the
chaining facility is not available. The lookup can only return a single list of local parts.

e |If a pattern contains an @ character, but is not a regular expression and does not begin with a
lookup type as described above, the local part of the subject address is compared with the local
part of the pattern, which may start with an asterisk. If the local parts match, the domain is
checked in exactly the same way as for a pattern in a domain list. For example, the domain can
be wildcarded, refer to a named list, or be a lookup:

deny senders = *@. spanm ng.site:\
*@hostil e _domains:\
bozo@artial -1search;/list/of/dodgy/sites:\
*@lbm / bad/ domai ns. db

If alocal part that begins with an exclamation mark is required, it has to be specified using a
regular expression, because otherwise the exclamation mark is treated as a sign of negation.

e |If a pattern is not one of the above syntax forms, that is, if a non-empty pattern that is not a
regular expression or a lookup does not contain an @ character, it is matched against the domain
part of the subject address. The only two formats that are recognized this way are a literal
domain, or a domain pattern that starts with . In both these cases, the effect is the ssme asif * @
preceded the pattern.

War ning: there is an important difference between the address list items in these two examples:

senders
senders

+ny_|i st
*@ny _|ist

In the first one, ny_|i st is a named address list, whereas in the second example it is a named
domain list.

10.19 Case of lettersin address lists

Domains in email addresses are always handled caselessly, but for local parts case may be significant
on some systems (see caseful _local _part for how Exim deals with this when routing addresses).
However, RFC 2505 (Anti-Spam Recommendations for SMTP MTAS) suggests that matching of
addresses to blocking lists should be done in a case-independent manner. Since most address lists in
Exim are used for this kind of control, Exim attempts to do this by default.

The domain portion of an address is always lowercased before matching it to an address list. The local
part is lowercased by default, and any string comparisons that take place are done caselessly. This
means that the data in the address list itself, in files included as plain file names, and in any file that is
looked up using the ‘@@’ mechanism, can be in any case. However, the keys in files that are looked
up by a search type other than Isearch (which works caselessly) must be in lower case, because these
lookups are not case-independent.

Exim 4.50 [90] domain, host, and address lists (10)

To alow for the possibility of caseful address list matching, if an item in an address list is the string
‘+caseful’, the original case of the local part is restored for any comparisons that follow, and string
comparisons are no longer case-independent. This does not affect the domain, which remains in lower
case. However, although independent matches on the domain alone are still performed caselessly,
regular expressions that match against an entire address become case-sensitive after ‘+caseful’ has
been seen.

10.20 Local part lists

Case-sengitivity in local part lists is handled in the same way as for address lists, as just described.
The ‘+caseful’ item can be used if required. In a setting of the local_parts option in a router with
caseful_local_part set false, the subject is lowercased and the matching is initially case-insensitive. In
this case, ‘+caseful’ will restore case-sensitive matching in the local part list, but not elsewhere in the
router. If caseful_local_part is set true in a router, matching in the local_parts option is case-sensitive
from the start.

If alocal part list isindirected to a file (see section 10.3), comments are handled in the same way as
address lists — they are recognized only if the # is preceded by white space or the start of the line.
Otherwise, local part lists are matched in the same way as domain lists, except that the special items
that refer to the local host (@ @], @x_any, @rx_primary, and @x_secondary) are not
recognized. Refer to section 10.8 for details of the other available item types.

Exim 4.50 [91] domain, host, and address lists (10)

11. String expansions

Many strings in Exim'’s run time configuration are expanded before use. Some of them are expanded
every time they are used; others are expanded only once.

When a string is being expanded it is copied verbatim from left to right except when a dollar or
backslash character is encountered. A dollar specifies the start of a portion of the string which is
interpreted and replaced as described below in section 11.5 onwards. Backslash is used as an escape
character, as described in the following section.

11.1 Literal text in expanded strings

An uninterpreted dollar can be included in an expanded string by putting a backslash in front of it. A
backslash can be used to prevent any special character being treated specially in an expansion,
including itself. If the string appears in quotes in the configuration file, two backslashes are required
because the quotes themselves cause interpretation of backslashes when the string is read in (see
section 6.12).

A portion of the string can specified as non-expandable by placing it between two occurrences of \ N.
This is particularly useful for protecting regular expressions, which often contain backslashes and
dollar signs. For example:

deny senders = \N"\d{8}[a-z] @one\.site\.exanpl e$\ N

On encountering the first \ N, the expander copies subsequent characters without interpretation until it
reaches the next \ N or the end of the string.

11.2 Character escape sequences in expanded strings

A backslash followed by one of the letters ‘n’, ‘r’, or ‘t’ in an expanded string is recognized as an
escape sequence for the character newline, carriage return, or tab, respectively. A backslash followed
by up to three octal digits is recognized as an octal encoding for a single character, and a backslash
followed by ‘x’ and up to two hexadecimal digits is a hexadecimal encoding.

These escape sequences are also recognized in quoted strings when they are read in. Their interpret-
ation in expansions as well is useful for unquoted strings, and for other cases such as looked-up strings
that are then expanded.

11.3 Testing string expansions

Many expansions can be tested by calling Exim with the -be option. This takes the command
arguments, or lines from the standard input if there are no arguments, runs them through the string
expansion code, and writes the results to the standard output. Variables based on configuration values
are set up, but since no message is being processed, variables such as $local_part have no vaue.
Nevertheless the -be option can be useful for checking out file and database lookups, and the use of
expansion operators such as sg, substr and nhash.

Exim gives up its root privilege when it is called with the -be option, and instead runs under the uid
and gid it was called with, to prevent users from using -be for reading files to which they do not have
access.

11.4 Forced expansion failure

A number of expansions that are described in the following section have alternative ‘true’ and ‘false
substrings, enclosed in curly brackets. Which one is used depends on some condition that is evaluated
as part of the expansion. If, instead of a ‘fase substring, the word ‘fail’ is used (not in curly
brackets), the entire string expansion fails in a way that can be detected by the code that requested the
expansion. This is caled ‘forced expansion failure’, and its consegquences depend on the circum-

Exim 4.50 [92] string expansions (11)

stances. In some cases it is no different from any other expansion failure, but in others a different
action may be taken. Such variations are mentioned in the documentation of the option that is being
expanded.

11.5 Expansion items

The following items are recognized in expanded strings. White space may be used between sub-items
that are keywords or substrings enclosed in braces inside an outer set of braces, to improve readability.
War ning: Within braces, white space is significant.

$<variable name> or ${<variable name>}
Substitute the contents of the named variable, for example

$l ocal _part
${ domai n}

The second form can be used to separate the name from subsequent aphanumeric characters. This
form (using curly brackets) is available only for variables; it does not apply to message headers.
The names of the variables are given in section 11.9 below. If the name of a non-existent variable
is given, the expansion fails.

$<op>:<string>}

The string is first itself expanded, and then the operation specified by <op> is applied to it. For
example,

${1 c: $l ocal part}

The string starts with the first character after the colon, which may be leading white space. A list
of operators is given in section 11.6 below. The operator notation is used for ssimple expansion
items that have just one argument, because it reduces the number of braces and therefore makes
the string easier to understand.

H extract{<key>}{<stringl>}{<string2>}{<string3>}}

The key and <stringl> are first expanded separately. Leading and trailing whitespace is removed
from the key (but not from any of the strings). The key must not consist entirely of digits. The
expanded <stringl> must be of the form:

<keyl> = <valuel> <key2> = <value2> ...

where the equals signs and spaces (but not both) are optional. If any of the values contain white
space, they must be enclosed in double quotes, and any values that are enclosed in double quotes
are subject to escape processing as described in section 6.12. The expanded <string1> is searched
for the value that corresponds to the key. The search is case-insensitive. If the key is found,
<string2> is expanded, and replaces the whole item; otherwise <string3> is used. During the
expansion of <string2> the variable $value contains the value that has been extracted. Afterwards,
it is restored to any previous value it might have had.

If {<string3>} is omitted, the item is replaced by an empty string if the key is not found. If
{<string2>} is also omitted, the value that was extracted is used. Thus, for example, these two
expansions are identical, and yield ‘2001":

${extract{gid}{ui d=1984 gi d=2001}}

${extract{gid}{ui d=1984 gi d=2001}{$val ue}}

Instead of {<string3>} the word ‘fail’ (not in curly brackets) can appear, for example:

${extract{Z}{A=... B=...}{$value} fail }
This forces an expansion failure (see section 11.4); {<string2>} must be present for ‘fail’ to be
recognized.

Exim 4.50 [93] string expansions (11)

${ extract{<number>}{<separators>}{<stringl>}{<string2>}{<string3>}}

The <number> argument must consist entirely of decima digits, apart from leading and trailing
whitespace, which is ignored. This is what distinguishes this form of extract from the previous
kind. It behaves in the same way, except that, instead of extracting a named field, it extracts from
<stringl> the field whose number is given as the first argument. You can use $value in <string2>
or fail instead of <string3> as before.

The fields in the string are separated by any one of the characters in the separator string. These
may include space or tab characters. The first field is numbered one. If the number is negative, the
fields are counted from the end of the string, with the rightmost one numbered -1. If the number
given is zero, the entire string is returned. If the modulus of the number is greater than the number
of fields in the string, the result is the expansion of <string3>, or the empty string if <string3> is
not provided. For example:

${extract{2}{:}{x:42:99: & Mailer::/bin/bash}}
yields ‘42, and
${extract{-4}{:}{x:42:99: & Mail er::/bin/bash}}

yields ‘99'. Two successive separators mean that the field between them is empty (for example,
the fifth field above).

$ hash{<stringl>}{<string2>}{<string3>}}

This is a textual hashing function, and was the first to be implemented in early versions of Exim.
In current releases, there are other hashing functions (numeric, MD5, and SHA-1), which are
described below.

The first two strings, after expansion, must be numbers. Call them <m> and <n>. If you are using
fixed values for these numbers, that is, if <stringl> and <string2> do not change when they are
expanded, you can use the simpler operator notation that avoids some of the braces:

${ hash_<n>_<m>: <string>}
The second number is optional (in both notations).

If <n> is greater than or equal to the length of the string, the expansion item returns the string.
Otherwise it computes a new string of length <n> by applying a hashing function to the string.
The new string consists of characters taken from the first <m> characters of the string

abcdef ghi j kl mopqr st uvwxyz ABCDEFGHI J KLIMNOPQARSTUVWKYZ0123456789
If <m> is not present the value 26 is used, so that only lower case letters appear. For example:

${ hash{3}{nont y}} yields j ng
${ hash{5} { nont y} } yields nonty
${hash{4}{62}{nmonty python}} yields f bW

$header _<header name>: or $h_<header name>:
$bheader <header name>: or $bh_<header name>:
$rheader _<header name>: or $rh_<header name>:
Substitute the contents of the named message header line, for example
$header _reply-to:

The newline that terminates a header line is not included in the expansion, but internal newlines
(caused by splitting the header line over several physical lines) may be present.

The difference between rheader, bheader, and header isin the way the data in the header line is
interpreted.

* rheader gives the original ‘raw’ content of the header line, with no processing at all, and
without the removal of leading and trailing whitespace.

Exim 4.50 [94] string expansions (11)

e bheader removes leading and trailing whitespace, and then decodes base64 or quoted-
printable MIME ‘words within the header text, but does no character set trandlation. If
decoding of what looks superficidly like a MIME ‘word’ fails, the raw string is returned. If
decoding produces a binary zero character, it is replaced by a question mark — this is what
Exim does for binary zeros that are actually received in header lines.

* header tries to trandate the string as decoded by bheader to a standard character set. Thisis
an attempt to produce the same string as would be displayed on a user’s MUA. If trandation
fails, the bheader string is returned. Trangdlation is attempted only on operating systems that
support the iconv() function. This is indicated by the compile-time macro HavE_ICONV in a
system Makefile or in L ocal/M akefile.

In afilter file, the target character set for header can be specified by a command of the following
form:

headers charset "UTF-8"

This command affects all references to $h_ (or $header_) expansions in subsequently obeyed
filter commands. In the absence of this command, the target character set in a filter is taken from
the setting of the headers_charset option in the runtime configuration. The value of this option
defaults to the value of HEADERS CHARSET in L ocal/M akefile. The ultimate default is 1SO-8859-1.

Header names follow the syntax of RFC 2822, which states that they may contain any printing
characters except space and colon. Consequently, curly brackets do not terminate header names,
and should not be used to enclose them as if they were variables. Attempting to do so causes a
syntax error.

Only header lines that are common to all copies of a message are visible to this mechanism. These
are the original header lines that are received with the message, and any that are added by an
ACL warn statement or by a system filter. Header lines that are added to a particular copy of a
message by a router or transport are not accessible.

For incoming SMTP messages, no header lines are visible in ACLs that are obeyed before the
DATA ACL, because the header structure is not set up until the message is received. Header lines
that are added by warn statements in a rcet ACL (for example) are saved until the message's
incoming header lines are available, at which point they are added. When a pata ACL is running,
however, header lines added by earlier ACLs are visible.

Upper case and lower case letters are synonymous in header names. If the following character is
white space, the terminating colon may be omitted, but this is not recommended, because you may
then forget it when it is needed. When white space terminates the header name, it is included in
the expanded string. If the message does not contain the given header, the expansion item is
replaced by an empty string. (See the def condition in section 11.7 for a means of testing for the
existence of a header.)

If there is more than one header with the same name, they are all concatenated to form the
substitution string, up to a maximum length of 64K. A newline character is inserted between each
line. For the header expansion, for those headers that contain lists of addresses, a comma is also
inserted at the junctions between lines. This does not happen for the rheader expansion.

${hmac{<hashname>}{<secret>}{<string>}}

This function uses cryptographic hashing (either MD5 or SHA-1) to convert a shared secret and
some text into a message authentication code, as specified in RFC 2104. This differs from
${nd5: secret _text...} or ${shal: secret _text...} in that the hmac step adds a
signature to the cryptographic hash, allowing for authentication that is not possible with MD5 or
SHA-1 aone. The hash name must expand to either nd5 or shal at present. For example:

${ hmac{ nd5} { sonesecret }{ $pri mary_host nane $tod_| og}}
For the hostname mail.example.com and time 2002-10-17 11:30:59, this produces:
dd97e3ba5d1a61b5006108f 8c8252953

Exim 4.50 [95] string expansions (11)

As an example of how this might be used, you might put in the main part of an Exim
configuration:

SPAMSCAN_SECRET=cohgheelei 2t hahw
In arouter or atransport you could then have:

headers_add =\
X- Spam Scanned: ${primary_host nane} ${nmessage_id} \
${ hmac{ nd5} { SPAMSCAN_SECRET}\
{${primary_host nane}, ${ nessage_i d}, $h_nessage-i d: }}

Then given a message, you can check where it was scanned by looking at the X-Spam-Scanned:
header line. If you know the secret, you can check that this header line is authentic by recomput-
ing the authentication code from the host name, message ID and the Message-id: header line. This
can be done using Exim's -be option, or by other means, for example by using the
hmac_md5_hex() function in Perl.

Hif <condition> {<stringl>}{<string2>}}

If <condition> is true, <stringl> is expanded and replaces the whole item; otherwise <string2> is
used. The available conditions are described in section 11.7 below. For example:

${if eq {$l ocal _part}{postmaster} {yes}{no} }

The second string need not be present; if it is not and the condition is not true, the item is
replaced with nothing. Alternatively, the word ‘fail’ may be present instead of the second string
(without any curly brackets). In this case, the expansion is forced to fail if the condition is not true
(see section 11.4).

If both strings are omitted, the result is the string t r ue if the condition is true, and the empty
string if the condition is false. This makes it less cumbersome to write custom ACL and router
conditions. For example, instead of

condition = ${if >{$%acl_mi}{3}{true}{fal se}}
you can use
condition = ${if >{$%acl _mi}{3}}
${length{<stringl>}{<string2>}}

The length item is used to extract the initial portion of a string. Both strings are expanded, and
the first one must yield a number, <n>, say. If you are using a fixed value for the number, that is,
if <stringl> does not change when expanded, you can use the simpler operator notation that
avoids some of the braces:

${| engt h_<n>: <string>}
The result of this item is either the first <n> characters or the whole of <string2>, whichever is
the shorter. Do not confuse length with strlen, which gives the length of a string.
${lookup{<key>} <search type> {<file>} {<stringl>} {<string2>}}
${lookup <search type> {<query>} {<stringl>} {<string2>}}

These items specify data lookups in files and databases, as discussed in chapter 9. The first form
is used for single-key lookups, and the second is used for query-style lookups. The <key>, <file>,
and <query> strings are expanded before use.

If there is any white space in a lookup item which is part of a filter command, a retry or rewrite
rule, a routing rule for the manualroute router, or any other place where white space is signifi-
cant, the lookup item must be enclosed in double quotes. The use of data lookups in users’ filter
files may be locked out by the system administrator.

If the lookup succeeds, <stringl> is expanded and replaces the entire item. During its expansion,
the variable $value contains the data returned by the lookup. Afterwards it reverts to the value it

Exim 4.50 [96] string expansions (11)

had previoudly (at the outer level it is empty). If the lookup fails, <string2> is expanded and
replaces the entire item. If {<string2>} is omitted, the replacement is the empty string on failure.
If <string2> is provided, it can itself be a nested lookup, thus providing a mechanism for looking
up a default value when the original lookup fails.

If a nested lookup is used as part of <stringl>, $value contains the data for the outer lookup
while the parameters of the second lookup are expanded, and also while <string2> of the second
lookup is expanded, should the second lookup fail.

Instead of {<string2>} the word ‘fail’ can appear, and in this case, if the lookup fails, the entire
expansion is forced to fail (see section 11.4). If both {<string1>} and {<string2>} are omitted, the
result is the looked up value in the case of a successful lookup, and nothing in the case of failure.

For single-key lookups, the string ‘partial’ is permitted to precede the search type in order to do
partial matching, and * or *@ may follow a search type to request default lookups if the key does
not match (see sections 9.5 and 9.6 for details).

If a partial search is used, the variables $1 and $2 contain the wild and non-wild parts of the key
during the expansion of the replacement text. They return to their previous values at the end of the
lookup item.

This example looks up the postmaster alias in the conventional alias file:
${| ookup {postmaster} |search {/etc/aliases} {$val ue}}

This example uses NIS+ to look up the full name of the user corresponding to the local part of an
address, forcing the expansion to fail if it is not found:

${| ookup ni splus {[name=$l ocal _part], passwd. org_dir:gcos} \
{$val ue}fail}

$ nhash{<stringl>}{<string2>}{<string3>}}

The three strings are expanded; the first two must yield numbers. Call them <n> and <m>. If you
are using fixed values for these numbers, that is, if <stringl> and <string2> do not change when
they are expanded, you can use the simpler operator notation that avoids some of the braces:

${ nhash_<n>_<m>: <string>}

The second number is optional (in both notations). If there is only one number, the result is a
number in the range 0—<n>-1. Otherwise, the string is processed by a div/mod hash function that
returns two numbers, separated by a slash, in the ranges 0 to <n>-1 and 0 to <m>-1, respectively.
For example,

${nhash{8}{64}{supercalifragilisticexpialidocious}}
returns the string ‘6/33'.
${ per{<subroutine>}{<arg>}{<arg>}...}

This item is available only if Exim has been built to include an embedded Perl interpreter. The
subroutine name and the arguments are first separately expanded, and then the Perl subroutine is
called with those arguments. No additional arguments need be given; the maximum number
permitted, including the name of the subroutine, is nine.

The return value of the subroutine is inserted into the expanded string, unless the return value is
undef. In that case, the expansion fails in the same way as an explicit ‘fail’ on alookup item. The
return value is a scalar. Whatever you return is evaluated in a scalar context. For example, if you
return the name of a Perl vector, the return value is the size of the vector, not its contents.

If the subroutine exits by calling Perl’s die function, the expansion fails with the error message
that was passed to die. More details of the embedded Perl facility are given in chapter 12.

The redirect router has an option caled forbid_filter_perl which locks out the use of this
expansion item in filter files.

Exim 4.50 [97] string expansions (11)

${readfile{<file name>}{<eal string>}}

The file name and end-of-line string are first expanded separately. The file is then read, and its
contents replace the entire item. All newline characters in the file are replaced by the end-of-line
string if it is present. Otherwise, newlines are left in the string. String expansion is not applied to
the contents of the file. If you want this, you must wrap the item in an expand operator. If the file
cannot be read, the string expansion fails.

The redirect router has an option called forbid_filter_readfile which locks out the use of this
expansion item in filter files.

${readsock et{ <name>}{ <request>}{ <timeout>}{<eol string>}{<fail string>}}

This item inserts data that is read from a Unix domain socket into the expanded string. The
minimal way of using it uses just two arguments:

${readsocket {/ socket/ nanme}{request string}}

Exim connects to the socket, writes the request string (unless it is an empty string) and reads from
the socket until an end-of-file is read. A timeout of 5 seconds is applied. Additional, optional
arguments extend what can be done. Firstly, you can vary the timeout. For example:

${readsocket {/ socket/ name}{request-string}{3s}}

A fourth argument allows you to change any newlines that are in the data that is read, in the same
way as for readfile (see above). This example turns them into spaces:

${readsocket {/ socket/ name}{request-string}{3s}{ }}

As with al expansions, the substrings are expanded before the processing happens. Errors in these
sub-expansions cause the expansion to fail. In addition, the following errors can occur:

« Failure to create a socket file descriptor;
¢ Failure to connect the socket;

» Failure to write the request-string;

e Timeout on reading from the socket.

By default, any of these errors causes the expansion to fail. However, if you supply a fifth
substring, it is expanded and used when any of the above errors occurs. For example:

${readsocket {/ socket/ nane}{request-string}{3s}{\n}\
{socket failure}}

You can test for the existence of the socket by wrapping this expansion in ${i f exi sts, but
there is a race condition between that test and the actual opening of the socket, so it is safer to use
the fifth argument if you want to be absolutely sure of avoiding an expansion error for a non-
existent socket.

The redirect router has an option called forbid_filter_readsocket which locks out the use of this
expansion item in filter files.

$rheader _<header name>: or $rh_<header name>:
This item inserts ‘raw’ header lines. It is described with the header expansion item above.
${run{<command> <args>}{<stringl>}{<string2>}}

The command and its arguments are first expanded separately, and then the command is run in a
separate process, but under the same uid and gid. As in other command executions from Exim, a
shell is not used by default. If you want a shell, you must explicitly code it. If the command
succeeds (gives a zero return code) <stringl> is expanded and replaces the entire item; during this
expansion, the standard output from the command is in the variable $value. If the command fails,
<string2>, if present, is expanded. If it is absent, the result is empty. Alternatively, <string2> can

Exim 4.50 [98] string expansions (11)

be the word ‘fail’ (not in braces) to force expansion failure if the command does not succeed. If
both strings are omitted, the result is the standard output on success, and nothing on failure.

The return code from the command is put in the variable $runrc, and this remains set afterwards,
so in afilter file you can do things like this:

if "${run{x y z}{}}$runrc” is 1 then ...
elif $runrc is 2 then ...
endi f
If execution of the command fails (for example, the command does not exist), the return code is
127 — the same code that shells use for non-existent commands.

Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those pre-conditions whose order of testing is documented. Therefore, you
cannot reliably expect to set $runrc by the expansion of one option, and use it in another.

The redirect router has an option called forbid_filter_run which locks out the use of this
expansion item in filter files.

${ sg{ <subject>}{ <regex>}{ <replacement>}}

This item works like Perl’s substitution operator (s) with the global (/g) option; hence its name.
However, unlike the Perl equivalent, Exim does not modify the subject string; instead it returns
the modified string for insertion into the overall expansion. The item takes three arguments: the
subject string, a regular expression, and a substitution string. For example

${sg{ abcdef abcdef } {abc}{xyz}}

yields ‘xyzdefxyzdef’. Because al three arguments are expanded before use, if any $ or \
characters are required in the regular expression or in the substitution string, they have to be
escaped. For example

${sg{abcdef }{"(...)(...)\$}{\$2\$1}}
yields ‘defabc’, and
${sg{1=A 4=D 3=C}{\N(\d+) =\ N} { K\ $1=} }

yields ‘K1=A K4=D K3=C'. Note the use of \ N to protect the contents of the regular expression
from string expansion.

Hsubstr{<stringl>}{<string2>}{<string3>}}

The three strings are expanded; the first two must yield numbers. Call them <n> and <m>. If you
are using fixed values for these numbers, that is, if <stringl> and <string2> do not change when
they are expanded, you can use the simpler operator notation that avoids some of the braces:

${ subst r_<n>_<m>: <string>}

The second number is optiona (in both notations). If it is absent in the simpler format, the
preceding underscore must also be omitted.

The substr item can be used to extract more general substrings than length. The first number,
<n>, is a starting offset, and <m> is the length required. For example

${substr{3}{2}{$l ocal _part}}

If the starting offset is greater than the string length the result is the null string; if the length plus
starting offset is greater than the string length, the result is the right-hand part of the string,
starting from the given offset. The first character in the string has offset zero.

The substr expansion item can take negative offset values to count from the right-hand end of its
operand. The last character is offset -1, the second-last is offset -2, and so on. Thus, for example,

${substr{-5}{2}{1234567}}

Exim 4.50 [99] string expansions (11)

yields ‘34'. If the absolute value of a negative offset is greater than the length of the string, the
substring starts at the beginning of the string, and the length is reduced by the amount of
overshoot. Thus, for example,

${substr{-5}{2}{12}}
yields an empty string, but
${substr{-3}{2}{12}}
yields ‘1.
When the second number is omitted from substr, the remainder of the string is taken if the offset

is positive. If it is negative, all characters in the string preceding the offset point are taken. For
example, an offset of -1 and no length, as in these semantically identical examples:

${substr_-1: abcde}
${substr{-1}{abcde}}

yields al but the last character of the string, that is, ‘abed’.
${tr{<subject>}{<characters>}{ <replacements>}}

This item does single-character trandation on its subject string. The second argument is a list of
characters to be trandated in the subject string. Each matching character is replaced by the
corresponding character from the replacement list. For example

${tr{abcdea}{ac}{13}}

yields ‘1b3del’. If there are duplicates in the second character string, the last occurrence is used.
If the third string is shorter than the second, its last character is replicated. However, if it is empty,
no trandation takes place.

11.6 Expansion operators

For expansion items that perform transformations on a single argument string, the ‘operator’ notation
is used because it is simpler and uses fewer braces. The substring is first expanded before the
operation is applied to it. The following operations can be performed:

${address.<string>}

The string is interpreted as an RFC 2822 address, as it might appear in a header line, and the
effective address is extracted from it. If the string does not parse successfully, the result is empty.

$ base62: <digits>}

The string must consist entirely of decimal digits. The number is converted to base 62 (sic) and
output as a string of six characters, including leading zeros. Note: Just to be absolutely clear: this
is not base64 encoding.

$ base62d: <base-62 digits>}

The string must consist entirely of base-62 digits. The number is converted to decimal and output
as a string.

${domain:<string>}
The string is interpreted as an RFC 2822 address and the domain is extracted from it. If the string
does not parse successfully, the result is empty.

$ escape:<string>}

If the string contains any non-printing characters, they are converted to escape segquences starting
with a backslash. Whether characters with the most significant bit set (so-called *8-bit characters’)
count as printing or not is controlled by the print_topbitchars option.

Exim 4.50 [100] string expansions (11)

Heval:<string>}
$eval 10:<string>}

These items supports simple arithmetic in expansion strings. The string (after expansion) must be
a conventional arithmetic expression, but it is limited to the four basic operators (plus, minus,
times, divide) and parentheses. All operations are carried out using integer arithmetic. Plus and
minus have a lower priority than times and divide; operators with the same priority are evaluated
from left to right.

For eval, numbers may be decimal, octal (starting with ‘0’) or hexadecimal (starting with ‘0x’).
For eval10, al numbers are taken as decimal, even if they start with a leading zero. This can be
useful when processing numbers extracted from dates or times, which often do have leading zeros.

A number may be followed by ‘K’ or ‘M’ to multiply it by 1024 or 1024*1024, respectively.
Negative numbers are supported. The result of the computation is a decimal representation of the
answer (without ‘K’ or ‘“M”). For example:

${eval : 1+1} yields 2
${ eval : 1+2*3} yields 7
${eval : (1+2)*3} yields 9

As amore redistic example, in an ACL you might have

deny message = Too many bad recipients

condition = \
${if and { \
{>{$rcpt_count}{10}} \

\

L \
{$recipients_count} \
{${eval : $rcpt _count/2}} \

\

} {;es}{ no}}
The condition is true if there have been more than 10 rcet commands and fewer than half of them
have resulted in a valid recipient.
$ expand: <string>}
The expand operator causes a string to be expanded for a second time. For example,
${ expand: ${| ookup{ $domai n} dbn{/ sone/fil e} {$val ue}}}

first looks up a string in a file while expanding the operand for expand, and then re-expands what
it has found.

${from_utf8:<string>}

The world is dowly moving towards Unicode, although there are no standards for email yet.
However, other applications (including some databases) are starting to store data in Unicode, using
UTF-8 encoding. This operator converts from a UTF-8 string to an 1SO-8859-1 string. UTF-8
code values greater than 255 are converted to underscores. The input must be a valid UTF-8
string. If it is not, the result is an undefined sequence of bytes.

Unicode code points with values less than 256 are compatible with ASCII and 1SO-8859-1 (also
known as Latin-1). For example, character 169 is the copyright symbol in both cases, though the
way it is encoded is different. In UTF-8, more than one byte is needed for characters with code
values greater than 127, whereas | SO-8859-1 is a single-byte encoding (but thereby limited to 256
characters). This makes translation from UTF-8 to 1SO-8859-1 straightforward.

Exim 4.50 [101] string expansions (11)

${hash_<n>_<m>:<string>}

The hash operator is a simpler interface to the hashing function that can be used when the two
parameters are fixed numbers (as opposed to strings that change when expanded). The effect is the
same as

${ hash{ <n>} { <m>} { <string>} }

See the description of the general hash item above for details. The abbreviation h can be used
when hash is used as an operator.

${ hex2b64: <hexstring>}

This operator converts a hex string into one that is base64 encoded. This can be useful for
processing the output of the MD5 and SHA-1 hashing functions.

Hlc:<string>}
This forces the letters in the string into lower-case, for example:
${1 c: $l ocal part}
Hlength_<number>:<string>}

The length operator is a simpler interface to the length function that can be used when the
parameter is a fixed number (as opposed to a string that changes when expanded). The effect is
the same as

${ | engt h{ <number>} { <string>} }

See the description of the general length item above for details. Note that length is not the same
as strlen. The abbreviation | can be used when length is used as an operator.

$Hlocal_part:<string>}

The string is interpreted as an RFC 2822 address and the local part is extracted from it. If the
string does not parse successfully, the result is empty.

$mask:<IP address>/<bit count>}

If the form of the string to be operated on is not an IP address followed by a slash and an integer
(that is, a network address in CIDR notation), the expansion fails. Otherwise, this operator
converts the IP address to binary, masks off the least significant bits according to the bit count,
and converts the result back to text, with mask appended. For example,

${mask: 10. 111. 131. 206/ 28}

returns the string ‘10.111.131.192/28'. Since this operation is expected to be mostly used for
looking up masked addresses in files, the result for an IPv6 address uses dots to separate
components instead of colons, because colon terminates a key string in Isearch files. So, for
example,

${mask: 3ffe: ffff:836f:0a00: 000a: 0800: 200a: c031/ 99}
returns the string
3ffe.ffff.836f.0a00.000a. 0800. 2000. 0000/ 99
Letters in IPv6 addresses are always output in lower case.
${md5: <string>}

The md5 operator computes the MD5 hash value of the string, and returns it as a 32-digit
hexadecimal number, in which any letters are in lower case.

Exim 4.50 [102] string expansions (11)

${nhash_<n> <m>:<string>}

The nhash operator is a simpler interface to the numeric hashing function that can be used when
the two parameters are fixed numbers (as opposed to strings that change when expanded). The
effect is the same as

${ nhash{ <n>} { <m>} { <string>} }
See the description of the general nhash item above for details.
$quote:<string>}

The quote operator puts its argument into double quotes if it is an empty string or contains
anything other than letters, digits, underscores, dots, and hyphens. Any occurrences of double
guotes and backslashes are escaped with a backslash. Newlines and carriage returns are converted
to\ n and\ r, respectively For example,

${ quot e: ab" *" cd}
becomes
"ab\"*\"cd"

The place where this is useful is when the argument is a substitution from a variable or a message
header.

Hquote local_part:<string>}

This operator is like quote, except that it quotes the string only if required to do so by the rules of
RFC 2822 for quoting local parts. For example, a plus sign would not cause quoting (but it would
for quote). If you are creating a new email address from the contents of $local_part (or any other
unknown data), you should aways use this operator.

${quote_<lookup-type>:<string>}

This operator applies lookup-specific quoting rules to the string. Each query-style lookup type has
its own quoting rules which are described with the lookups in chapter 9. For example,

${quote_| dap:two * two}
returns
t wo%209%b C2A%20t wo

For single-key lookup types, no quoting is ever necessary and this operator yields an unchanged
string.
${rxquote:<string>}

The rxquote operator inserts a backslash before any non-alphanumeric characters in its argument.
This is useful when substituting the values of variables or headers inside regular expressions.

${rfc2047:<string>}

This operator encodes text according to the rules of RFC 2047. This is an encoding that is used in
header lines to encode non-ASCII characters. It is assumed that the input string is in the encoding
specified by the headers_charset option, which defaults to 1SO-8859-1. If the string contains only
characters in the range 33-126, and no instances of the characters

?=()<>@, ; :\" .1 _

it is not modified. Otherwise, the result is the RFC 2047 encoding of the string, using as many
‘coded words' as necessary to encode all the characters.

Exim 4.50 [103] string expansions (11)

${shal:<string>}

The shal operator computes the SHA-1 hash value of the string, and returns it as a 40-digit
hexadecimal number, in which any letters are in upper case.

$stat:<string>}

The string, after expansion, must be a file path. A call to the stat() function is made for this path.
If stat() fails, an error occurs and the expansion fails. If it succeeds, the data from the stat replaces
the item, as a series of <name>=<value> pairs, where the values are all numerical, except for the
value of ‘smode’. The names are: ‘mode’ (giving the mode as a 4-digit octal number), ‘smode’
(giving the mode in symbolic format as a 10-character string, as for the Is command), ‘inode’,
‘device’, ‘links, ‘uid’, ‘gid’, ‘size’, ‘atime’, ‘mtime’, and ‘ctime’. You can extract individua
fields using the extract expansion item. Warning: The file size may be incorrect on 32-bit
systems for files larger than 2GB.

${str2b64:<string>}
This operator converts a string into one that is base64 encoded.

${strlen:<string>}

The item is replace by the length of the expanded string, expressed as a decima number. Note:
Do not confuse strlen with length.

${substr_<start> <length>:<string>}

The substr operator is a simpler interface to the substr function that can be used when the two
parameters are fixed numbers (as opposed to strings that change when expanded). The effect is the
same as

${ subst r { <start>} { <length>} { <string>} }

See the description of the general substr item above for details. The abbreviation s can be used
when substr is used as an operator.

${time_interval:<string>}

The argument (after sub-expansion) must be a sequence of decimal digits that represents an
interval of time as a number of seconds. It is converted into a number of larger units and output in
Exim’s normal time format, for example, 1w3d4h2nbs.

${uc:<string>}
This forces the letters in the string into upper-case.

11.7 Expansion conditions
The following conditions are available for testing by the ${if construct while expanding strings:
I<condition>

Preceding any condition with an exclamation mark negates the result of the condition.
<symbolic operator> {<stringl>}{<string2>}

There are a number of symbolic operators for doing numeric comparisons. They are:

= equd

== equd

> greater

>= greater or equal
< less

<= less or equal
For example,
${if >{$message_si ze}{10M

Exim 4.50 [104] string expansions (11)

Note that the general negation operator provides for inequality testing. The two strings must take
the form of optionally signed decimal integers, optionally followed by one of the letters ‘K’ or
‘M’ (in either upper or lower case), signifying multiplication by 1024 or 1024+ 1024, respectively.

crypteq {<stringl>}{<string2>}

This condition is included in the Exim binary if it is built to support any authentication mechan-
isms (see chapter 33). Otherwise, it is necessary to define suppoRrT_CRYPTEQ in Local/M akefile to
get crypteq included in the binary.

The crypteq condition has two arguments. The first is encrypted and compared against the second,
which is already encrypted. The second string may be in the LDAP form for storing encrypted
strings, which starts with the encryption type in curly brackets, followed by the data. If the second
string does not begin with ‘{’ it is assumed to be encrypted with crypt() or crypt16() (see below),
since such strings cannot begin with ‘{’. Typically this will be afield from a password file.

An example of an encrypted string in LDAP form is:
{ md5} CY9r zUYhO3PK3k6DJi e09g==

If such a string appears directly in an expansion, the curly brackets have to be quoted, because
they are part of the expansion syntax. For example:

${if crypteq {test}{\{nmd5\}CY9r zUYhO3PK3k6DJi e09g==}{yes}{no}}
The following encryption types (whose names are matched case-independently) are supported:

* {md5} computes the MD5 digest of the first string, and expresses this as printable characters
to compare with the remainder of the second string. If the length of the comparison string is
24, Exim assumes that it is base64 encoded (as in the above example). If the length is 32,
Exim assumes that it is a hexadecimal encoding of the MD5 digest. If the length not 24 or
32, the comparison fails.

» {shal} computes the SHA-1 digest of the first string, and expresses this as printable charac-
ters to compare with the remainder of the second string. If the length of the comparison
string is 28, Exim assumes that it is base64 encoded. If the length is 40, Exim assumes that
it is a hexadecimal encoding of the SHA-1 digest. If the length is not 28 or 40, the
comparison fails.

o {crypt} cals the crypt() function, which traditionally used to use only the first eight charac-
ters of the password. However, in modern operating systems this is no longer true, and in
many cases the entire password is used, whatever its length.

e {cryptl6} cals the cryptl6() function (aso known as bigerypt()), which was orginaly
created to use up to 16 characters of the password. Again, in modern operating systems,
more characters may be used.

Exim has its own version of cryptl6() (which is just a double call to crypt()). For operating
systems that have their own version, setting HAVE cryPT16 in L ocal/M akefile when building Exim
causes it to use the operating system version instead of its own. This option is set by default in the
OS-dependent M akefile for those operating systems that are known to support crypt16().

If you do not put any curly bracket encryption type in a crypteq comparison, the default is either
{crypt} or{crypt 16}, as determined by the setting of berauLT _crRYPT in Local/M akefile. The
default default is{ crypt } . Whatever the default, you can always use either function by specify-
ing it explicitly in curly brackets.

Note that if a password is no longer than 8 characters, the results of encrypting it with crypt() and
cryptl6() are identical. That means that cryptl6() is backwards compatible, as long as nobody
feeds it a password longer than 8 characters.

Exim 4.50 [105] string expansions (11)

def:<variable name>

The def condition must be followed by the name of one of the expansion variables defined in
section 11.9. The condition is true if the named expansion variable does not contain the empty
string, for example

${if def:sender_ident {from $sender_ident}}

Note that the variable name is given without a leading $ character. If the variable does not exigt,
the expansion fails.

def:header <header name>: or def:h_<header name>:

This condition is true if a message is being processed and the named header exists in the message.
For example,

${if def:header_reply-to:{$h_reply-to:}{$h_from}}

Note that no $ appears before header_ or h_ in the condition, and that header names must be
terminated by colons if white space does not follow.

eq {<stringl>}{<string2>}
egi {<stringl>}{<string2>}

The two substrings are first expanded. The condition is true if the two resulting strings are
identical: for eq the comparison includes the case of letters, whereas for eqi the comparison is
case-independent.

exists {<file name>}

The substring is first expanded and then interpreted as an absolute path. The condition is true if
the named file (or directory) exists. The existence test is done by calling the stat() function. The
use of the exists test in users' filter files may be locked out by the system administrator.

first_delivery

This condition, which has no data, is true during a message’s first delivery attempt. It is false
during any subsequent delivery attempts.

ge {<string1>}{<string2>}
gei {<stringl>}{<string2>}

The two substrings are first expanded. The condition is true if the first string is lexically greater
than or equal to the second string: for ge the comparison includes the case of letters, whereas for
gei the comparison is case-independent.

gt {<stringl>}{<string2>}
gti {<stringl>}{<string2>}

The two substrings are first expanded. The condition is true if the first string is lexically greater
than the second string: for gt the comparison includes the case of letters, whereas for gti the
comparison is case-independent.

isip {<string>}
isip4 {<string>}
iSip6 {<string>}

The substring is first expanded, and then tested to see if it has the form of an IP address. Both
IPv4 and IPv6 addresses are valid for isip, whereas isip4 and isip6 test just for 1Pv4 or IPv6
addresses, respectively. For example, you could use

${if isipd{P$sender_host address}...
to test which version of IP an incoming SMTP connection is using.

Exim 4.50 [106] string expansions (11)

Idapauth {<ldap query>}

This condition supports user authentication using LDAP. See section 9.11 for details of how to use
LDAP in lookups and the syntax of queries. For this use, the query must contain a user name and
password. The query itself is not used, and can be empty. The condition is true if the password is
not empty, and the user name and password are accepted by the LDAP server. An empty password
is rejected without calling LDAP because LDAP binds with an empty password are considered
anonymous regardless of the username, and will succeed in most configurations. See chapter 33
for details of SMTP authentication, and chapter 34 for an example of how this can be used.

le {<string1>}{<string2>}
lel {<stringl>}{<string2>}

The two substrings are first expanded. The condition is true if the first string is lexically less than
or equal to the second string: for le the comparison includes the case of letters, whereas for lei the
comparison is case-independent.

It {<stringl>}{<string2>}
Iti {<stringl>}{<string2>}

The two substrings are first expanded. The condition is true if the first string is lexically less than
the second string: for It the comparison includes the case of letters, whereas for Iti the comparison
is case-independent.

match {<stringl>}{<string2>}

The two substrings are first expanded. The second is then treated as a regular expression and
applied to the first. Because of the pre-expansion, if the regular expression contains dollar, or
backslash characters, they must be escaped. Care must also be taken if the regular expression
contains braces (curly brackets). A closing brace must be escaped so that it is not taken as a
premature termination of <string2>. The easiest approach is to use the \ N feature to disable
expansion of the regular expression. For example,

${if match {$local part}{\N\d{3}\ N}
If the whole expansion string is in double quotes, further escaping of backslashes is also required.

The condition is true if the regular expression match succeeds. The regular expression is not
required to begin with a circumflex metacharacter, but if there is no circumflex, the expression is
not anchored, and it may match anywhere in the subject, not just at the start. If you want the
pattern to match at the end of the subject, you must include the $ metacharacter at an appropriate
point.

At the start of an if expansion the values of the numeric variable substitutions $1 etc. are
remembered. Obeying a match condition that succeeds causes them to be reset to the substrings
of that condition and they will have these values during the expansion of the success string. At the
end of the if expansion, the previous values are restored. After testing a combination of conditions
using or, the subsequent values of the numeric variables are those of the condition that succeeded.

match_domain {<stringl>}{<string2>}
match_address {<string1>}{<string2>}
match_local_part {<stringl>}{<string2>}

These conditions make it possible to test domain, address, and local part lists within expansions.
Each condition requires two arguments: an item and a list to match. A trivial example is:

${if match_domain{a.b.c}{x.y.z:a.b.c:p.q.r}{yes}{no}}

In each case, the second argument may contain any of the allowable items for a list of the
appropriate type. Also, because the second argument (after expansion) is a standard form of list, it
is possible to refer to a named list. Thus, you can use conditions like this:

Exim 4.50 [107] string expansions (11)

${i f mat ch_domai n{ $domai n} { +| ocal _domai ns}{. ..

For address lists, the matching starts off caselessly, but the +casef ul item can be used, asin all
address lists, to cause subsequent items to have their local parts matched casefully. Domains are
always matched caselessly.

Note: Host lists are not supported in this way. This is because hosts have two identities: a name
and an IP address, and it is not clear how to specify cleanly how such a test would work. At least,
| haven't come up with anything yet.

pam {<stringl>:<string2>:...}

Pluggable Authentication Modules (http://www.kernel.org/pub/linux/libs/pam/) are a facility
which is available in the latest releases of Solaris and in some GNU/Linux distributions. The
Exim support, which is intended for use in conjunction with the SMTP AautH command, is
available only if Exim is compiled with

SUPPORT_PAM=yes

in Local/Makefile. You probably need to add -lpam to exTraLiBs, and in some releases of
GNU/Linux -Idl is also needed.

The argument string is first expanded, and the result must be a colon-separated list of strings.
Leading and trailing whitespace is ignored. The PAM module is initialized with the service name
‘exim’ and the user name taken from the first item in the colon-separated data string (<stringl>).
The remaining items in the data string are passed over in response to requests from the
authentication function. In the simple case there will only be one request, for a password, so the
data consists of just two strings.

There can be problems if any of the strings are permitted to contain colon characters. In the usual
way, these have to be doubled to avoid being taken as separators. If the data is being inserted
from a variable, the sg expansion item can be used to double any existing colons. For example,
the configuration of a LOGIN authenticator might contain this setting:

server_condition = ${if pam{$1: ${sg{$2}{:}{::}}}{yes}{no}}
For a PLAIN authenticator you could use:
server_condition = ${if pam{$2: ${sg{$3}{:}{::}}}{yes}{no}}

In some operating systems, PAM authentication can be done only from a process running as root.
Since Exim is running as the Exim user when receiving messages, this means that PAM cannot be
used directly in those systems. A patched version of the pam_unix module that comes with the
Linux PAM package is available from http://www.e-admin.de/pam_exim/. The patched module
allows one special uid/gid combination, in addition to root, to authenticate. If you build the
patched module to alow the Exim user and group, PAM can then be used from an Exim
authenticator.

pwcheck {<stringl>:<string2>}

This condition supports user authentication using the Cyrus pwcheck daemon. This is one way of
making it possible for passwords to be checked by a process that is not running as root. Note: The
use of pwcheck is now deprecated. Its replacement is saslauthd (see below).

The pwcheck support is not included in Exim by default. You need to specify the location of the
pwcheck daemon’s socket in L ocal/M akefile before building Exim. For example:

CYRUS_PWCHECK_SOCKET=/ var / pwcheck/ pwcheck

You do not need to install the full Cyrus software suite in order to use the pwcheck daemon. You
can compile and install just the daemon alone from the Cyrus SASL library. Ensure that exim is
the only user that has access to the /var/pwcheck directory.

The pwcheck condition takes one argument, which must be the user name and password, separ-
ated by a colon. For example, in a LOGIN authenticator configuration, you might have this:

Exim 4.50 [108] string expansions (11)

server_condition = ${if pwcheck{$1l: $2}{1}{0}}
gueue_running

This condition, which has no data, is true during delivery attempts that are initiated by queue
runner processes, and false otherwise.

radius {<authentication string>}

Radius authentication (RFC 2865) is supported in a similar way to PAM. You must set
RADIUS_CONFIG_FILE in L ocal/M akefile to specify the location of the Radius client configuration file
in order to build Exim with Radius support. With just that one setting, Exim expects to be linked
with the radiusclient library. You can aso link Exim with the libradius library that comes with
FreeBSD. To do this, set

RADI US_LI B_TYPE=RADLI B

in Local/Makefile, in addition to setting RADIUS_ CONFIGURE_FILE. You may also have to supply a
suitable setting in ExTrRALIBS SO that the Radius library can be found when Exim is linked.

The string specified by Rabius CoNFIG FILE IS expanded and passed to the Radius client library,
which cdls the Radius server. The condition is true if the authentication is successful. For
example

server_condition = ${if radi us{<arguments>}{yes}{no}}
saslauthd {{<user>}{<password>}{<service>}{<realm>}}

This condition supports user authentication using the Cyrus saslauthd daemon. This replaces the
older pwcheck daemon, which is now deprecated. Using this daemon is one way of making it
possible for passwords to be checked by a process that is not running as root.

The saslauthd support is not included in Exim by default. You need to specify the location of the
saslauthd daemon’s socket in L ocal/M akefile before building Exim. For example:

CYRUS_SASLAUTHD_SOCKET=/ var/ st at e/ sasl aut hd/ nux

You do not need to install the full Cyrus software suite in order to use the saslauthd daemon. You
can compile and install just the daemon aone from the Cyrus SASL library.

Up to four arguments can be supplied to the saslauthd condition, but only two are mandatory. For
example:

server _condition = ${if saslauthd{{$1}{$2}}{1}{0}}

The service and the ream are optional (which is why the arguments are enclosed in their own set
of braces). For details of the meaning of the service and realm, and how to run the daemon,
consult the Cyrus documentation.

11.8 Combining expansion conditions

Severa conditions can be tested at once by combining them using the and and or combination
conditions. Note that and and or are complete conditions on their own, and precede their lists of sub-
conditions. Each sub-condition must be enclosed in braces within the overall braces that contain the
list. No repetition of if is used.

or {{<cond1>}{<cond2>}...}

The sub-conditions are evaluated from left to right. The condition is true if any one of the sub-
conditions is true. For example,

${if or {{eqg{$l ocal part}{spqgr}}{eq{$domai n}{testing.cont}}...

When a true sub-condition is found, the following ones are parsed but not evaluated. If there are
several ‘match’ sub-conditions the values of the numeric variables afterwards are taken from the
first one that succeeds.

Exim 4.50 [109] string expansions (11)

and {{<cond1>}{<cond2>}...}

The sub-conditions are evaluated from left to right. The condition is true if all of the sub-
conditions are true. If there are several ‘match’ sub-conditions, the values of the numeric variables
afterwards are taken from the last one. When a false sub-condition is found, the following ones
are parsed but not evaluated.

11.9 Expansion variables

This section contains an alphabetical list of all the expansion variables. Some of them are available
only when Exim is compiled with specific options such as support for TLS or the content scanning
extension.

$0, $1, etc: When a match expansion condition succeeds, these variables contain the captured
substrings identified by the regular expression during subsequent processing of the success string of
the containing if expansion item. They may also be set externally by some other matching process
which precedes the expansion of the string. For example, the commands available in Exim filter
files include an if command with its own regular expression matching condition.

$acl_c0 — $acl_c9: Values can be placed in these variables by the set modifier in an ACL. The values
persist throughout the lifetime of an SMTP connection. They can be used to pass information
between ACLs and different invocations of the same ACL. When a message is received, the values
of these variables are saved with the message, and can be accessed by filters, routers, and transports
during subsequent delivery.

$acl_mO — $acl_m9: Values can be placed in these variables by the set modifier in an ACL. They
retain their values while a message is being received, but are reset afterwards. They are also reset
by MAIL, RSET, EHLO, HELO, and after starting a TLS session. When a message is received, the values
of these variables are saved with the message, and can be accessed by filters, routers, and transports
during subsequent delivery.

$acl_verify_message: During the expansion of the message and log_message modifiers in an ACL
statement after an address verification has failed, this variable contains the original failure message
that will be overridden by the expanded string.

$address data: This variable is set by means of the address data option in routers. The vaue then
remains with the address while it is processed by subsequent routers and eventually a transport. |If
the transport is handling multiple addresses, the value from the first address is used. See chapter 15
for more details. Note: the contents of $address_data are visible in user filter files.

If $address data is set when the routers are called from an ACL to verify a recipient address, the
final value is still in the variable for subsequent conditions and modifiers of the ACL statement. If
routing the address caused it to be redirected to just one address, the child address is also routed as
part of the verification, and in this case the fina vaue of $address data is from the child’s routing.

If $address data is set when the routers are called from an ACL to verify a sender address, the
final value is also preserved, but this time in $sender_address data, to distinguish it from data
from a recipient address.

In both cases (recipient and sender verification), the value does not persist after the end of the
current ACL statement. If you want to preserve these values for longer, you can save them in ACL
variables.

$address file: When, as aresult of aliasing, forwarding, or filtering, a message is directed to a specific
file, this variable holds the name of the file when the transport is running. At other times, the
variable is empty. For example, using the default configuration, if user r2d2 has a .forward file
containing

/ hone/ r 2d2/ savemi |

Exim 4.50 [110] string expansions (11)

then when the address file transport is running, $address file contains ‘/home/r2d2/savemail’. For
Sieve filters, the value may be ‘inbox’ or a relative folder name. It is then up to the transport
configuration to generate an appropriate absolute path to the relevant file.

$address pipe: When, as a result of aiasing or forwarding, a message is directed to a pipe, this
variable holds the pipe command when the transport is running.

$authenticated_id: When a server successfully authenticates a client it may be configured to preserve
some of the authentication information in the variable $authenticated_id (see chapter 33). For
example, a user/password authenticator configuration might preserve the user name for use in the
routers. When a message is submitted locally (that is, not over a TCP connection), the value of
$authenticated_id is the login name of the calling process.

$authenticated_sender: When acting as a server, Exim takes note of the AutH= parameter on an
incoming SMTP maiL command if it believes the sender is sufficiently trusted, as described in
section 33.2. Unless the data is the string ‘<>', it is set as the authenticated sender of the message,
and the value is available during delivery in the $authenticated_sender variable. If the sender is
not trusted, Exim accepts the syntax of AutH=, but ignores the data.

When a message is submitted locally (that is, not over a TCP connection), the vaue of
$authenticated_sender is an address constructed from the login name of the calling process and
$qualify_domain.

$authentication_failed: This variable is set to ‘1’ in an Exim server if a client issues an AUTH
command that does not succeed. Otherwise it is set to ‘0’. This makes it possible to distinguish
between ‘did not try to authenticate’ ($sender_host_authenticated is empty and $authentication_
failed isset to ‘0") and ‘tried to authenticate but failed’ ($sender_host_authenticated is empty and
$authentication_failed is set to ‘1"). Failure includes any negative response to an AuTH command,
including (for example) an attempt to use an undefined mechanism.

$body_linecount: When a message is being received or delivered, this variable contains the number of
lines in the message’s body.

$body_zerocount: When a message is being received or delivered, this variable contains the number
of binary zero bytes in the message's body.

$bounce_recipient: This is set to the recipient address of a bounce message while Exim is creating it.
It is useful if a customized bounce message text file isin use (see chapter 45).

$bounce return_size limit: This contains the value set in the bounce return_size limit option,
rounded up to a multiple of 1000. It is useful when a customized error message text file is in use
(see chapter 45).

$caller_gid: The rea group id under which the process that called Exim was running. This is not the
same as the group id of the originator of a message (see $originator_gid). If Exim re-execs itself,
this variable in the new incarnation normally contains the Exim gid.

$caller_uid: The real user id under which the process that called Exim was running. This is not the
same as the user id of the originator of a message (see $originator_uid). If Exim re-execs itself,
this variable in the new incarnation normally contains the Exim uid.

$compile_date: The date on which the Exim binary was compiled.

$compile_number: The building process for Exim keeps a count of the number of times it has been
compiled. This serves to distinguish different compilations of the same version of the program.

$demime_errorlevel: This variable is available when Exim is compiled with the content-scanning
extension and the obsolete demime condition. For details, see section 40.5.

$demime_reason: This variable is available when Exim is compiled with the content-scanning exten-
sion and the obsolete demime condition. For details, see section 40.5.

$dndlist_domain: When a client host is found to be on a DNS (black) list, the list's domain name is
put into this variable so that it can be included in the rejection message.

Exim 4.50 [111] string expansions (11)

$dndlist_text: When a client host is found to be on a DNS (black) list, the contents of any associated
TXT record are placed in this variable.

$dndist_value: When a client host is found to be on a DNS (black) list, the IP address from the
resource record is placed in this variable. If there are multiple records, al the addresses are
included, comma-space separated.

$domain: When an address is being routed, or delivered on its own, this variable contains the domain.
Global address rewriting happens when a message is received, so the value of $domain during
routing and delivery is the value after rewriting. $domain is set during user filtering, but not during
system filtering, because a message may have many recipients and the system filter is called just
once.

When more than one address is being delivered at once (for example, several rcPT commands in
one SMTP delivery), $domain is set only if they al have the same domain. Transports can be
restricted to handling only one domain at a time if the value of $domain is required at transport
time — this is the default for local transports. For further details of the environment in which local
transports are run, see chapter 23.

At the end of a delivery, if all deferred addresses have the same domain, it is set in $domain during
the expansion of delay_war ning_condition.

The $domain variable is also used in some other circumstances:

* When an ACL is running for a rcet command, $domain contains the domain of the recipient
address. Note: the domain of the sender address is in $sender_address domain at mAIL time
and at rcpT time. $domain is not set for the maiL ACL.

* When a rewrite item is being processed (see chapter 31), $domain contains the domain
portion of the address that is being rewritten; it can be used in the expansion of the replace-
ment address, for example, to rewrite domains by file lookup.

» With one important exception, whenever a domain list is being scanned, $domain contains the
subject domain. Exception: When a domain list in a sender_domains condition in an ACL is
being processed, the subject domain is in $sender_address domain and not in $domain. It
works this way so that, in a rcerr ACL, the sender domain list can be dependent on the
recipient domain (which is what is in $domain at this time).

* When the smtp_etrn_command option is being expanded, $domain contains the complete
argument of the ETRn command (see section 44.9).

$domain_data: When the domains option on a router matches a domain by means of a lookup, the
data read by the lookup is available during the running of the router as $domain_data. In addition,
if the driver routes the address to a transport, the value is available in that transport. If the transport
is handling multiple addresses, the value from the first address is used.

$domain_data is also set when the domains condition in an ACL matches a domain by means of a
lookup. The data read by the lookup is available during the rest of the ACL statement. In all other
situations, this variable expands to nothing.

$exim_gid: This variable contains the numerical value of the Exim group id.
$exim_path: This variable contains the path to the Exim binary.
$exim_uid: This variable contains the numerical value of the Exim user id.

$found_extension: This variable is available when Exim is compiled with the content-scanning
extension and the obsolete demime condition. For details, see section 40.5.

$header_<name>: This is not strictly an expansion variable. It is expansion syntax for inserting the
message header line with the given name. Note that the name must be terminated by colon or white
space, because it may contain a wide variety of characters. Note also that braces must not be used.

$home: When the check_local_user option is set for a router, the user’'s home directory is placed in
$home when the check succeeds. In particular, this means it is set during the running of users' filter

Exim 4.50 [112] string expansions (11)

files. A router may also explicitly set a home directory for use by a transport; this can be
overridden by a setting on the transport itself.

When running a filter test via the -bf option, $home is set to the value of the environment variable
HOME.

$host: When the smtp transport is expanding its options for encryption using TLS, $host contains the
name of the host to which it is connected. Likewise, when used in the client part of an authenticator
configuration (see chapter 33), $host contains the name of the server to which the client is
connected. When used in a transport filter (see chapter 24) $host refers to the host involved in the
current connection. When a local transport is run as a result of a router that sets up a host list,
$host contains the name of the first host.

$host_address: This variable is set to the remote host’s | P address whenever $host is set for a remote
connection. It is also set to the IP address that is being checked when the ignore_target_hosts
option is being processed.

$host_data: If a hosts condition in an ACL is satisfied by means of a lookup, the result of the lookup
is made available in the $host_data variable. This alows you, for example, to do things like this:

deny hosts = net-lsearch;/sone/file
nmessage = $host_data

$host_lookup_deferred: This variable normally contains ‘0’, as does $host_lookup_failed. When a
message comes from a remote host and there is an attempt to look up the host's name from its IP
address, and the attempt is not successful, one of these variablesis set to ‘1.

« |f the lookup receives a definite negative response (for example, a DNS lookup succeeded, but
no records were found), $host_lookup_failed isset to ‘1’.

* If there is any kind of problem during the lookup, such that Exim cannot tell whether or not
the host name is defined (for example, a timeout for a DNS lookup), $host_lookup_deferred
issetto ‘1.

Looking up a host’s name from its IP address consists of more than just a single reverse lookup.
Exim checks that a forward lookup of at least one of the names it receives from a reverse lookup
yields the original 1P address. If this is not the case, Exim does not accept the looked up name(s),
and $host_lookup_failed is set to ‘1'. Thus, being able to find a name from an IP address (for
example, the existence of a PTR record in the DNS) is not sufficient on its own for the success of a
host name lookup. If the reverse lookup succeeds, but there is a lookup problem such as a timeout
when checking the result, the name is not accepted, and $host_lookup_deferred is set to ‘1'. See
also $sender_host_name.

$host_lookup_failed: See $host_lookup_deferred.

$inode: The only time this variable is set is while expanding the directory file option in the
appendfile transport. The variable contains the inode number of the temporary file which is about
to be renamed. It can be used to construct a unique name for the file.

$interface_address: When a message is received over a TCP/IP connection, this variable contains the
address of the local IP interface. See aso the -oMi command line option. This variable can be used
in ACLs and also, for example, to make the file name for a TLS certificate depend on which
interface is being used.

$interface port: When a message is received over a TCP/IP connection, this variable contains the
local port number. See also the -oMi command line option. This variable can be used in ACLs and
aso, for example, to make the file name for a TLS certificate depend on which port is being used.

$ldap_dn: This variable, which is available only when Exim is compiled with LDAP support, contains
the DN from the last entry in the most recently successful LDAP lookup.

$load_average: This variable contains the system load average, multiplied by 1000 to that it is an
integer. For example, if the load average is 0.21, the value of the variable is 210. The value is
recomputed every time the variable is referenced.

Exim 4.50 [113] string expansions (11)

$local_part: When an address is being routed, or delivered on its own, this variable contains the local
part. When a number of addresses are being delivered together (for example, multiple rcpT
commands in an SMTP session), $local_part is not set.

Global address rewriting happens when a message is received, so the value of $local_part during
routing and delivery is the value after rewriting. $local_part is set during user filtering, but not
during system filtering, because a message may have many recipients and the system filter is called
just once.

If alocal part prefix or suffix has been recognized, it is not included in the value of $local_part
during routing and subsequent delivery. The values of any prefix or suffix are in $local_part_prefix
and $local_part_suffix, respectively.

When a message is being delivered to a file, pipe, or autoreply transport as a result of aliasing or
forwarding, $local_part is set to the local part of the parent address, not to the file name or
command (see $address file and $address_pipe).

When an ACL is running for a rcrT command, $local_part contains the local part of the recipient
address.

When a rewrite item is being processed (see chapter 31), $local_part contains the local part of the
address that is being rewritten; it can be used in the expansion of the replacement address, for
example.

In all cases, all quoting is removed from the local part. For example, for both the addresses

"abc: xyz" @est. exanpl e
abc\: xyz@est . exanpl e

the value of $local_part is
abc: xyz

If you use $local_part to create another address, you should always wrap it inside a quoting
operator. For example, in aredirect router you could have:

data = ${quote_l ocal _part: $l ocal _part} @ew. domai n. exanpl e

Note: The value of $local_part is normally lower cased. If you want to process local parts in a
case-dependent manner in a router, you can set the caseful_local_part option (see chapter 15).

$local_part_data: When the local_parts option on a router matches a local part by means of a
lookup, the data read by the lookup is available during the running of the router as
$local_part_data. In addition, if the driver routes the address to a transport, the value is available
in that transport. If the transport is handling multiple addresses, the value from the first address is
used.

$local_part_data is also set when the local_parts condition in an ACL matches a local part by
means of a lookup. The data read by the lookup is available during the rest of the ACL statement.
In all other situations, this variable expands to nothing.

$local_part_prefix: When an address is being routed or delivered, and a specific prefix for the local
part was recognized, it is available in this variable, having been removed from $local_part.

$local_part_suffix: When an address is being routed or delivered, and a specific suffix for the local
part was recognized, it is available in this variable, having been removed from $local_part.

$local_scan_data: This variable contains the text returned by the local_scan() function when a
message is received. See chapter 41 for more details.

$local_user_gid: See $local_user _uid.

$local_user_uid: This variable and $local_user_gid are set to the uid and gid after the check_local_
user router precondition succeeds. This means that their values are available for the remaining
preconditions (senders, require_files, and condition), for the address data expansion, and for any

Exim 4.50 [114] string expansions (11)

router-specific expansions. At all other times, the values in these variables are (ui d_t) (-1) and
(gid_t)(-1), respectively.

$localhost_number: This contains the expanded value of the localhost_number option. The expan-
sion happens after the main options have been read.

$log_inodes: The number of free inodes in the disk partition where Exim’s log files are being written.
The value is recalculated whenever the variable is referenced. If the relevant file system does not
have the concept of inodes, the value of is -1. See also the check_log_inodes option.

$log_space: The amount of free space (as a number of kilobytes) in the disk partition where Exim's
log files are being written. The value is recalculated whenever the variable is referenced. If the
operating system does not have the ability to find the amount of free space (only true for
experimental systems), the space value is -1. See aso the check_log_space option.

$mailstore_basename: This variable is set only when doing deliveries in ‘mailstore’ format in the
appendfile transport. During the expansion of the mailstore prefix, mailstore suffix, message
prefix, and message suffix options, it contains the basename of the files that are being written, that
is, the name without the *.tmp’, *.env’, or *.msg’ suffix. At all other times, this variable is empty.

$malware_name: This variable is available when Exim is compiled with the content-scanning exten-
sion. It is set to the name of the virus that was found when the ACL malware condition is true (see
section 40.1).

$message age: This variable is set at the start of a delivery attempt to contain the number of seconds
since the message was received. It does not change during a single delivery attempt.

$message body: This variable contains the initial portion of a message's body while it is being
delivered, and is intended mainly for use in filter files. The maximum number of characters of the
body that are put into the variable is set by the message body_visible configuration option; the
default is 500. Newlines are converted into spaces to make it easier to search for phrases that might
be split over aline break. Binary zeros are also converted into spaces.

$message body_end: This variable contains the final portion of a message's body while it is being
delivered. The format and maximum size are as for $message_body.

$message body size: When a message is being delivered, this variable contains the size of the body
in bytes. The count starts from the character after the blank line that separates the body from the
header. Newlines are included in the count. See aso $message size, $body_linecount, and
$body_zerocount.

$message_headers: This variable contains a concatenation of al the header lines when a message is
being processed, except for lines added by routers or transports. The header lines are separated by
newline characters.

$message id: When a message is being received or delivered, this variable contains the unique
message id that is used by Exim to identify the message. An id is not created for a message until
after its header has been successfully received. Note: This is not the contents of the Message-ID:
header ling; it is the local id that Exim assigns to the message, for example: 1BXTI K- 0001y O
VA.

$message size: When a message is being processed, this variable contains its size in bytes. In most
cases, the size includes those headers that were received with the message, but not those (such as
Envelope-to:) that are added to individual deliveries as they are written. However, there is one
special case: during the expansion of the maildir_tag option in the appendfile transport while
doing a delivery in maildir format, the value of $message size is the precise size of the file that has
been written. See also $message body_size, $body_linecount, and $body_zerocount.

While running an ACL at the time of an SMTP rcPr command, $message size contains the size
supplied on the maiL command, or -1 if no size was given. The value may not, of course, be
truthful.

Exim 4.50 [115] string expansions (11)

$mime xxx: A number of variables whose names start with $mime are available when Exim is
compiled with the content-scanning extension. For details, see section 40.3.

$n0 — $n9: These variables are counters that can be incremented by means of the add command in
filter files.

$original_domain: When a top-level address is being processed for delivery, this contains the same
value as $domain. However, if a ‘child’ address (for example, generated by an aias, forward, or
filter file) is being processed, this variable contains the domain of the original address. This differs
from $parent_domain only when there is more than one level of aiasing or forwarding. When
more than one address is being delivered in a single transport run, $original_domain is not set.

If new an address is created by means of a deliver command in a system filter, it is set up with an
artificial ‘parent’ address. This has the local part system-filter and the default qualify domain.

$original_local_part: When a top-level address is being processed for delivery, this contains the same
value as $local_part, unless a prefix or suffix was removed from the local part, because
$original_local_part aways contains the full local part. When a ‘child’ address (for example,
generated by an alias, forward, or filter file) is being processed, this variable contains the full local
part of the original address.

If the router that did the redirection processed the local part case-insensitively, the value in
$original_local_part is in lower case. This variable differs from $parent_local_part only when
there is more than one level of aiasing or forwarding. When more than one address is being
delivered in a single transport run, $original_local_part is not set.

If new an address is created by means of a deliver command in a system filter, it is set up with an
artificial ‘parent’ address. This has the local part systemfilter and the default qualify domain.

$originator_gid: The value of $caller_gid that was set when the message was received. For messages
received via the command line, this is the gid of the sending user. For messages received by SMTP
over TCP/IPR, this is normally the gid of the Exim user.

$originator_uid: The value of $caller_uid that was set when the message was received. For messages
received via the command line, this is the uid of the sending user. For messages received by SMTP
over TCP/IPR, this is normally the uid of the Exim user.

$parent_domain: This variable is similar to $original_domain (see above), except that it refers to the
immediately preceding parent address.

$parent_local_part: This variable is similar to $original_local_part (see above), except that it refers
to the immediately preceding parent address.

$pid: This variable contains the current process id.

$pipe_addresses: This is not an expansion variable, but is mentioned here because the string
‘$pipe_addresses' is handled specially in the command specification for the pipe transport (chapter
29) and in trangport filters (described under transport_filter in chapter 24). It cannot be used in
general expansion strings, and provokes an ‘unknown variable’ error if encountered.

$primary_hostname: The value set in the configuration file, or read by the uname() function. If
uname() returns a single-component name, Exim calls gethostbyname() (or getipnodebyname()
where available) in an attempt to acquire a fully quaified host name. See aso
$smtp_active_hostname.

$qualify_domain: The value set for this option in the configuration file.

$qualify_recipient: The value set for this option in the configuration file, or if not set, the value of
$qualify_domain.

$rept_count: When a message is being received by SMTP, this variable contains the number of rcpT
commands received for the current message. If this variable is used in a rcpr ACL, its value
includes the current command.

Exim 4.50 [116] string expansions (11)

$rept_defer_count: When a message is being received by SMTR, this variable contains the number of
RCPT commands in the current message that have previously been rejected with a temporary (4xx)
response.

$rept_fail_count: When a message is being received by SMTR, this variable contains the number of
RcPT commands in the current message that have previously been rejected with a permanent (5xx)
response.

$received_count: This variable contains the number of Received: header lines in the message, includ-
ing the one added by Exim (so its value is always greater than zero). It is available in the pata
ACL, the non-SMTP ACL, and while routing and delivering.

$received_for: If there is only a single recipient address in an incoming message, this variable
contains that address when the Received: header line is being built. The value is copied after
recipient rewriting has happened, but before the local_scan() function is run.

$received_protocol: When a message is being processed, this variable contains the name of the
protocol by which it was received. Most of the names used by Exim are defined by RFCs 821,
2821, and 3848. They start with ‘smtp’ (the client used HELO) or ‘esmtp’ (the client used EHLO).
This can be followed by ‘s’ for secure (encrypted) and/or ‘a for authenticated. Thus, for example,
if the protocal is set to ‘esmtpsa’, the message was received over an encrypted SMTP connection
and the client was successfully authenticated.

Exim uses the protocol name ‘smtps for the case when encryption is automatically set up on
connection without the use of sTarTTLS (See tls on_connect_ports), and the client uses HELO to
initiate the encrypted SMTP session. The name ‘smtps’ is also used for the rare situation where the
client initially uses eHLO, sets up an encrypted connection using STARTTLS, and then uses HELO
afterwards.

The -oMr option provides a way of specifying a custom protocol name for messages that are
injected locally by trusted callers. This is commonly used to identify messages that are being re-
injected after some kind of scanning.

$recipient_data: This variable is set after an indexing lookup success in an ACL recipients condition.
It contains the data from the lookup, and the value remains set until the next recipients test. Thus,
you can do things like this:

require recipients = cdb*@/sone/file
deny some further test involving $r eci pi ent _dat a

Warning: This variable is set only when a lookup is used as an indexing method in the address list,
using the semicolon syntax as in the example above. The variable is not set for a lookup that is
used as part of the string expansion that all such lists undergo before being interpreted.

$recipient_verify failure: In an ACL, when a recipient verification fails, this variable contains
information about the failure. It is set to one of the following words:

‘qualify’: The address was unqualified (no domain), and the message was neither local nor
came from an exempted host.

‘route’: Routing failed.

‘mail’: Routing succeeded, and a callout was attempted; rejection occurred at or before the
MAIL command (that is, on initial connection, HELO, OF MAIL).

‘recipient’: The rcpT command in a callout was rejected.
‘postmaster’: The postmaster check in a callout was rejected.

The main use of this variable is expected to be to distinguish between rejections of maiL and
rejections of rcrr.

$recipients: This variable contains a list of envelope recipients for a message. A comma and a space
separate the addresses in the replacement text. However, the variable is not generally available, to

Exim 4.50 [117] string expansions (11)

prevent exposure of Bcc recipients in unprivileged users filter files. You can use $recipients only
in these two cases:

(1) Inasystem filter file.

(2) In the ACLs associated with the bata command, that is, the ACLs defined by
acl_smtp_predata and acl_smtp_data.

$recipients_count: When a message is being processed, this variable contains the number of envelope
recipients that came with the message. Duplicates are not excluded from the count. While a
message is being received over SMTPR, the number increases for each accepted recipient. It can be
referenced in an ACL.

$reply_address: When a message is being processed, this variable contains the contents of the Reply-
To: header line if one exists and it is not empty, or otherwise the contents of the From: header line.

$return_path: When a message is being delivered, this variable contains the return path — the sender
field that will be sent as part of the envelope. It is not enclosed in <> characters. At the start of
routing an address, $return_path has the same value as $sender_address, but if, for example, an
incoming message to a mailing list has been expanded by a router which specifies a different
address for bounce messages, $return_path subseguently contains the new bounce address,
whereas $sender_address always contains the original sender address that was received with the
message. In other words, $sender_address contains the incoming envelope sender, and
$return_path contains the outgoing envelope sender.

$return_size limit: Thisis an obsolete name for $bounce return_size limit.

$runrc: This variable contains the return code from a command that is run by the ${run...} expansion
item. Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those pre-conditions whose order of testing is documented. Therefore, you
cannot reliably expect to set $runrc by the expansion of one option, and use it in another.

$self_hostname: When an address is routed to a supposedly remote host that turns out to be the local
host, what happens is controlled by the self generic router option. One of its values causes the
address to be passed to another router. When this happens, $self _hostname is set to the name of the
local host that the original router encountered. In other circumstances its contents are null.

$sender_address: When a message is being processed, this variable contains the sender’s address that
was received in the message's envelope. For bounce messages, the value of this variable is the
empty string. See also $return_path.

$sender_address data: If $address data is set when the routers are called from an ACL to verify a
sender address, the final value is preserved in $sender_address data, to distinguish it from data
from a recipient address. The value does not persist after the end of the current ACL statement. If
you want to preserve it for longer, you can save it in an ACL variable.

$sender_address domain: The domain portion of $sender_address.
$sender_address local_part: The local part portion of $sender _address.

$sender_data: This variable is set after a lookup success in an ACL senders condition or in a router
senders option. It contains the data from the lookup, and the value remains set until the next
senders test. Thus, you can do things like this:

requi re senders = cdb*@/sone/file
deny some further test involving $sender _dat a

Warning: This variable is set only when alookup is used as an indexing method in the address list,
using the semicolon syntax as in the example above. The variable is not set for a lookup that is
used as part of the string expansion that all such lists undergo before being interpreted.

$sender_fullhost: When a message is received from a remote host, this variable contains the host
name and IP address in a single string. It ends with the IP address in square brackets, followed by a
colon and a port number if the logging of ports is enabled. The format of the rest of the string

Exim 4.50 [118] string expansions (11)

depends on whether the host issued a HELO or EHLO SMTP command, and whether the host name
was verified by looking up its IP address. (Looking up the IP address can be forced by the
host_lookup option, independent of verification.) A plain host name at the start of the string is a
verified host name; if this is not present, verification either failed or was not requested. A host
name in parentheses is the argument of a HeLo or EHLo command. This is omitted if it isidentical to
the verified host name or to the host’s IP address in square brackets.

$sender_helo_name: When a message is received from a remote host that has issued a HELO or EHLO
command, the argument of that command is placed in this variable. It is also set if HELO Or EHLO iS
used when a message is received using SMTP locally via the -bs or -bS options.

$sender_host_address: When a message is received from a remote host, this variable contains that
host’s IP address. For locally submitted messages, it is empty.

$sender _host_authenticated: This variable contains the name (not the public name) of the
authenticator driver which successfully authenticated the client from which the message was
received. It is empty if there was no successful authentication.

$sender_host_name: When a message is received from a remote host, this variable contains the host’s
name as obtained by looking up its IP address. For messages received by other means, this variable
is empty.

If the host name has not previously been looked up, a reference to $sender_host_name triggers a
lookup (for messages from remote hosts). A looked up name is accepted only if it leads back to the
original IP address via a forward lookup. If either the reverse or the forward lookup fails to find
any data, or if the forward lookup does not yield the original IP address, $sender _host_name
remains empty, and $host_lookup_failed is set to ‘1’. However, if either of the lookups cannot be
completed (for example, there is a DNS timeout), $host_lookup_deferred is set to ‘1, and
$host_lookup_failed remains set to ‘0'.

Once $host_lookup_failed is set to ‘1’, Exim does not try to look up the host name again if there
is a subsequent reference to $sender_host_name in the same Exim process, but it does try again if
$sender_host_deferred issetto ‘1.

Exim does not automatically look up every calling host's name. If you want maximum efficiency,
you should arrange your configuration so that it avoids these lookups altogether. The lookup
happens only if one or more of the following are true:

(1) A string containing $sender _host_name is expanded.

(2) The calling host matches the list in host_lookup. In the default configuration, this option is set
to *, so it must be changed if lookups are to be avoided. (In the code, the default for
host_lookup is unset.)

(3) Exim needs the host name in order to test an item in a host list. The items that require this are
described in sections 10.13 and 10.15.

(4) The cdling host matches helo_try verify_hosts or helo_verify_hosts. In this case, the host
name is required to compare with the name quoted in any EHLO or HELO commands that the
client issues.

(5) The remote host issues a EHLO or HELO command that quotes one of the domains in
helo_lookup_domains. The default value of this option is

hel o_| ookup_domains = @: @]

which causes a lookup if a remote host (incorrectly) gives the server's name or |IP address in
an EHLO or HELO command.

$sender_host_port: When a message is received from a remote host, this variable contains the port
number that was used on the remote host.

Exim 4.50 [119] string expansions (11)

$sender_ident: When a message is received from a remote hogt, this variable contains the identifi-
cation received in response to an RFC 1413 request. When a message has been received locally,
this variable contains the login name of the user that called Exim.

$sender_rcvhost: This is provided specifically for use in Received: headers. It starts with either the
verified host name (as obtained from a reverse DNS lookup) or, if there is no verified host name,
the IP address in square brackets. After that there may be text in parentheses. When the first item is
a verified host name, the first thing in the parentheses is the IP address in square brackets, followed
by a colon and a port number if port logging is enabled. When the first item is an |P address, the
port is recorded as ‘ port=xxxx’ inside the parentheses.

There may aso be items of the form ‘helo=xxxx’ if HELO or EHLO was used and its argument was
not identical to the real host name or IP address, and ‘ident=xxxx’ if an RFC 1413 ident string is
available. If al three items are present in the parentheses, a newline and tab are inserted into the
string, to improve the formatting of the Received: header.

$sender_verify failure: In an ACL, when a sender verification fails, this variable contains information
about the failure. The details are the same as for $recipient_verify failure.

$smtp_active_hostname: During an SMTP session, this variable contains the value of the active host
name, as specified by the smtp_active _hostname option. The value of $smtp_active hostname is
saved with any message that is received, so its value can be consulted during routing and delivery.

$smtp_command_argument: While an ACL is running to check an AUTH, EHLO, EXPN, ETRN, HELO, Of
VRFY command, this variable contains the argument for the SMTP command.

$sn0 — $sn9: These variables are copies of the values of the $n0 — $n9 accumulators that were current
a the end of the system filter file. This allows a system filter file to set values that can be tested in
users filter files. For example, a system filter could set a value indicating how likely it is that a
message is junk mail.

$spam_xxx: A number of variables whose names start with $spam are available when Exim is
compiled with the content-scanning extension. For details, see section 40.2.

$spool_directory: The name of Exim’s spool directory.

$spool_inodes: The number of free inodes in the disk partition where Exim’s spool files are being
written. The value is recalculated whenever the variable is referenced. If the relevant file system
does not have the concept of inodes, the value of is -1. See aso the check_spool_inodes option.

$spool_space: The amount of free space (as a number of kilobytes) in the disk partition where Exim’s
spool files are being written. The value is recalculated whenever the variable is referenced. If the
operating system does not have the ability to find the amount of free space (only true for
experimental systems), the space value is -1. For example, to check in an ACL that there is at least
50 megabytes free on the spool, you could write:

condition = ${if > {$spool _space}{50000}}
See also the check_spool_space option.

$thisaddress: This variable is set only during the processing of the foranyaddress command in a filter
file. Its use is explained in the description of that command.

$tls certificate verified: This variable is set to ‘1’ if a TLS certificate was verified when the message
was received, and ‘0O’ otherwise.

$tIs_cipher: When a message is received from a remote host over an encrypted SMTP connection, this
variable is set to the cipher suite that was negotiated, for example DES-CBC3-SHA. In other
circumstances, in particular, for message received over unencrypted connections, the variable is
empty. See chapter 38 for details of TLS support.

$tls peerdn: When a message is received from a remote host over an encrypted SMTP connection,
and Exim is configured to request a certificate from the client, the value of the Distinguished Name
of the certificate is made available in the $tls_peerdn during subsequent processing.

Exim 4.50 [120] string expansions (11)

$tod_bsdinbox: The time of day and date, in the format required for BSD-style mailbox files, for
example: Thu Oct 17 17:14:09 1995.

$tod_epoch: The time and date as a number of seconds since the start of the Unix epoch.

$tod_full: A full version of the time and date, for example: Wed, 16 Oct 1995 09:51:40 +0100. The
timezone is aways given as a numerical offset from UTC, with positive values used for timezones
that are ahead (east) of UTC, and negative values for those that are behind (west).

$tod_log: The time and date in the format used for writing Exim’s log files, for example: 1995-10-12
15:32:29, but without a timezone.

$tod_logfile: This variable contains the date in the format yyyymmdd. This is the format that is used
for datestamping log files when log_file_path contains the %D flag.

$tod_zone: This variable contains the numerical value of the local timezone, for example: -0500.

$tod_zulu: This variable contains the UTC date and time in ‘Zulu’ format, as specified by 1SO 8601,
for example: 20030221154023Z.

$value: This variable contains the result of an expansion lookup, extraction operation, or external
command, as described above.

$version_number: The version number of Exim.

$warn_message delay: This variable is set only during the creation of a message warning about a
delivery delay. Details of its use are explained in section 45.2.

$warn_message recipients: This variable is set only during the creation of a message warning about
a delivery delay. Details of its use are explained in section 45.2.

Exim 4.50 [121] string expansions (11)

12. Embedded Perl

Exim can be built to include an embedded Perl interpreter. When this is done, Perl subroutines can be
called as part of the string expansion process. To make use of the Perl support, you need version 5.004
or later of Perl installed on your system. To include the embedded interpreter in the Exim binary,
include the line

EXIM PERL = perl.o
in your Local/M akefile and then build Exim in the normal way.

12.1 Setting up so Perl can be used

Access to Perl subroutines is via a globa configuration option called perl_startup and an expansion
string operator ${perl ...}. If there is no perl_startup option in the Exim configuration file then no
Perl interpreter is started and there is almost no overhead for Exim (since none of the Perl library will
be paged in unless used). If there is a perl_startup option then the associated value is taken to be Perl
code which is executed in a newly created Perl interpreter.

The value of perl_startup is not expanded in the Exim sense, so you do not need backslashes before
any characters to escape special meanings. The option should usually be something like

perl _startup = do ’'/etc/eximpl’

where /etc/exim.pl is Perl code which defines any subroutines you want to use from Exim. Exim can
be configured either to start up a Perl interpreter as soon as it is entered, or to wait until the first time
it is needed. Starting the interpreter at the beginning ensures that it is done while Exim still has its
setuid privilege, but can impose an unnecessary overhead if Perl is not in fact used in a particular run.
Also, note that this does not mean that Exim is necessarily running as root when Perl is called at a
later time. By default, the interpreter is started only when it is needed, but this can be changed in two

ways:
» Setting perl_at_start (a boolean option) in the configuration requests a startup when Exim is
entered.

* The command line option -ps also requests a startup when Exim is entered, overriding the setting
of perl_at_start.

There is also a command line option -pd (for delay) which suppresses the initial startup, even if
perl_at_start is set.

12.2 Calling Per| subroutines

When the configuration file includes a perl_startup option you can make use of the string expansion
item to call the Perl subroutines that are defined by the perl_startup code. The operator is used in any
of the following forms:

${ perl {foo}}
${ perl {foo}{argunent}}
${perl {foo}{argunent 1}{argunent2} ... }

which calls the subroutine foo with the given arguments. A maximum of eight arguments may be
passed. Passing more than this results in an expansion failure with an error message of the form

Too many argunents passed to Perl subroutine "foo" (max is 8)

The return value of the Perl subroutine is evaluated in a scalar context before it is passed back to Exim
to be inserted into the expanded string. If the return value is undef, the expansion is forced to fail in
the same way as an explicit ‘fail’ on an ${if ...} or ${lookup...} item. If the subroutine aborts by
obeying Perl’s die function, the expansion fails with the error message that was passed to die.

Exim 4.50 [122] embedded Perl (12)

12.3 Calling Exim functions from Per|

Within any Perl code called from Exim, the function Exim::expand_string is available to call back into
Exim’s string expansion function. For example, the Perl code

ny $lp = Exi m:expand_string(’$local _part’);

makes the current Exim $local_part available in the Perl variable $lp. Note those are single quotes
and not double quotes to protect against $local_part being interpolated as a Perl variable.

If the string expansion is forced to fail by a ‘fail’ item, the result of Exim::expand_string is undef. If
there is a syntax error in the expansion string, the Perl call from the original expansion string fails
with an appropriate error message, in the same way as if die were used.

Two other Exim functions are available for use from within Perl code. Exim::debug_write(<string>)
writes the string to the standard error stream if Exim’s debugging is enabled. If you want a newline at
the end, you must supply it. Exim::log_write(<string>) writes the string to Exim’'s main log, adding a
leading timestamp. In this case, you should not supply a terminating newline.

12.4 Use of standard output and error by Perl

You should not write to the standard error or output streams from within your Perl code, as it is not
defined how these are set up. In versions of Exim before 4.50, it is possible for the standard output or
error to refer to the SMTP connection during message reception via the daemon. Writing to this stream
is certain to cause chaos. From Exim 4.50 onwards, the standard output and error streams are
connected to /dev/null in the daemon. The chaos is avoided, but the output is lost.

The Perl warn statement writes to the standard error stream by default. Calls to warn may be
embedded in Perl modules that you use, but over which you have no control. When Exim starts up the
Perl interpreter, it arranges for output from the warn statement to be written to the Exim main log.
You can change this by including appropriate Perl magic somewhere in your Perl code. For example,
to discard warn output completely, you need this:

$SIG[__WARN _} = sub { };

Whenever a warn is obeyed, the anonymous subroutine is called. In this example, the code for the
subroutine is empty, so it does nothing, but you can include any Perl code that you like. The text of
the warn message is passed as the first subroutine argument.

Exim 4.50 [123] embedded Perl (12)

13. Starting the daemon and the use of network interfaces

A host that is connected to a TCP/IP network may have one or more physical hardware network
interfaces. Each of these interfaces may be configured as one or more ‘logical’ interfaces, which are
the entities that a program actually works with. Each of these logical interfaces is associated with an
IP address. In addition, TCP/IP software supports ‘loopback’ interfaces (127.0.0.1 in IPv4 and ::1 in
IPv6), which do not use any physical hardware. Exim requires knowledge about the host’s interfaces
for use in three different circumstances:

(1) When alistening daemon is started, Exim needs to know which interfaces and ports to listen on.

(2) When Exim is routing an address, it needs to know which IP addresses are associated with local
interfaces. This is required for the correct processing of MX lists by removing the local host and
others with the same or higher priority values. Also, Exim needs to detect cases when an address
is routed to an |IP address that in fact belongs to the local host. Unless the self router option or
the allow_localhost option of the smtp transport is set (as appropriate), this is treated as an error
situation.

(3) When Exim connects to a remote host, it may need to know which interface to use for the
outgoing connection.

Exim’s default behaviour is likely to be appropriate in the vast majority of cases. If your host has only
one interface, and you want all its IP addresses to be treated in the same way, and you are using only
the standard SMTP port, you should not need to take any special action. The rest of this chapter does
not apply to you.

In a more complicated situation you may want to listen only on certain interfaces, or on different
ports, and for this reason there are a number of options that can be used to influence Exim’s behaviour.
The rest of this chapter describes how they operate.

When a message is received over TCP/IP, the interface and port that were actually used are set in
$interface_address and $interface port.

13.1 Starting a listening daemon

When a listening daemon is started (by means of the -bd command line option), the interfaces and
ports on which it listens are controlled by the following options:

» daemon_smtp_ports contains a list of default ports. (For backward compatibility, this option can
also be specified in the singular.)

* local_interfaces contains list of interface IP addresses on which to listen. Each item may
optionally also specify a port.

The default list separator in both cases is a colon, but this can be changed as described in section 6.15.
When |Pv6 addresses are involved, it is usually best to change the separator to avoid having to double
all the colons. For example:

| ocal interfaces = <; 127.0.0.1 ; \
192.168. 23.65 ; \
N A
3ffe:ffff:836f::fe86:a061

There are two different formats for specifying a port along with an |P address in local_interfaces:

(1) The port is added onto the address with a dot separator. For example, to listen on port 1234 on
two different 1P addresses:

| ocal _interfaces = <; 192.168.23.65.1234 ; \
3ffe:ffff:836f::fe86:a061.1234

Exim 4.50 [124] starting the daemon (13)

(2) The IP address is enclosed in square brackets, and the port is added with a colon separator, for
example:

| ocal _interfaces = <; [192.168.23.65]:1234 ; \
[3ffe:ffff:836f::fe86:a061]:1234

When a port is not specified, the value of daemon_smtp_ports is used. The default setting contains
just one port:

daenon_sntp_ports = sntp

If more than one port is listed, each interface that does not have its own port specified listens on al of
them. Ports that are listed in daemon_smtp_ports can be identified either by name (defined in
letc/services) or by number. However, when ports are given with individual IP addresses in
local_interfaces, only numbers (not names) can be used.

13.2 Special IP listening addresses

The addresses 0.0.0.0 and ::0 are treated specially. They are interpreted as ‘all 1Pv4 interfaces and ‘all
IPv6 interfaces’, respectively. In each case, Exim tells the TCP/IP stack to ‘listen on all IPvx
interfaces’ instead of setting up separate listening sockets for each interface. The default value of
local_interfacesis

| ocal interfaces = 0.0.0.0
when Exim is built without 1Pv6 support; otherwise it is:
|l ocal interfaces = <; ::0; 0.0.0.0
Thus, by default, Exim listens on all available interfaces, on the SMTP port.

13.3 Overriding local_interfaces and daemon_smtp_ports

The -oX command line option can be used to override the values of daemon_smtp_ports and/or
local_interfaces for a particular daemon instance. Another way of doing this would be to use macros
and the -D option. However, -0X can be used by any admin user, whereas modification of the runtime
configuration by -D is allowed only when the caller is root or exim.

The value of -oX is alist of items. The default colon separator can be changed in the usual way if
required. If there are any items that do not contain dots or colons (that is, are not |P addresses), the
value of daemon_smtp_ports is replaced by the list of those items. If there are any items that do
contain dots or colons, the value of local_interfaces is replaced by those items. Thus, for example,

-0X 1225
overrides daemon_smtp_ports, but leaves local_interfaces unchanged, whereas
-0X 192.168. 34. 5. 1125

overrides local_interfaces, leaving daemon_smtp_ports unchanged. (However, since local_interfaces
now contains no items without ports, the value of daemon_smtp_ports is no longer relevant in this
example.)

13.4 Support for the obsolete SSMTP (or SMTPS) protocol

Exim supports the obsolete SSMTP protocol (also known as SMTPS) that was used before the
STARTTLS command was standardized for SMTP. Some legacy clients still use this protocol. If the
tls_on_connect_ports option is set to a list of port numbers, connections to those ports must use
SSMTP. The most common use of this option is expected to be

tls_on_connect _ports = 465
because 465 is the usua port number used by the legacy clients. There is aso a command line option
-tls-on-connect, which forces all ports to behave in this way when a daemon is started.

Exim 4.50 [125] starting the daemon (13)

Warning: Setting tls_on_connect_ports does not of itself cause the daemon to listen on those ports.
You must still specify them in daemon_smtp_ports, local_interfaces, or the -oX option. (This is
because tls_on_connect_ports applies to inetd connections as well as to connections via the daemon.)

13.5 IPv6 address scopes

IPv6 addresses have ‘scopes’, and a host with multiple hardware interfaces can, in principle, have the
same link-local IPv6 address on different interfaces. Thus, additional information is needed, over and
above the IP address, to distinguish individual interfaces. A convention of using a percent sign
followed by something (often the interface name) has been adopted in some cases, leading to addresses
like this:

fe80::202: b3ff: fe03: 45c1%t hO

To accommodate this usage, a percent sign followed by an arbitrary string is allowed at the end of an
IPv6 address. By default, Exim calls getaddrinfo() to convert a textual IPv6 address for actua use.
This function recognizes the percent convention in operating systems that support it, and it processes
the address appropriately. Unfortunately, some older libraries have problems with getaddrinfo(). If

| PV6_USE_I NET_PTON=yes

is set in Local/Makefile (or an OS-dependent Makefile) when Exim is built, Exim uses inet_pton() to
convert a textual 1Pv6 address for actual use, instead of getaddrinfo(). (Before version 4.14, it always
used this function.) Of course, this means that the additional functionality of getaddrinfo() —
recognizing scoped addresses — is lost.

13.6 Examples of starting a listening daemon
The default case in an IPv6 environment is

daenmon_smtp_ports = sntp
| ocal interfaces = <; ::0; 0.0.0.0

This specifies listening on the smtp port on al IPv6 and IPv4 interfaces. Either one or two sockets
may be used, depending on the characteristics of the TCP/IP stack. (This is complicated and messy;
for more information, read the comments in the daemon.c source file.)

To specify listening on ports 25 and 26 on all interfaces:
daenmon_sntp_ports = 25 . 26
(leaving local_interfaces at the default setting) or, more explicitly:

| ocal interfaces = <; ::0.25 0:0.26 0\
0.0.0.0.25 ; 0.0.0.0.26

To listen on the default port on all 1Pv4 interfaces, and on port 26 on the IPv4 loopback address only:
| ocal interfaces = 0.0.0.0 : 127.0.0.1. 26

To specify listening on the default port on specific interfaces only:
| ocal _interfaces = 192.168.34.67 : 192.168. 34. 67

War ning: such a setting excludes listening on the loopback interfaces.

13.7 Recognising the local host

The local_interfaces option is also used when Exim needs to determine whether or not an IP address
refers to the local host. That is, the IP addresses of al the interfaces on which a daemon is listening
are always treated as local.

For this usage, port numbers in local_interfaces are ignored. If either of the items 0.0.0.0 or ::0 are
encountered, Exim gets a complete list of available interfaces from the operating system, and extracts
the relevant (that is, IPv4 or 1Pv6) addresses to use for checking.

Exim 4.50 [126] starting the daemon (13)

Some systems set up large numbers of virtual interfaces in order to provide many virtual web servers.
In this situation, you may want to listen for email on only a few of the available interfaces, but
nevertheless treat al interfaces as loca when routing. You can do this by setting
extra_local_interfaces to a list of IP addresses, possibly including the ‘al’ wildcard values. These
addresses are recognized as local, but are not used for listening. Consider this example:

| ocal _interfaces = <; 127.0.0.1 ; ::1 ; \
192. 168.53. 235 ; \
3ffe:2101: 12: 1: a00: 20ff: f e86: a061

extra local interfaces = <; ::0; 0.0.0.0

The daemon listens on the loopback interfaces and just one IPv4 and one IPv6 address, but all
available interface addresses are treated as local when Exim is routing.

In some environments the local host name may be in an MX list, but with an IP address that is not
assigned to any local interface. In other cases it may be desirable to treat other host names as if they
referred to the local host. Both these cases can be handled by setting the hosts treat_as local option.
This contains host names rather than 1P addresses. When a host is referenced during routing, either via
an MX record or directly, it is treated as the local host if its name matches hosts treat_as local, or if
any of its IP addresses match local_interfaces or extra_local_interfaces.

13.8 Delivering to a remote host

Delivery to a remote host is handled by the smtp transport. By default, it alows the system’s TCP/IP
functions to choose which interface to use (if there is more than one) when connecting to a remote
host. However, the interface option can be set to specify which interface is used. See the description
of the smtp transport in chapter 30 for more details.

Exim 4.50 [127] starting the daemon (13)

14. Main configuration

The first part of the run time configuration file contains three types of item:

» Macro definitions: These lines start with an upper case letter. See section 6.4 for details of macro
processing.

¢ Named list definitions: These lines stat with one of the words ‘domainlist’, ‘hostlist’,
‘addresslist’, or ‘localpartlist’. Their use is described in section 10.5.

 Main configuration settings. Each setting occupies one line of the file (with possible continu-
ations). If any setting is preceded by the word ‘hide’, the -bP command line option displays its
value to admin users only. See section 6.6 for a description of the syntax of these option settings.

This chapter specifies all the main configuration options, along with their types and default values. For
ease of finding a particular option, they appear in aphabetical order in section 14.23 below. However,
because there are now so many options, they are first listed briefly in functional groups, as an aid to
finding the name of the option you are looking for. Some options are listed in more than one group.

14.1 Miscellaneous

bi_command
keep_malformed
localhost_number
message_body_visible

to run for -bi command line option
for broken files — should not happen
for unigue message ids in clusters
how much to show in $message body

mua_wr apper
print_topbitchars
timezone

14.2 Exim parameters

exim_group
exim_path

exim_user
primary_hostname
split_spool_directory
spool_directory

run in ‘MUA wrapper’ mode
top-hit characters are printing
force time zone

override compiled-in value
override compiled-in value
override compiled-in value
default from uname()

use multiple directories
override compiled-in value

14.3 Privilege controls

admin_groups
deliver_drop_privilege
local_from_check
local_from_prefix
local_from_suffix
local_sender_retain
never_users
prod_requires admin
queue_list_requires admin
trusted_groups
trusted_users

groups that are Exim admin users
drop root for delivery processes
insert Sender: if necessary

for testing From: for local sender
for testing From: for local sender
keep Sender: from untrusted user
do not run deliveries as these
forced delivery requires admin user
gueue listing requires admin user
groups that are trusted

users that are trusted

14.4 Logging

hosts_connection_nolog
log_file path

exemption from connect logging
override compiled-in value

Exim 4.50 [128] main configuration (14)

log_selector
log_timezone
message_logs
preserve_message logs
process log_path
syslog_duplication
syslog_facility
syslog_processname
syslog_timestamp
write rejectlog

14.5 Frozen messages

auto_thaw

freeze tell
move_frozen_messages
timeout_frozen_after

14.6 Data lookups

Idap_default_servers
Idap_version
lookup_open_max
mysql_servers

oracle servers
pgsql_servers

14.7 Message ids

message_id_header _domain
message_id_header_text

14.8 Embedded Per| Startup

perl_at_start
perl_startup

14.9 Daemon

daemon_smtp_ports
extra_local_interfaces
local_interfaces
pid_file_path
gueue_run_max

14.10 Resour ce control

check_log_inodes
check_log_space
check_spool_inodes
check_spool_space

deliver_queue load_max

queue_only_load
gueue_run_max
remote_max_parallel
smtp_accept_max

Exim 4.50

set/unset optional logging

add timezone to log lines

create per-message logs

after message completion

for SIGUSR1 and exiwhat

controls duplicate log lines on syslog
set syslog ‘facility’ field

set syslog ‘ident’ field

timestamp syslog lines

control use of message log

sets time for retrying frozen messages
send message when freezing

to another directory

keep frozen messages only so long

used if no server in query
set protocol version
lookup files held open
asit says

asit says

asit says

used to build Message-ID: header
ditto

always start the interpreter
code to obey when starting Perl

default ports

not necessarily listened on

on which to listen, with optional ports
override compiled-in value

maximum simultaneous queue runners

before accepting a message

before accepting a message

before accepting a message

before accepting a message

no queue deliveries if load high
queue incoming if load high
maximum simultaneous queue runners
parallel SMTP delivery per message
simultaneous incoming connections

[129] main configuration (14)

smtp_accept_max_nommail
smtp_accept_max_nonmail_hosts
smtp_accept_max_per_connection
smtp_accept_max_per_host
smtp_accept_queue
smtp_accept_queue_per_connection
smtp_accept_reserve
smtp_check_spool_space
smtp_connect_backlog
smtp_load_reserve
smtp_reserve_hosts

14.11 Policy controls

acl_not_smtp
acl_smtp_auth
acl_smtp_connect
acl_smtp_data
acl_smtp_etrn
acl_smtp_expn
acl_smtp_helo
acl_smtp_mail
acl_smtp_mailauth
acl_smtp_mime
acl_smtp_predata
acl_smtp_quit
acl_smtp_rcpt
acl_smtp_starttls
acl_smtp_vrfy
av_scanner

header _maxsize
header _line_maxsize
helo_accept_junk_hosts
helo_allow _chars
helo_lookup_domains
helo_try verify hosts
helo_verify hosts
host_lookup
host_lookup_order
host_reject_connection
hosts treat_as local
local_scan_timeout
message_size limit
percent_hack _domains
spamd_address

14.12 Callout cache

callout_domain_negative expire
callout_domain_positive _expire
callout_negative expire
callout_positive expire
callout_random_local_part

Exim 4.50

non-mail commands

hosts to which the limit applies
messages per connection

connections from one host

queue mail if more connections

queue if more messages per connection
only reserve hosts if more connections
from size on maiL command

passed to TCP/IP stack

SMTP from reserved hosts if load high
these are the reserve hosts

set ACL for non-SMTP messages
set ACL for AuTH

set ACL for connection

set ACL for pata

set ACL for ETRN

set ACL for expn

set ACL for EHLO or HELO

set ACL for mAIL

set ACL for AutH on maiL command
set ACL for MIME parts

set ACL for start of data

set ACL for QuiT

set ACL for rcpT

set ACL for sTaRTTLS

set ACL for vrrY

specify virus scanner

total size of message header
individual header line limit

allow syntactic junk from these hosts
allow illegal chars in HELO names
lookup hostname for these HELO hames
HELO soft-checked for these hosts
HELO hard-checked for these hosts
host name looked up for these hosts
order of DNS and local name lookups
reject connection from these hosts
useful in some cluster configurations
timeout for local_scan()

for all messages

recognize %-hack for these domains
set interface to SpamAssassin

timeout for negative domain cache item
timeout for positive domain cache item
timeout for negative address cache item
timeout for positive address cache item
string to use for ‘random’ testing

[130] main configuration (14)

1413 TLS

tls advertise hosts
tls _certificate

tls crl

tls dhparam
tls_on_connect_ports
tls privatekey

tls remember_esmtp
tls require _ciphers
tls try verify_hosts
tls verify_certificates
tls verify_hosts

14.14 Local user handling

finduser_retries
gecos_name

gecos pattern
max_username_length
unknown_login
unknown_user name
uucp_from_pattern
uucp_from_sender

header _maxsize
header line_maxsize
message_size limit
percent_hack_domains
received_header text
received_headers max
recipients_max
recipients_max_reject

advertise TLS to these hosts
location of server certificate
certificate revocation list

DH parameters for server
specify SSMTP (SMTPS) ports
location of server private key
don’t reset after starting TLS
specify acceptable cipers

try to verify client certificate
expected client certificates
insist on client certificate verify

useful in NIS environments
used when creating Sender:
ditto

for systems that truncate

used when no login name found
ditto

for recognizing ‘From’ lines
ditto

14.15 All incoming messages (SM TP and non-SMTP)

total size of message header
individual header line limit
applies to al messages

recognize %-hack for these domains
expanded to make Received:

for mail loop detection

limit per message

permanently reject excess

14.16 Non-SM TP incoming messages

receive_timeout for non-SMTP messages

14.17 Incoming SM TP messages
See also the Policy controls section above.

host_lookup

host_lookup_order
recipient_unqualified_hosts
rfcl413 hosts

rfcl413 _query_timeout
sender_unqualified_hosts
smtp_accept_keepalive
smtp_accept_max
smtp_accept_max_nommail
smtp_accept_max_nonmail_hosts
smtp_accept_max_per_connection
smtp_accept_max_per_host
smtp_accept_queue
smtp_accept_queue_per_connection

Exim 4.50

host name looked up for these hosts
order of DNS and local name lookups
may send unqualified recipients

make ident calls to these hosts

zero disables ident calls

may send unqualified senders

some TCP/IP magic

simultaneous incoming connections
non-mail commands

hosts to which the limit applies
messages per connection

connections from one host

queue mail if more connections
queue if more messages per connection

[131] main configuration (14)

smtp_accept_reserve
smtp_active_hostname
smtp_banner
smtp_check_spool_space
smtp_connect_backlog
smtp_enforce_sync
smtp_etrn_command
smtp_etrn_serialize
smtp_load_reserve
smtp_max_unknown_commands
smtp_ratelimit_hosts
smtp_ratelimit_mail
smtp_ratelimit_rcpt
smtp_receive_timeout
smtp_reserve_hosts
smtp_return_error_details

14.18 SM TP extensions

accept_8bitmime
auth_advertise_hosts
ignore_fromline_hosts
ignore_fromline_local
pipelining_advertise_hosts
tls advertise_hosts

14.19 Processing messages

allow_domain_literals
allow_mx_to_ip

allow_utf8 domains
delivery_date remove

envelope to_remote
extract_addresses remove_arguments
headers charset
qualify_domain
qualify_recipient
return_path_remove
strip_excess_angle _brackets
strip_trailing_dot
untrusted _set sender

14.20 System filter

system_filter

system_filter _directory_transport
system_filter_file_transport
system_filter_group
system_filter_pipe_transport
system_filter _reply_transport
system_filter _user

14.21 Routing and delivery

dns_again_means_nonexist
dns_check_names pattern

Exim 4.50

only reserve hosts if more connections
host name to use in messages
text for welcome banner

from size on maiL command
passed to TCP/IP stack

of SMTP command/responses
what to run for ETRN

only one at once

only reserve hosts if this load
before dropping connection
apply ratelimiting to these hosts
ratelimit for maiL commands
ratelimit for RcPT commands
per command or data line

these are the reserve hosts

give detail on rejections

advertise 8BITMIME

advertise AuTH to these hosts
dlow ‘From ' from these hosts
dlow ‘From ' from local SMTP
advertise pipelining to these hosts
advertise TLS to these hosts

recognize domain literal syntax
allow MX to point to |P address
in addresses

from incoming messages

from incoming messages

affects -t processing

default for trandations

default for senders

default for recipients

from incoming messages

in addresses

at end of addresses

untrusted can set envelope sender

locate system filter

transport for delivery to a directory
transport for delivery to afile
group for filter running

transport for delivery to a pipe
transport for autoreply delivery
user for filter running

for broken domains
pre-DNS syntax check

[132] main configuration (14)

dns_ipv4_lookup

dns retrans

dns retry
hold_domains
local_interfaces
gueue_domains
queue_only
queue_only_file
queue_only_load
queue_only_override
queue_run_in_order
gueue_run_max
queue_smtp_domains
remote_max_parallel
remote_sort_domains
retry_data_expire
retry_interval_max

14.22 Bounce and war ning messages

bounce_message file
bounce_message text
bounce_return_body
bounce_return_message
bounce return_size limit
bounce_sender_authentication
errors_copy

errors reply_to
delay_warning
delay_warning_condition
ignore_bounce_errors_after
warn_message file

only v4 lookup for these domains
parameter for resolver

parameter for resolver

hold delivery for these domains

for routing checks

no immediate delivery for these

no immediate delivery at all

no immediate deliveryif file exists
no immediate delivery if load is high
allow command line to override
order of arriva

of simultaneous queue runners

no immediate SMTP delivery for these
parallel SMTP delivery per message
order of remote deliveries

timeout for retry data

safety net for retry rules

content of bounce

content of bounce

include body if returning message
include original message in bounce
limit on returned message

send authenticated sender with bounce
copy bounce messages

Reply-to: in bounces

time schedule

condition for warning messages
discard undeliverable bounces
content of warning message

14.23 Alphabetical list of main options
Those options that undergo string expansion before use are marked with t.

Default: false

This option causes Exim to send ssiTMIME in its response to an SMTP eHLo command, and to accept
the Boby= parameter on mAaiL commands. However, though Exim is 8-bit clean, it is not a protocol
converter, and it takes no steps to do anything special with messages received by this route.
Consequently, this option is turned off by default.

accept_8bitmime Use: main Type: boolean

acl_not_smtp Use: main Type: stringt Default: unset

This option defines the ACL that is run when a non-SMTP message is on the point of being
accepted. See chapter 39 for further details.
Use: main Default: unset

acl_smtp_auth Type: string?

This option defines the ACL that is run when an SMTP autH command is received. See chapter 39
for further details.

Exim 4.50 [133] main configuration (14)

acl_smtp_connect Use: main Type: stringt Default: unset
This option defines the ACL that is run when an SMTP connection is received. See chapter 39 for
further details.

acl_smtp_data Use: main Type: stringt Default: unset
This option defines the ACL that is run after an SMTP pata command has been processed and the
message itself has been received, but before the final acknowledgement is sent. See chapter 39 for
further details.

acl_smtp_etrn Use: main Type: stringt Default: unset
This option defines the ACL that is run when an SMTP eTrRn command is received. See chapter 39
for further details.

acl_smtp_expn Use: main Type: stringt Default: unset
This option defines the ACL that is run when an SMTP expn command is received. See chapter 39
for further details.

acl_smtp_helo Use main Type: stringt Default: unset
This option defines the ACL that is run when an SMTP EHLO or HELO command is received. See
chapter 39 for further details.

acl_smtp_mail Use: main Type: stringt Default: unset
This option defines the ACL that is run when an SMTP maiL command is received. See chapter 39
for further details.

acl_smtp_mailauth Use: main Type: stringt Default: unset
This option defines the ACL that is run when there is an AutH parameter on a maiL command. See
chapter 39 for details of ACLs, and chapter 33 for details of authentication.

acl_smtp_mime Use main Type stringt Default: unset

This option is available when Exim is built with the content-scanning extension. It defines the ACL
that is run for each MIME part in a message. See section 40.3 for details.

acl_smtp_predata Use: main Type: stringt Default: unset
This option defines the ACL that is run when an SMTP pata command is received, before the
message itself is received. See chapter 39 for further details.

acl_smtp_quit Use main Type: stringt Default: unset
This option defines the ACL that is run when an SMTP quit command is received. See chapter 39
for further details.

acl_smtp_rcpt Use: main Type: stringt Default: unset
This option defines the ACL that is run when an SMTP rcpt command is received. See chapter 39
for further details.

acl_smtp_starttls Use: main Type: stringt Default: unset

This option defines the ACL that is run when an SMTP starTTLSs command is received. See chapter
39 for further details.

Exim 4.50 [134] main configuration (14)

acl_smtp_vrfy Use: main Type: stringt Default: unset

This option defines the ACL that is run when an SMTP vrry command is received. See chapter 39
for further details.

admin_groups Use: main Type: string list Default: unset

If the current group or any of the supplementary groups of the caller is in this colon-separated list,
the caller has admin privileges. If al your system programmers are in a specific group, for example,
you can give them al Exim admin privileges by putting that group in admin_groups. However,
this does not permit them to read Exim’'s spool files (whose group owner is the Exim gid). To
permit this, you have to add individuals to the Exim group.

allow_domain_literals Use: main Type: boolean Default: false

If this option is set, the RFC 2822 domain literal format is permitted in email addresses. The option
is not set by default, because the domain literal format is not normally required these days, and few
people know about it. It has, however, been exploited by mail abusers.

Unfortunately, it seems that some DNS black list maintainers are using this format to report black
listing to postmasters. If you want to accept messages addressed to your hosts by IP address, you
need to set allow_domain_literals true, and also to add @] to the list of loca domains (defined in
the named domain list local_domains in the default configuration). This ‘magic string’ matches the
domain literal form of all the local host's IP addresses.

allow_mx_to_ip Use: main Type: boolean Default: false

It appears that more and more DNS zone administrators are breaking the rules and putting domain
names that look like IP addresses on the right hand side of MX records. Exim follows the rules and
rejects this, giving an error message that explains the mis-configuration. However, some other
MTASs support this practice, so to avoid ‘Why can’t Exim do this? complaints, allow_mx_to_ip
exists, in order to enable this heinous activity. It is not recommended, except when you have no
other choice.

allow_utf8 domains Use: main Type: boolean Default: false

Lots of discussion is going on about internationalized domain names. One camp is strongly in
favour of just using UTF-8 characters, and it seems that at least two other MTAS permit this. This
option allows Exim users to experiment if they wish.

If it is set true, Exim’'s domain parsing function allows valid UTF-8 multicharacters to appear in
domain name components, in addition to letters, digits, and hyphens. However, just setting this
option is not enough; if you want to look up these domain names in the DNS, you must also adjust
the value of dns_check_names_pattern to match the extended form. A suitable setting is:

dns_check_nanes_pattern = (?2i)M(?>(?2(1)\.|())[a-z0-9\ xcO-\xff]\
(?>[-a-z0-9\x80-\xff]*[a-z0-9\x80-\xbf])?)+$

Alternatively, you can just disable this feature by setting
dns_check_nanes_pattern =
That is, set the option to an empty string so that no check is done.
auth_advertise_hosts Use: main Type: host listt Default: *

If any server authentication mechanisms are configured, Exim advertises them in response to an
eHLo command only if the calling host matches this list. Otherwise, Exim does not advertise AuTH.
Exim does not accept AutH commands from clients to which it has not advertised the availability of
AUTH. The advertising of individual authentication mechanisms can be controlled by the use of the
server_advertise_condition generic authenticator option on the individual authenticators. See chap-
ter 33 for further details.

Certain mail clients (for example, Netscape) require the user to provide a name and password for
authentication if AuTtH is advertised, even though it may not be needed (the host may accept

Exim 4.50 [135] main configuration (14)

messages from hosts on its local LAN without authentication, for example). The
auth_advertise_hosts option can be used to make these clients more friendly by excluding them
from the set of hosts to which Exim advertises AuTH.

If you want to advertise the availability of autH only when the connection is encrypted using TLS,
you can make use of the fact that the value of this option is expanded, with a setting like this:

aut h_advertise_hosts = ${if eq{$tls_cipher}{}{}{*}}

If $tIs cipher is empty, the session is not encrypted, and the result of the expansion is empty, thus
matching no hosts. Otherwise, the result of the expansion is *, which matches all hosts.

auto_thaw Use: main Type: time Default: Os

If this option is set to a time greater than zero, a queue runner will try a new delivery attempt on
any frozen message if this much time has passed since it was frozen. This may result in the
message being re-frozen if nothing has changed since the last attempt. It is a way of saying ‘keep
on trying, even though there are big problems. See aso timeout_frozen_after and
ignore_bounce _errors_after.

av_scanner Use: main Type: string Default: see below

This option is available if Exim is built with the content-scanning extension. It specifies which anti-
virus scanner to use. The default valueis:

sophi e: / var/run/ sophi e

If the value of av_scanner starts with dollar character, it is expanded before use. See section 40.1
for further details.

bi_command Use: main Type: string Default: unset

This option supplies the name of a command that is run when Exim is called with the -bi option
(see chapter 5). The string value is just the command name, it is not a complete command line. If
an argument is required, it must come from the -o0A command line option.

bounce_message file Use: main Type: string Default: unset

This option defines a template file containing paragraphs of text to be used for constructing bounce
messages. Details of the file's contents are given in chapter 45. See a'so warn_message file.

bounce_message text Use: main Type: string Default: unset
When this option is set, its contents are included in the default bounce message immediately after
‘This message was created automaticaly by mail delivery software’ It is not used if
bounce_message fileis set.

bounce_return_body Use: main Type: boolean Default: true
This option controls whether the body of an incoming message is included in a bounce message
when bounce_return_message is true. If it is not set, only the message header is included.

bounce_return_message Use: main Type: boolean Default: true

If this option is set false, the original message is not included in bounce messages generated by
Exim. See also bounce_return_size limit.

bounce return_size limit Use: main Type: integer Default: 100K

This option sets a limit in bytes on the size of messages that are returned to senders as part of
bounce messages when bounce _return_message is true. The limit should be less than the value of
the global message size limit and of any message size limit settings on transports, to alow for
the bounce text that Exim generates. If this option is set to zero there is no limit.

When the body of any message that is to be included in a bounce message is greater than the limit,
it is truncated, and a comment pointing this out is added at the top. The actua cutoff may be

Exim 4.50 [136] main configuration (14)

greater than the value given, owing to the use of buffering for transferring the message in chunks
(typically 8K in size). The idea is to save bandwidth on those undeliverable 15-megabyte messages.
bounce_sender_authentication Use: main Type: string Default: unset

This option provides an authenticated sender address that is sent with any bounce messages
generated by Exim that are sent over an authenticated SMTP connection. A typical setting
might be:

bounce_sender _aut hentication = mail er-daenon@ry. domai n. exanpl e
which would cause bounce messages to be sent using the SMTP command:

MAI L FROM <> AUTH=mmai | er - daenon@ry. domai n. exanpl e
The value of bounce_sender_authentication must always be a complete email address.

callout_domain_negative_expire Use: main Type: time Default: 3h

This option specifies the expiry time for negative callout cache data for a domain. See section 39.31
for details of callout verification, and section 39.33 for details of the caching.

callout_domain_positive_expire Use: main Type: time Default: 7d

This option specifies the expiry time for positive callout cache data for a domain. See section 39.31
for details of callout verification, and section 39.33 for details of the caching.

callout_negative_expire Use: main Type: time Default: 2h

This option specifies the expiry time for negative calout cache data for an address. See section
39.31 for details of callout verification, and section 39.33 for details of the caching.

callout_positive_expire Use: main Type: time Default: 24h

This option specifies the expiry time for positive callout cache data for an address. See section
39.31 for details of callout verification, and section 39.33 for details of the caching.

callout_random_local_part Use: main Type: stringt Default: see below

This option defines the ‘random’ local part that can be used as part of callout verification. The
default value is

$pri mary_host _nane- $t od_epoch-testing

See section 39.32 for details of how this value is used.

check_log_inodes Use: main Type: integer Default: O
See check_spool_space below.

check_log_space Use: main Type: integer Default: 0
See check_spool_space below.

check_spool_inodes Use: main Type: integer Default: 0
See check_spool_space below.

check_spool_space Usee main Type: integer Default: 0

The four check_... options allow for checking of disk resources before a message is accepted. When
any of these options are set, they apply to al incoming messages. If you want to apply different
checks to different kinds of message, you can do so by testing the the variables $log_inodes,
$log_space, $spool_inodes, and $spool_space in an ACL with appropriate additional conditions.

check _spool _space and check _spool_inodes check the spool partition if either value is greater than
zero, for example:

Exim 4.50 [137] main configuration (14)

check_spool _space = 10M
check_spool _i nodes = 100

The spool partition is the one that contains the directory defined by spooL_birRecTory in
L ocal/M akefile. It is used for holding messages in transit.

check_log_space and check_log_inodes check the partition in which log files are written if either
is greater than zero. These should be set only if log_file_path and spool_directory refer to different
partitions.

If there is less space or fewer inodes than requested, Exim refuses to accept incoming mail. In the
case of SMTP input this is done by giving a 452 temporary error response to the maiL command. If
ESMTP is in use and there was a size parameter on the maiL command, its value is added to the
check_spool_space value, and the check is performed even if check_spool_space is zero, unless
no_smtp_check_spool_space is set.

The values for check_spool_space and check_log_space are held as a number of kilobytes. If a
non-multiple of 1024 is specified, it is rounded up.

For non-SMTP input and for batched SMTP input, the test is done at start-up; on failure a message
is written to stderr and Exim exits with a non-zero code, as it obviously cannot send an error
message of any kind.

daemon_smtp_ports Use: main Type: string Default: snt p

This option specifies one or more default SMTP ports on which the Exim daemon listens. See
chapter 13 for details of how it is used. For backward compatibility, daemon_smtp_port (singular)
is a synonym.

delay_warning Use: main Type: time list Default: 24h

When a message is delayed, Exim sends a warning message to the sender at intervals specified by
this option. The data is a colon-separated list of times after which to send warning messages. If the
value of the option is an empty string or a zero time, no warnings are sent. Up to 10 times may be
given. If a message has been on the queue for longer than the last time, the last interval between
the times is used to compute subsequent warning times. For example, with

del ay_war ni ng = 4h: 8h: 24h

the first message is sent after 4 hours, the second after 8 hours, and the third one after 24 hours.
After that, messages are sent every 16 hours, because that is the interval between the last two times
on the list. If you set just one time, it specifies the repeat interval. For example, with:

del ay_warni ng = 6h

messages are repeated every six hours. To stop warnings after a given time, set a very large time at
the end of the list. For example:

del ay_warni ng = 2h: 12h: 99d
delay_warning_condition Use: main Type: stringt Default: see below

The string is expanded at the time a warning message might be sent. If all the deferred addresses
have the same domain, it is set in $domain during the expansion. Otherwise $domain is empty. If
the result of the expansion is a forced failure, an empty string, or a string matching any of ‘0’, ‘no’
or ‘false’ (the comparison being done caselessdy) then the warning message is not sent. The
default is

del ay_warni ng_condition =\
${if match{$h_precedence: }{(?i)bul k|list]|junk}{no}{yes}}

which suppresses the sending of warnings about messages that have ‘bulk’, ‘list’ or ‘junk’ in a
Precedence: header.

Exim 4.50 [138] main configuration (14)

deliver_drop_privilege Use: main Type: boolean Default: false

If this option is set true, Exim drops its root privilege at the start of a delivery process, and runs as
the Exim user throughout. This severely restricts the kinds of local delivery that are possible, but is
viable in certain types of configuration. There is a discussion about the use of root privilege in
chapter 51.

deliver_queue load_max Use main Type: fixed-point Default: unset

When this option is set, a queue run is abandoned if the system load average becomes greater than
the value of the option. The option has no effect on ancient operating systems on which Exim
cannot determine the load average. See also queue_only_load and smtp_load_reserve.

delivery_date remove Use: main Type: boolean Default: true

Exim's transports have an option for adding a Delivery-date: header to a message when it is
delivered — in exactly the same way as Return-path: is handled. Delivery-date: records the actua
time of delivery. Such headers should not be present in incoming messages, and this option causes
them to be removed at the time the message is received, to avoid any problems that might occur
when a delivered message is subsequently sent on to some other recipient.

dns_again_means_nonexist Use main Type: domain listt Default: unset

DNS lookups give a ‘try again’ response for the DNS errors ‘non-authoritative host not found’ and
‘sERVERFAIL’. This can cause Exim to keep trying to deliver a message, or to give repeated
temporary errors to incoming mail. Sometimes the effect is caused by a badly set up name server
and may persist for along time. If a domain which exhibits this problem matches anything in dns_
again_means _nonexist, it is treated as if it did not exist. This option should be used with care. You
can make it apply to reverse lookups by a setting such as this:

dns_agai n_neans_nonexi st = *.in-addr. arpa

This option applies to all DNS lookups that Exim does. The dnslookup router has some options of
its own for controlling what happens when lookups for MX or SRV records give temporary errors.
These more specific options are applied after the global option.

dns_check _names pattern Use: main Type: string Default: see below

When this option is set to a non-empty string, it causes Exim to check domain names for illega
characters before handing them to the DNS resolver, because some resolvers give temporary errors
for malformed names. If a domain name contains any illegal characters, a ‘not found’ result is
forced, and the resolver is not called. The check is done by matching the domain name against a
regular expression, which is the value of this option. The default pattern is

dns_check _names_pattern =\
(2D M?>(2(DN 1 O) [MNW](7>[a-20-9-1*[MNW]) ?) +$

which permits only letters, digits, and hyphens in components, but they may not start or end with a
hyphen. If you set allow_utf8 domains, you must modify this pattern, or set the option to an
empty string.

dns ipv4 lookup Use: main Type domain listt Default: unset

When Exim is compiled with IPv6 support, it looks for IPv6 address records (AAAA and, if
configured, A6) as well as IPv4 address records when trying to find IP addresses for hosts, unless
the host’s domain matches this list.

Thisis a fudge to help with name servers that give big delays or otherwise do not work for the new
IPv6 record types. If Exim is handed an IPv6 address record as a result of an MX lookup, it always
recognizes it, and may as a result make an outgoing IPv6 connection. All this option does is to
make Exim look only for 1Pv4-style A records when it needs to find an IP address for a host name.
In due course, when the world’s name servers have al been upgraded, there should be no need for
this option.

Exim 4.50 [139] main configuration (14)

dns retrans Use: main Type: time Default: Os

The options dns_retrans and dns_retry can be used to set the retransmission and retry parameters
for DNS lookups. Values of zero (the defaults) leave the system default settings unchanged. The
first value is the time between retries, and the second is the number of retries. It isn't totally clear
exactly how these settings affect the total time a DNS lookup may take. | haven't found any
documentation about timeouts on DNS lookups; these parameter values are available in the external
resolver interface structure, but nowhere does it seem to describe how they are used or what you
might want to set in them.

dns retry Use: main Type: integer Default: 0
See dns retrans above.
drop_cr Use: main Type: boolean Default: false

This is an obsolete option that is now a no-op. It used to affect the way Exim handled CR and LF
characters in incoming messages. What happens now is described in section 43.2.

envelope_to_remove Use: main Type: boolean Default: true

Exim’s transports have an option for adding an Envelope-to: header to a message when it is
delivered — in exactly the same way as Return-path: is handled. Envelope-to: records the original
recipient address from the messages's envelope that caused the delivery to happen. Such headers
should not be present in incoming messages, and this option causes them to be removed at the time
the message is received, to avoid any problems that might occur when a delivered message is
subsequently sent on to some other recipient.

errors_copy Use: main Type: string listt Default: unset

Setting this option causes Exim to send bcc copies of bounce messages that it generates to other
addresses. Note: this does not apply to bounce messages coming from elsewhere. The value of the
option is a colon-separated list of items. Each item consists of a pattern, terminated by white space,
followed by a comma-separated list of email addresses. If a pattern contains spaces, it must be
enclosed in double quotes.

Each pattern is processed in the same way as a single item in an address list (see section 10.18).
When a pattern matches the recipient of the bounce message, the message is copied to the addresses
on the list. The items are scanned in order, and once a matching one is found, no further items are
examined. For example:

errors_copy = spqr@rydonai n post mast er @rydonai n. exanpl e :\
rqps@rydomai n host mast er @rydonmai n. exanpl e, \
post mast er @rydonai n. exanpl e

The address list is expanded before use. The expansion variables $local_part and $domain are set
from the origina recipient of the error message, and if there was any wildcard matching in the
pattern, the expansion variables $0, $1, etc. are set in the normal way.

errors reply_to Use: main Type: string Default: unset
Exim’s bounce and delivery warning messages contain the header line
From Mail Delivery System <Mi |l er - Daenon@kqualify-domain>>

where <qualify-domain> is the value of the qualify_domain option. Experience shows that people
reply to bounce messages. If the errors reply to option is set, a Reply-To: header is added to
bounce and warning messages. For example:

errors_reply_to = postmaster @y. domai n. exanpl e
The value of the option is not expanded. It must specify a valid RFC 2822 address.

Exim 4.50 [140] main configuration (14)

exim_group Use: main Type: string Default: compile-time configured

This option changes the gid under which Exim runs when it gives up root privilege. The default
value is compiled into the binary. The value of this option is used only when exim_user is also set.
Unless it consists entirely of digits, the string is looked up using getgrnam(), and failure causes a
configuration error. See chapter 51 for a discussion of security issues.

exim_path Use: main Type: string Default: see below

This option specifies the path name of the Exim binary, which is used when Exim needs to re-exec
itself. The default is set up to point to the file exim in the directory configured at compile time by
the BIN_DIRECTORY setting. It is necessary to change exim_path if, exceptionally, Exim is run from
some other place. Warning: Do not use a macro to define the value of this option, because you will
break those Exim utilities that scan the configuration file to find where the binary is. (They then use
the -bP option to extract option settings such as the value of spool_directory.)

exim_user Use: main Type: string Default: compile-time configured

This option changes the uid under which Exim runs when it gives up root privilege. The default
value is compiled into the binary. Ownership of the run time configuration file and the use of the -C
and -D command line options is checked against the values in the binary, not what is set here.

Unless it consists entirely of digits, the string is looked up using getpwnam(), and failure causes a
configuration error. If exim_group is not aso supplied, the gid is taken from the result of
getpwnam() if it is used. See chapter 51 for a discussion of security iSsues.

extra_local_interfaces Use: main Type: string list Default: unset

This option defines network interfaces that are to be considered local when routing, but which are
not used for listening by the daemon. See section 13.7 for details.

extract_addresses remove_arguments
Use: main Type: boolean Default: true

According to some Sendmail documentation (Sun, IRIX, HP-UX), if any addresses are present on
the command line when the -t option is used to build an envelope from a message's To:, Cc: and
Bcc: headers, the command line addresses are removed from the recipients list. This is also how
Smail behaves. However, other Sendmail documentation (the O'Reilly book) states that command
line addresses are added to those obtained from the header lines. When extract addresses
remove_arguments is true (the default), Exim subtracts argument headers. If it is set false, Exim
adds rather than removes argument addresses.

finduser_retries Use: main Type: integer Default: 0

On systems running NIS or other schemes in which user and group information is distributed from
a remote system, there can be times when getpwnam() and related functions fail, even when given
valid data, because things time out. Unfortunately these failures cannot be distinguished from
genuine ‘not found’ errors. If finduser_retries is set greater than zero, Exim will try that many
extra times to find a user or a group, waiting for one second between retries.

You should not set this option greater than zero if your user information is in a traditiona
/etc/passwd file, because it will cause Exim needlessly to search the file multiple times for non-
existent users, and also cause delay.

freeze tell Use: main Type: string list, comma separated Default: unset

On encountering certain errors, or when configured to do so in a system filter, or in an ACL, Exim
freezes a message. This means that no further delivery attempts take place until an administrator (or
the auto_thaw feature) thaws the message. If freeze tell is set, Exim generates a warning message
whenever it freezes something, unless the message it is freezing is a locally-generated bounce
message. (Without this exception there is the possibility of looping.) The warning message is sent
to the addresses supplied as the comma-separated value of this option. If several of the message's
addresses cause freezing, only a single message is sent. If the freezing was automatic, the reason(s)

Exim 4.50 [141] main configuration (14)

for freezing can be found in the message log. If you configure freezing in a filter or ACL, you must
arrange for any logging that you require.

gecos_name Use: main Type: stringt Default: unset

Some operating systems, notably HP-UX, use the ‘gecos field in the system password file to hold
other information in addition to users real names. Exim looks up this field for use when it is
creating Sender: or From: headers. If either gecos pattern or gecos name are unset, the contents
of the field are used unchanged, except that, if an ampersand is encountered, it is replaced by the
user’s login name with the first character forced to upper case, since this is a convention that is
observed on many systems.

When these options are set, gecos_pattern is treated as a regular expression that is to be applied to
the field (again with & replaced by the login name), and if it matches, gecos_name is expanded and
used as the user’s name. Numeric variables such as $1, $2, etc. can be used in the expansion to pick
up sub-fields that were matched by the pattern. In HP-UX, where the user’s name terminates at the
first comma, the following can be used:

gecos_pattern = ([",]%*)
gecos_nane = $1

gecos_pattern Use: main Type: string Default: unset
See gecos_name above.
headers_charset Use: main Type: string Default: see below

This option sets a default character set for trandating from encoded MIME ‘words' in header lines,
when referenced by an $h_xxx expansion item. The default is the value of HEADERS CHARSET in
L ocal/M akefile. The ultimate default is 1SO-8859-1. For more details see the description of header
insertions in section 11.5.

header _maxsize Use: main Type: integer Default: see below

This option controls the overall maximum size of a message's header section. The default is the
value of HEADER MAXSIZE in Local/M akefile; the default for that is 1M. Messages with larger header
sections are rejected.

header_line_maxsize Use: main Type: integer Default: 0

This option limits the length of any individual header line in a message, after al the continuations
have been joined together. Messages with individual header lines that are longer than the limit are
rejected. The default value of zero means ‘no limit’.

helo_accept_junk_hosts Use: main Type: host listt Default: unset

Exim checks the syntax of HeLo and eEHLo commands for incoming SMTP mail, and gives an error
response for invalid data. Unfortunately, there are some SMTP clients that send syntactic junk.
They can be accommodated by setting this option. Note that this is a syntax check only. See
helo_verify_hosts if you want to do semantic checking. See also helo_allow_chars for a way of
extending the permitted character set.

helo_allow_chars Use: main Type: string Default: unset

This option can be set to a string of rogue characters that are permitted in all EHLo and HELO names
in addition to the standard letters, digits, hyphens, and dots. If you really must allow underscores,
you can set

helo_all ow chars = _
Note that the value is one string, not a list.

Exim 4.50 [142] main configuration (14)

helo_lookup_domains Use main Type: domain listt Default: @ @]

If the domain given by a client in a HELO or EHLO command matches this list, a reverse lookup is
done in order to establish the host’s true name. The default forces a lookup if the client host gives
the server’s name or any of its IP addresses (in brackets), something that broken clients have been
seen to do.

helo_try verify hosts Use: main Type: host listt Default: unset

The RFCs mandate that a server must not reject a message because it doesn't like the HELO or EHLO
command. By default, Exim just checks the syntax of these commands (see helo_accept_junk_
hosts and helo_allow_chars above). However, some sites like to be stricter. If the calling host
matches helo_try verify_hosts, Exim checks that the host name given in the HELO Or EHLO
command either:

* isan IP literal matching the calling address of the host (the RFCs specifically allow this), or

e matches the host name that Exim obtains by doing a reverse lookup of the calling host
address, or

* when looked up using gethostbyname() (or getipnodebyname() when available) yields the
caling host address.

However, the eHLO or HELO command is not rejected if any of the checks fail. Processing continues,
but the result of the check is remembered, and can be detected later in an ACL by the verify
= hel o condition. If you want verification failure to cause rejection of EHLO Or HELO, use
helo_verify hosts instead.

helo_verify_hosts Use: main Type: host listt Default: unset

For hosts that match this option, Exim checks the host name given in the HELO or EHLO in the same
way as for helo_try verify_hosts. If the check fails, the HELO or EHLO command is rejected with a
550 error, and entries are written to the main and reject logs. If a maiL command is received before
EHLO Or HELO, it is rejected with a 503 error.

hold_domains Use main Type: domain listt Default: unset

This option alows mail for particular domains to be held on the queue manually. The option is
overridden if a message delivery is forced with the -M, -qf, -Rf or -Sf options, and also while
testing or verifying addresses using -bt or -bv. Otherwise, if a domain matches an item in
hold_domains, no routing or delivery for that address is done, and it is deferred every time the
message is looked at.

This option is intended as a temporary operational measure for delaying the delivery of mail while
some problem is being sorted out, or some new configuration tested. If you just want to delay
the processing of some domains until a queue run occurs, you should use queue _domains or
gueue_smtp_domains, not hold_domains.

A setting of hold_domains does not override Exim's code for removing messages from the queue if
they have been there longer than the longest retry time in any retry rule. If you want to hold
messages for longer than the normal retry times, insert a dummy retry rule with along retry time.

host_lookup Use: main Type: host listt Default: unset

Exim does not look up the name of a calling host from its IP address unless it is required to
compare against some host list, or the host matches helo_try_verify_hosts or helo_verify_hosts, or
the host matches this option (which normally contains IP addresses rather than host names). The
default configuration file contains

host _| ookup = *
which causes a lookup to happen for all hosts. If the expense of these lookups is felt to be too
gresat, the setting can be changed or removed.

Exim 4.50 [143] main configuration (14)

After a successful reverse lookup, Exim does a forward lookup on the name it has obtained, to
verify that it yields the IP address that it started with. If this check fails, Exim behaves as if the
name lookup failed.

After any kind of falure, the host name (in $sender_host_name) remains unset, and
$host_lookup_failed is set to the string ‘1’. See adso dns_again_means_nonexist, helo_lookup_
domains, andveri fy = reverse_host | ookup in ACLs.

host_lookup_order Use: main Type: string list Default: bydns: byaddr

This option specifies the order of different lookup methods when Exim is trying to find a host name
from an IP address. The default is to do a DNS lookup first, and then to try a local lookup (using
gethostbyaddr() or equivalent) if that fails. You can change the order of these lookups, or omit one
entirely, if you want.

Warning: the ‘byaddr’ method does not always yield aiases when there are multiple PTR records
in the DNS and the IP address is not listed in /etc/hosts. Different operating systems give different
results in this case. That is why the default tries a DNS lookup first.

host_reject_connection Use: main Type: host listt Default: unset

If this option is set, incoming SMTP calls from the hosts listed are rejected as soon as the
connection is made. This option is obsolete, and retained only for backward compatibility, because
nowadays the ACL specified by acl_smtp_connect can also regect incoming connections
immediately.

The ability to give an immediate rejection (either by this option or using an ACL) is provided for
use in unusual cases. Many hosts will just try again, sometimes without much delay. Normally, it is
better to use an ACL to regject incoming messages at a later stage, such as after rcPT commands.
See chapter 39.

hosts_connection_nolog Use: main Type: host listt Default: unset

This option defines a list of hosts for which connection logging does not happen, even though the
smtp_connection log selector is set. For example, you might want not to log SMTP connections
from local processes, or from 127.0.0.1, or from your loca LAN. This option is consulted in the
main loop of the daemon; you should therefore strive to restrict its value to a short inline list of IP
addresses and networks. To disable logging SMTP connections from local processes, you must
create a host list with an empty item. For example:

hosts_connection_nolog = :
If the smtp_connection log selector is not set, this option has no effect.
hosts treat_as local Use main Type: domain listt Default: unset

If this option is set, any host names that match the domain list are treated as if they were the local
host when Exim is scanning host lists obtained from MX records or other sources. Note that the
value of this option is a domain list, not a host list, because it is aways used to check host names,
not |P addresses.

This option also applies when Exim is matching the special items @x_any, @x_pri mary, and
@ _secondary in adomain list (see section 10.8), and when checking the hosts option in the
smtp transport for the local host (see the allow localhost option in that transport). See also
local_interfaces, extra local_interfaces, and chapter 13, which contains a discussion about local
network interfaces and recognising the local host.

ignore bounce errors after Use: main Type time Default: 10w

This option affects the processing of bounce messages that cannot be delivered, that is, those that
suffer a permanent delivery failure. (Bounce messages that suffer temporary delivery failures are of
course retried in the usual way.)

After a permanent delivery failure, bounce messages are frozen, because there is no sender to whom
they can be returned. When a frozen bounce message has been on the queue for more than the

Exim 4.50 [144] main configuration (14)

given time, it is unfrozen at the next queue run, and a further delivery is attempted. If delivery fails
again, the bounce message is discarded. This makes it possible to keep failed bounce messages
around for a shorter time than the normal maximum retry time for frozen messages. For example,

i gnore_bounce_errors_after = 12h

retries failed bounce message deliveries after 12 hours, discarding any further failures. If the value
of this option is set to a zero time period, bounce failures are discarded immediately. Setting a very
long time (as in the default value) has the effect of disabling this option. For ways of automatically
dealing with other kinds of frozen message, see auto_thaw and timeout_frozen_after.

ignore_fromline_hosts Use: main Type: host listt Default: unset

Some broken SMTP clients insist on sending a UUCP-like ‘From’ line before the headers of a
message. By default this is treated as the start of the message's body, which means that any
following headers are not recognized as such. Exim can be made to ignore it by setting
ignore_fromline_hosts to match those hosts that insist on sending it. If the sender is actually a
local process rather than a remote host, and is using -bs to inject the messages, ignore_fromline_
local must be set to achieve this effect.

ignore_fromline_local Use: main Type: boolean Default: false
See ignore_fromline_hosts above.
keep_malformed Use: main Type: time Default: 4d

This option specifies the length of time to keep messages whose spool files have been corrupted in
some way. This should, of course, never happen. At the next attempt to deliver such a message, it
gets removed. The incident is logged.

Idap_default_servers Use: main Type: string list Default: unset

This option provides a list of LDAP servers which are tried in turn when an LDAP query does not
contain a server. See section 9.12 for details of LDAP queries. This option is available only when
Exim has been built with LDAP support.

Idap_version Use: main Type: integer Default: unset

This option can be used to force Exim to set a specific protocol version for LDAP. If it option is
unset, it is shown by the -bP command line option as -1. When this is the case, the default is 3 if
LDAP_VERSIONS is defined in the LDAP headers; otherwise it is 2. This option is available only when
Exim has been built with LDAP support.

local_from_check Use: main Type: boolean Default: true

When a message is submitted locally (that is, not over a TCP/IP connection) by an untrusted user,
Exim removes any existing Sender: header line, and checks that the From: header line matches the
login of the calling user and the domain specified by qualify_domain.

Note: An unqualified address (no domain) in the From: header in a locally submitted message is
automatically qualified by Exim, unless the -bng command line option is used.

You can use local_from_prefix and local_from_suffix to permit affixes on the local part. If the
From: header line does not match, Exim adds a Sender: header with an address constructed from
the calling user’s login and the default qualify domain.

If local_from_check is set false, the From: header check is disabled, and no Sender: header is ever
added. If, in addition, you want to retain Sender: header lines supplied by untrusted users, you must
also set local_sender_retain to be true.

These options affect only the header lines in the message. The envelope sender is still forced to be
the login id at the qualify domain unless untrusted set sender permits the user to supply an
envelope sender.

For messages received over TCP/IP, an ACL can specify ‘submission mode to request similar
header line checking. See section 43.15, which has more details about Sender: processing.

Exim 4.50 [145] main configuration (14)

local_from_prefix Use: main Type: string Default: unset

When Exim checks the From: header line of locally submitted messages for matching the login id
(see local_from_check above), it can be configured to ignore certain prefixes and suffixes in the
local part of the address. This is done by setting local_from_prefix and/or local_from_suffix to
appropriate lists, in the same form as the local_part_prefix and local_part_suffix router options
(see chapter 15). For example, if

| ocal _fromprefix = *-
is set, a From: line containing
From anyt hi ng- user @our . domai n. exanpl e

will not cause a Sender: header to be added if user@your.domain.example matches the actual
sender address that is constructed from the login name and qualify domain.

local_from_suffix Use: main Type: string Default: unset
See local_from_prefix above.
local_interfaces Use: main Type: string list Default: see below

This option controls which network interfaces are used by the daemon for listening; they are also
used to identify the local host when routing. Chapter 13 contains a full description of this option
and the related options daemon_smtp_ports, extra_local_interfaces, hosts treat_as local, and
tls on_connect_ports. The default value for local_interfacesis

| ocal interfaces = 0.0.0.0
when Exim is built without |Pv6 support; otherwise it is
local _interfaces = <; ::0; 0.0.0.0
local_scan_timeout Use: main Type time Default: 5m

This timeout applies to the local_scan() function (see chapter 41). Zero means ‘no timeout’. If the
timeout is exceeded, the incoming message is rejected with a temporary error if it is an SMTP
message. For a non-SMTP message, the message is dropped and Exim ends with a non-zero code.
The incident is logged on the main and reject logs.

local_sender_retain Use. main Type boolean Default: false

When a message is submitted locally (that is, not over a TCP/IP connection) by an untrusted user,
Exim removes any existing Sender: header line. If you do not want this to happen, you must set
local_sender retain, and you must also set local_from_check to be false (Exim will complain if
you do not). Section 43.15 has more details about Sender: processing.

localhost_number Use: main Type: stringt Default: unset

Exim’'s message ids are normally unique only within the local host. If uniqueness among a set of
hosts is required, each host must set a different value for the localhost_number option. The string
is expanded immediately after reading the configuration file (so that a number can be computed
from the host name, for example) and the result of the expansion must be a number in the range
0-16 (or 0-10 on operating systems with case-insensitive file systems). This is available in
subsequent string expansions via the variable $localhost_number. When localhost_number is set,
the final two characters of the message id, instead of just being a fractional part of the time, are
computed from the time and the local host number as described in section 3.4.

log_file path Use: main Type: string listt Default: set at compile time

This option sets the path which is used to determine the names of Exim’s log files, or indicates that
logging is to be to syslog, or both. It is expanded when Exim is entered, so it can, for example,
contain a reference to the host name. If no specific path is set for the log files at compile or run
time, they are written in a sub-directory called log in Exim's spool directory. Chapter 48 contains
further details about Exim’s logging, and section 48.1 describes how the contents of log_file path

Exim 4.50 [146] main configuration (14)

are used. If this string is fixed at your installation (contains no expansion variables) it is recom-
mended that you do not set this option in the configuration file, but instead supply the path using
LOG_FILE_PATH in Local/M akefile so that it is available to Exim for logging errors detected early on
— in particular, failure to read the configuration file.

log_selector Use: main Type: string Default: unset

This option can be used to reduce or increase the number of things that Exim writes to its log files.
Its argument is made up of names preceded by plus or minus characters. For example:

| og_sel ector = +argunents -retry_defer
A list of possible names and what they control is given in the chapter on logging, in section 48.15.
log_timezone Use: main Type: boolean Default: false

By default, the timestamps on log lines are in local time without the timezone. This means that if
your timezone changes twice a year, the timestamps in log lines are ambiguous for an hour when
the clocks go back. One way of avoiding this problem is to set the timezone to UTC. An aternative
is to set log_timezone true. This turns on the addition of the timezone offset to timestamps in log
lines. Turning on this option can add quite a lot to the size of log files because each line is extended
by 6 characters. Note that the $tod_log variable contains the log timestamp without the zone, but
there is another variable called $tod_zone that contains just the timezone offset.

lookup_open_max Use: main Type: integer Default: 25

This option limits the number of simultaneously open files for single-key lookups that use regular
files (that is, Isearch, dbm, and cdb). Exim normally keeps these files open during routing, because
often the same file is required severa times. If the limit is reached, Exim closes the least recently
used file. Note that if you are using the ndom library, it actualy opens two files for each logical
DBM database, though it still counts as one for the purposes of lookup_open_max. If you are
getting ‘too many open files errors with NDBM, you need to reduce the value of
lookup_open_max.

max_username_length Use: main Type: integer Default: O

Some operating systems are broken in that they truncate long arguments to getpwnam() to eight
characters, instead of returning ‘no such user’. If this option is set greater than zero, any attempt to
call getpwnam() with an argument that is longer behaves as if getpwnam() failed.

message_body_visible Use: main Type: integer Default: 500

This option specifies how much of a message’'s body is to be included in the $message body and
$message body_end expansion variables.

message_id_header_domain Use: main Type: stringt Default: unset

If this option is set, the string is expanded and used as the right hand side (domain) of the Message-
ID: header that Exim creates if alocally-originated incoming message does not have one. ‘Locally-
originated means ‘not received over TCP/IP’ Otherwise, the primary host name is used. Only
letters, digits, dot and hyphen are accepted; any other characters are replaced by hyphens. If the
expansion is forced to fail, or if the result is an empty string, the option is ignored.

message_id_header_text Use: main Type: stringt Default: unset

If this variable is set, the string is expanded and used to augment the text of the Message-id: header
that Exim creates if a locally-originated incoming message does not have one. The text of this
header is required by RFC 2822 to take the form of an address. By default, Exim uses its internal
message id as the local part, and the primary host name as the domain. If this option is set, it is
expanded, and provided the expansion is not forced to fail, and does not yield an empty string, the
result is inserted into the header immediately before the @, separated from the internal message id
by a dot. Any characters that are illegal in an address are automatically converted into hyphens.
This means that variables such as $tod_log can be used, because the spaces and colons will become
hyphens.

Exim 4.50 [147] main configuration (14)

message_logs Use: main Type: boolean Default: true

If this option is turned off, per-message log files are not created in the msglog spool sub-directory.
This reduces the amount of disk 1/O required by Exim, by reducing the number of files involved in
handling a message from a minimum of four (header spool file, body spool file, delivery journal,
and per-message log) to three. The other major 1/O activity is Exim’'s main log, which is not
affected by this option.

message_size limit Use: main Type: stringt Default: 50M

This option limits the maximum size of message that Exim will process. The value is expanded for
each incoming connection so, for example, it can be made to depend on the IP address of the
remote host for messages arriving via TCP/IP. Note: This limit cannot be made to depend on a
message’s sender or any other properties of an individual message, because it has to be advertised
in the server’s response to eHLo. String expansion failure causes a temporary error. A value of zero
means no limit, but its use is not recommended. See also bounce _return_size limit.

Incoming SMTP messages are failed with a 552 error if the limit is exceeded; locally-generated
messages either get a stderr message or a delivery failure message to the sender, depending on the
-oe setting. Rejection of an oversized message is logged in both the main and the reject logs. See
also the generic transport option message size limit, which limits the size of message that an
individual transport can process.

move_frozen_messages Use: main Type: boolean Default: false
This option, which is available only if Exim has been built with the setting
SUPPORT_MOVE_FROZEN_MESSAGES=yes

in Local/M akefile, causes frozen messages and their message logs to be moved from the input and
msglog directories on the spool to Finput and Fmsglog, respectively. There is currently no support
in Exim or the standard utilities for handling such moved messages, and they do not show up in
lists generated by -bp or by the Exim monitor.

mua_wr apper Use: main Type: boolean Default: false

Setting this option true causes Exim to run in a very restrictive mode in which it passes messages
synchronously to a smart host. Chapter 47 contains a full description of this facility.

mysgl_servers Use: main Type: string list Default: unset

This option provides a list of MySQL servers and associated connection data, to be used in
conjunction with mysgl lookups (see section 9.18). The option is available only if Exim has been
built with MySQL support.

never_users Use: main Type: string list Default: unset

Local message deliveries are normally run in processes that are setuid to the recipient, and remote
deliveries are normaly run under Exim’'s own uid and gid. It is usually desirable to prevent any
deliveries from running as root, as a safety precaution.

When Exim is built, an option called Fixep_NEVER USERS can be set to a list of users that must not
be used for local deliveries. This list is fixed in the binary and cannot be overridden by the
configuration file. By default, it contains just the single user name ‘root’. The never _users runtime
option can be used to add more users to the fixed list.

If a message is to be delivered as one of the users on the fixed list or the never _users list, an error
occurs, and delivery is deferred. A common example is

never _users = root: daenon: bin
Including root is redundant if it is also on the fixed list, but it does no harm. This option overrides
the pipe_as creator option of the pipe transport driver.

Exim 4.50 [148] main configuration (14)

oracle servers Use: main Type: string list Default: unset

This option provides a list of Oracle servers and associated connection data, to be used in
conjunction with oracle lookups (see section 9.18). The option is available only if Exim has been
built with Oracle support.

percent_hack_domains Use main Type: domain listt Default: unset

The ‘percent hack’ is the convention whereby a local part containing a percent sign is re-interpreted
as a new email address, with the percent replaced by @. This is sometimes called * source routing’,
though that term is also applied to RFC 2822 addresses that begin with an @ character. If this
option is set, Exim implements the percent facility for those domains listed, but no others. This
happens before an incoming SMTP address is tested against an ACL.

Warning: The ‘percent hack’ has often been abused by people who are trying to get round relaying
restrictions. For this reason, it is best avoided if at all possible. Unfortunately, a number of less
security-conscious MTAs implement it unconditionally. If you are running Exim on a gateway host,
and routing mail through to internal MTAs without processing the local parts, it is a good idea to
reject recipient addresses with percent characters in their local parts. Exim's default configuration
does this.

perl_at_start Use: main Type: boolean Default: false

This option is available only when Exim is built with an embedded Perl interpreter. See chapter 12
for details of its use.

perl_startup Use: main Type: string Default: unset

This option is available only when Exim is built with an embedded Perl interpreter. See chapter 12
for details of its use.

pgsgl_servers Use: main Type: string list Default: unset

This option provides a list of PostgreSQL servers and associated connection data, to be used in
conjunction with pgsgl lookups (see section 9.18). The option is available only if Exim has been
built with PostgreSQL support.

pid_file_path Usee main Type: stringt Default: set at compile time

This option sets the name of the file to which the Exim daemon writes its process id. The string is
expanded, so it can contain, for example, references to the host name:

pid_file_path = /var/|og/ $primary_host nane/ exi m pid

If no path is set, the pid is written to the file exim-daemon.pid in Exim’'s spool directory. The
value set by the option can be overridden by the -oP command line option. A pid file is not written
if a ‘non-standard’ daemon is run by means of the -0X option, unless a path is explicitly supplied
by -oP.

pipelining_advertise_hosts Use: main Type: host listt Default: *

This option can be used to suppress the advertisement of the SMTP PIPELINING extension to specific
hosts. When piPELINING is not advertised and smtp_enforce_sync is true, an Exim server enforces
strict synchronization for each SMTP command and response. When PIPELINING iS advertised, Exim
assumes that clients will use it; ‘out of order’ commands that are ‘expected’ do not count as
protocol errors (see smtp_max_synprot_errors).

preserve_message_|ogs Use: main Type: boolean Default: false

If this option is set, message log files are not deleted when messages are completed. Instead, they
are moved to a sub-directory of the spool directory called msglog.OLD, where they remain
available for statistical or debugging purposes. This is a dangerous option to set on systems with
any appreciable volume of mail. Use with care!

Exim 4.50 [149] main configuration (14)

primary_hostname Use: main Type: string Default: see below

This specifies the name of the current host. It is used in the default eHLo or HELO command for
outgoing SMTP messages (changeable via the helo_data option in the smtp transport), and as the
default for qualify_domain. If it is not set, Exim calls uname() to find it. If this fails, Exim panics
and dies. If the name returned by uname() contains only one component, Exim passes it to
gethostbyname() (or getipnodebyname() when available) in order to obtain the fully qualified
version.

The value of $primary_hostname is aso used by default in some SMTP response messages from
an Exim server. This can be changed dynamically by setting smtp_active_hostname.

print_topbitchars Use: main Type: boolean Default: false

By default, Exim considers only those characters whose codes lie in the range 32-126 to be
printing characters. In a number of circumstances (for example, when writing log entries) non-
printing characters are converted into escape sequences, primarily to avoid messing up the layout.
If print_topbitchars is set, code values of 128 and above are aso considered to be printing
characters.

process_log_path Use: main Type: string Default: unset

This option sets the name of the file to which an Exim process writes its ‘process log” when sent a
USR1 signal. This is used by the exiwhat utility script. If this option is unset, the file called exim-
process.info in Exim's spool directory is used. The ability to specify the name explicitly can be
useful in environments where two different Exims are running, using different spool directories.

prod_requires_ admin Use: main Type: boolean Default: true

The -M, -R, and -q command-line options require the caller to be an admin user unless
prod_requires admin is set false. See aso queue list_requires_admin.

qualify_domain Use: main Type: string Default: see below

This option specifies the domain name that is added to any envelope sender addresses that do not
have a domain qualification. It also applies to recipient addresses if qualify_recipient is not set.
Unqualified addresses are accepted by default only for locally-generated messages.

Qudification is aso applied to addresses in header lines such as From: and To: for localy-
generated messages, unless the -bng command line option is used.

Messages from external sources must always contain fully qualified addresses, unless the sending
host matches sender_unqualified_hosts or recipient_unqualified_hosts (as appropriate), in which
case incoming addresses are quaified with qualify_domain or qualify_recipient as necessary.
Internally, Exim always works with fully qualified envelope addresses. If qualify_domain is not
set, it defaults to the primary_hostname vaue.

qualify_recipient Use: main Type: string Default: see below
This option allows you to specify a different domain for qualifying recipient addresses to the one
that is used for senders. See qualify_domain above.

gueue_domains Use main Type: domain listt Default: unset

This option lists domains for which immediate delivery is not required. A delivery process is started
whenever a message is received, but only those domains that do not match are processed. All other
deliveries wait until the next queue run. See also hold_domains and queue_smtp_domains.

gueue list_requires admin Use: main Type boolean Default: true

The -bp command-line option, which lists the messages that are on the queue, requires the caler to
be an admin user unless queue list_requires admin is set false. See also prod_requires admin.

Exim 4.50 [150] main configuration (14)

gueue_only Use: main Type: boolean Default: false

If queue only is set, a delivery process is not automatically started whenever a message is
received. Instead, the message waits on the queue for the next queue run. Even if queue only is
false, incoming messages may not get delivered immediately when certain conditions (such as
heavy load) occur.

The -odg command line has the same effect as queue only. The -odb and -odi command line
options override queue_only unless queue _only_override is set false. See also queue_only file,
gueue_only_load, and smtp_accept_queue.

queue_only file Use: main Type: string Default: unset

This option can be set to a colon-separated list of absolute path names, each one optionally
preceded by ‘smtp’. When Exim is receiving a message, it tests for the existence of each listed path
using a call to stat(). For each path that exists, the corresponding queuing option is set. For paths
with no prefix, queue only is set; for paths prefixed by ‘smtp’, queue_smtp_domains is set to
match all domains. So, for example,

queue_only_file = sntp/sone/file
causes Exim to behave as if queue_smtp_domains were set to ‘*’ whenever /some/file exists.
gueue_only_load Use main Type: fixed-point Default: unset

If the system load average is higher than this value, incoming messages from all sources are
gueued, and no automatic deliveries are started. If this happens during local or remote SMTP input,
all subsequent messages on the same connection are queued. Deliveries will subsequently be
performed by queue runner processes. This option has no effect on ancient operating systems on
which Exim cannot determine the load average. See also deliver_queue load_max and
smtp_load_reserve.

gueue_only_override Use: main Type: boolean Default: true

When this option is true, the -odx command line options override the setting of queue_only or
gueue_only file in the configuration file. If queue only_override is set false, the -odx options
cannot be used to override; they are accepted, but ignored.

queue_run_in_order Use: main Type: boolean Default: false

If this option is set, queue runs happen in order of message arrival instead of in an arbitrary order.
For this to happen, a complete list of the entire queue must be set up before the deliveries start.
When the queue is all held in a single directory (the default), a single list is created for both the
ordered and the non-ordered cases. However, if split_spool_directory is set, a single list is not
created when queue run_in_order is false. In this case, the sub-directories are processed one at a
time (in a random order), and this avoids setting up one huge list for the whole queue. Thus, setting
queue_run_in_order with split_spool_directory may degrade performance when the queue is
large, because of the extra work in setting up the single, large list. In most situations,
queue_run_in_order should not be set.

gueue_run_max Use: main Type: integer Default: 5

This controls the maximum number of queue runner processes that an Exim daemon can run
simultaneously. This does not mean that it starts them all at once, but rather that if the maximum
number are still running when the time comes to start another one, it refrains from starting another
one. This can happen with very large queues and/or very sluggish deliveries. This option does not,
however, interlock with other processes, so additional queue runners can be started by other means,
or by killing and restarting the daemon.

Exim 4.50 [151] main configuration (14)

queue_smtp_domains Use main Type: domain listt Default: unset

When this option is set, a delivery process is started whenever a message is received, routing is
performed, and local deliveries take place. However, if any SMTP deliveries are required for
domains that match queue _smtp_domains, they are not immediately delivered, but instead the
message waits on the queue for the next queue run. Since routing of the message has taken place,
Exim knows to which remote hosts it must be delivered, and so when the queue run happens,
multiple messages for the same host are delivered over a single SMTP connection. The -odgs
command line option causes all SMTP deliveries to be queued in this way, and is equivalent to
setting queue_smtp_domainsto ‘*’. See aso hold_domains and queue_domains.

receive_timeout Use: main Type: time Default: Os

This option sets the timeout for accepting a non-SMTP message, that is, the maximum time that
Exim waits when reading a message on the standard input. If the value is zero, it will wait for ever.
This setting is overridden by the -or command line option. The timeout for incoming SMTP
messages is controlled by smtp_receive_timeout.

received_header_text Use: main Type: stringt Default: see below

This string defines the contents of the Received: message header that is added to each message,
except for the timestamp, which is automatically added on at the end (preceded by a semicolon).
The string is expanded each time it is used. If the expansion yields an empty string, no Received:
header line is added to the message. Otherwise, the string should start with the text ‘ Received:’ and
conform to the RFC 2822 specification for Received: header lines. The default setting is:

recei ved_header text = Received: \
${if def:sender_rcvhost {from $sender_rcvhost\n\t}\
{${if def:sender_ident {from $sender_ident }}\
${if def:sender_hel o_name {(hel o=$sender_hel o_name)\n\t}}}}\
by $primary_host nane \
${if def:received _protocol {with $received_protocol}} \
${if def:tls_cipher {($tls_cipher)\n\t}}\
(Exi m $versi on_nunber)\ n\t\
id $nmessage_i d\
${if def:received for {\n\tfor $received for}}

Note the use of quotes, to alow the sequences \ n and \'t to be used for newlines and tabs,
respectively. The reference to the TLS cipher is omitted when Exim is built without TLS support.
The use of conditional expansions ensures that this works for both locally generated messages and
messages received from remote hosts, giving header lines such as the following:

Recei ved: from scrooge. carol . exanple ([192.168.12.25] ident=root)
by marley.carol.exanple with esntp (Exi m4.00)
id 161 Ona- 000191 - 00
for chas@li ckens. exanpl e; Tue, 25 Dec 2001 14:43: 44 +0000
Recei ved: by scrooge.carol.exanple with | ocal (Exi m4.00)
id 161 OV 000083-00; Tue, 25 Dec 2001 14:43:41 +0000

Until the body of the message has been received, the timestamp is the time when the message
started to be received. Once the body has arrived, and all policy checks have taken place, the
timestamp is updated to the time at which the message was accepted.

received_headers_max Use: main Type: integer Default: 30

When a message is to be delivered, the number of Received: headers is counted, and if it is greater
than this parameter, a mail loop is assumed to have occurred, the delivery is abandoned, and an
error message is generated. This applies to both local and remote deliveries.

Exim 4.50 [152] main configuration (14)

recipient_unqualified_hosts Use: main Type: host listt Default: unset

This option lists those hosts from which Exim is prepared to accept unqualified recipient addresses
in message envelopes. The addresses are made fully qualified by the addition of the
qualify_recipient value. This option aso affects message header lines. Exim does not reject
unqualified recipient addresses in headers, but it qualifies them only if the message came from a
host that matches recipient_unqualified_hosts, or if the message was submitted locally (not using
TCP/IP), and the -bnqg option was not set.

recipients_max Use: main Type: integer Default: 0

If this option is set greater than zero, it specifies the maximum number of original recipients for any
message. Additional recipients that are generated by aiasing or forwarding do not count. SMTP
messages get a 452 response for all recipients over the limit; earlier recipients are delivered as
normal. Non-SMTP messages with too many recipients are failed, and no deliveries are done. Note
that the RFCs specify that an SMTP server should accept at least 100 rRcPT commands in a single

message.
recipients_max_reject Use: main Type: boolean Default: false

If this option is set true, Exim rejects SMTP messages containing too many recipients by giving
552 errors to the surplus rcer commands, and a 554 error to the eventual pata command.
Otherwise (the default) it gives a 452 error to the surplus rceT commands and accepts the message
on behalf of the initial set of recipients. The remote server should then re-send the message for the
remaining recipients at a later time.

remote_max_parallel Use: main Type: integer Default: 2

This option controls parallel delivery of one message to a number of remote hosts. If the value is
less than 2, parallel delivery is disabled, and Exim does all the remote deliveries for a message one
by one. Otherwise, if a single message has to be delivered to more than one remote host, or if
severa copies have to be sent to the same remote host, up to remote_max_parallel deliveries are
done simultaneously. If more than remote max_parallel deliveries are required, the maximum
number of processes are started, and as each one finishes, another is begun. The order of starting
processes is the same as if sequential delivery were being done, and can be controlled by the
remote_sort_domains option. If parallel delivery takes place while running with debugging turned
on, the debugging output from each delivery process is tagged with its process id.

This option controls only the maximum number of parallel deliveries for one message in one Exim
delivery process. Because Exim has no central queue manager, there is no way of controlling the
total number of simultaneous deliveries if the configuration allows a delivery attempt as soon as a
message is received. If you want to control the total number of deliveries on the system, you need
to set the queue_only option. This ensures that all incoming messages are added to the queue
without starting a delivery process. Then set up an Exim daemon to start queue runner processes at
appropriate intervals (probably fairly often, for example, every minute), and limit the total number
of queue runners by setting the queue run_max parameter. Because each queue runner delivers
only one message at a time, the maximum number of deliveries that can then take place at once is
queue_run_max multiplied by remote_max_parallel.

If it is purely remote deliveries you want to control, use queue smtp_domains instead of
gueue_only. This has the added benefit of doing the SMTP routing before queuing, so that severa
messages for the same host will eventually get delivered down the same connection.

remote sort_domains Use: main Type: domain listt Default: unset

When there are a number of remote deliveries for a message, they are sorted by domain into the
order given by this list. For example,

renmote _sort _domains = *.cam ac. uk: *. uk
would attempt to deliver to all addresses in the cam.ac.uk domain first, then to those in the uk
domain, then to any others.

Exim 4.50 [153] main configuration (14)

retry_data_expire Use: main Type: time Default: 7d

This option sets a ‘use before’ time on retry information in Exim'’s hints database. Any older retry
data is ignored. This means that, for example, once a host has not been tried for 7 days, Exim
behaves as if it has no knowledge of past failures.

retry_interval_max Use: main Type: time Default: 24h

Chapter 32 describes Exim's mechanisms for controlling the intervals between delivery attempts for
messages that cannot be delivered straight away. This option sets an overal limit to the length of
time between retries.

return_path_remove Use: main Type: boolean Default: true

RFC 2821, section 4.4, states that an SMTP server must insert a Return-path: header line into a
message when it makes a ‘final delivery’. The Return-path: header preserves the sender address as
received in the maiL command. This description implies that this header should not be present in an
incoming message. If return_path_remove is true, any existing Return-path: headers are removed
from messages at the time they are received. Exim’s transports have options for adding Return-
path: headers at the time of delivery. They are normally used only for final local deliveries.

return_size limit Use: main Type: integer Default: 100K
This option is an obsolete synonym for bounce _return_size limit.

rfc1413 hosts Use: main Type: host listt Default: *
RFC 1413 identification calls are made to any client host which matches an item in the list.

rfcl413 _query_timeout Use: main Type: time Default: 30s

This sets the timeout on RFC 1413 identification cals. If it is set to zero, no RFC 1413 cdlls are
ever made.

sender_unqualified_hosts Use: main Type: host listt Default: unset

This option lists those hosts from which Exim is prepared to accept unqualified sender addresses.
The addresses are made fully qualified by the addition of qualify_domain. This option also affects
message header lines. Exim does not reject unqualified addresses in headers that contain sender
addresses, but it qualifies them only if the message came from a host that matches
sender_unqualified_hosts, or if the message was submitted locally (not using TCP/IP), and the
-bng option was not set.

smtp_accept_keepalive Use: main Type: boolean Default: true

This option controls the setting of the so_keepaLive option on incoming TCP/IP socket connections.
When set, it causes the kernel to probe idle connections periodically, by sending packets with ‘old’
sequence numbers. The other end of the connection should send an acknowledgement if the
connection is still okay or a reset if the connection has been aborted. The reason for doing this is
that it has the beneficial effect of freeing up certain types of connection that can get stuck when the
remote host is disconnected without tidying up the TCP/IP call properly. The keepalive mechanism
takes several hours to detect unreachable hosts.

smtp_accept_max Use: main Type: integer Default: 20

This option specifies the maximum number of simultaneous incoming SMTP calls that Exim will
accept. It applies only to the listening daemon; there is no control (in Exim) when incoming SMTP
is being handled by inetd. If the value is set to zero, no limit is applied. However, it is required
to be non-zero if either smtp_accept_max_per_host or smtp_accept_queue is set. See also
smtp_accept_reserve.

Exim 4.50 [154] main configuration (14)

smtp_accept_max_nonmail Use: main Type: integer Default: 10

Exim counts the number of ‘non-mail’ commands in an SMTP session, and drops the connection if
there are too many. This option defines ‘too many’. The check catches some denial-of-service
attacks, repeated failing autHs, or a mad client looping sending eHLo, for example. The check is
applied only if the client host matches smtp_accept_max_nonmail_hosts.

When a new message is expected, one occurrence of Rset is not counted. This allows a client to
send one RseT between messages (this is not necessary, but some clients do it). Exim also allows
one uncounted occurence of HELO or EHLO, and one occurrence of sTARTTLS between messages. After
starting up a TLS session, another eHLO is expected, and so it too is not counted. The first
occurrence of AuTH in a connection, or immediately following starTTLs is not counted. Otherwise,
all commands other than mAaIL, RcPT, DATA, and QuIT are counted.

smtp_accept_max_nonmail_hosts Use: main Type: host listt Default: *

You can control which hosts are subject to the smtp_accept_max_nonmail check by setting this
option. The default value makes it apply to al hosts. By changing the value, you can exclude any
badly-behaved hosts that you have to live with.

smtp_accept_max_per_connection Use: main Type: integer Default: 1000

The value of this option limits the number of maiL commands that Exim is prepared to accept over
a single SMTP connection, whether or not each command results in the transfer of a message. After
the limit is reached, a 421 response is given to subsegquent maiL commands. This limit is a safety
precaution against a client that goes mad (incidents of this type have been seen).

smtp_accept_max_per_host Use: main Type: stringt Default: unset

This option restricts the number of simultaneous IP connections from a single host (strictly, from a
single IP address) to the Exim daemon. The option is expanded, to enable different limits to be
applied to different hosts by reference to $sender_host_address. Once the limit is reached,
additional connection attempts from the same host are rejected with error code 421. The default
value of zero imposes no limit. If this option is set, it is required that smtp_accept_max be non-
zero.

Warning: When setting this option you should not use any expansion constructions that take an
appreciable amount of time. The expansion and test happen in the main daemon loop, in order to
reject additional connections without forking additional processes (otherwise a denial-of-service
attack could cause a vast number or processes to be created). While the daemon is doing this
processing, it cannot accept any other incoming connections.

smtp_accept_queue Use: main Type: integer Default: 0

If the number of simultaneous incoming SMTP calls handled via the listening daemon exceeds this
value, messages received by SMTP are just placed on the queue; no delivery processes are started
automatically. A value of zero implies no limit, and clearly any non-zero value is useful only if it is
less than the smtp_accept_max value (unless that is zero). See also queue_only, queue_only_load,
gueue_smtp_domains, and the various -od command line options.

smtp_accept_queue_per_connection
Use: main Type: integer Default: 10

This option limits the number of delivery processes that Exim starts automatically when receiving
messages via SMTP, whether via the daemon or by the use of -bs or -bS. If the value of the option
is greater than zero, and the number of messages received in a single SMTP session exceeds this
number, subsequent messages are placed on the queue, but no delivery processes are started. This
helps to limit the number of Exim processes when a server restarts after downtime and there is a lot
of mail waiting for it on other systems. On large systems, the default should probably be increased,
and on dia-in client systems it should probably be set to zero (that is, disabled).

Exim 4.50 [155] main configuration (14)

smtp_accept_reserve Use: main Type: integer Default: O

When smtp_accept_max is set greater than zero, this option specifies a number of SMTP connec-
tions that are reserved for connections from the hosts that are specified in smtp_reserve hosts. The
value set in smtp_accept_max includes this reserve pool. The specified hosts are not restricted to
this number of connections; the option specifies a minimum number of connection slots for them,
not a maximum. It is a guarantee that that group of hosts can aways get a least
smtp_accept_reserve connections.

For example, if smtp_accept_max is set to 50 and smtp_accept_reserve is set to 5, once there are
45 active connections (from any hosts), new connections are accepted only from hosts listed in
smtp_reserve_hosts. See also smtp_accept_max_per_host.

smtp_active_hostname Use: main Type: stringt Default: unset

This option is provided for multi-homed servers that want to masquerade as severa different hosts.
At the start of an SMTP connection, its value is expanded and used instead of the value of
$primary_hostname in SMTP responses. For example, it is used as domain name in the response
to an incoming HELO or EHLo command. It is aso used in HELo commands for callout verification.
The active hostname is placed in the $smtp_active_hostname variable, which is saved with any
messages that are received. It is therefore available for use in routers and transports when the
message is later delivered.

If this option is unset, or if its expansion is forced to fail, or if the expansion results in an empty
string, the value of $primary_hostname is used. Other expansion failures cause a message to be
written to the main and panic logs, and the SMTP command receives a temporary error. Typicaly,
the value of smtp_active_hosthame depends on the incoming interface address. For example:

smt p_active_hostname = ${if eq{$interface_address}{10.0.0. 1}\
{ cox. nydomai n} { box. nydomai n}}

smtp_banner Use: main Type: stringt Default: see below

This string, which is expanded every time it is used, is output as the initial positive response to an
SMTP connection. The default setting is:

smt p_banner = $sntp_active_host nane ESMIP Exi m\
$versi on_nunber $tod full

Failure to expand the string causes a panic error. If you want to create a multiline response to the
initial SMTP connection, use ‘\n’ in the string at appropriate points, but not at the end. Note that
the 220 code is not included in this string. Exim adds it automatically (severa times in the case of a
multiline response).

smtp_check_spool_space Use: main Type: boolean Default: true

When this option is set, if an incoming SMTP session encounters the size option on a MAIL
command, it checks that there is enough space in the spool directory’s partition to accept a message
of that size, while till leaving free the amount specified by check _spool_space (even if that value
is zero). If there isn’t enough space, a temporary error code is returned.

smtp_connect_backlog Use main Type: integer Default: 20

This option specifies a maximum number of waiting SMTP connections. Exim passes this value to
the TCP/IP system when it sets up its listener. Once this number of connections are waiting for the
daemon’s attention, subsequent connection attempts are refused at the TCP/IP level. At least, that is
what the manuals say; in some circumstances such connection attempts have been observed to time
out instead. For large systems it is probably a good idea to increase the value (to 50, say). It aso
gives some protection against denial-of-service attacks by SYN flooding.

Exim 4.50 [156] main configuration (14)

smtp_enforce_sync Use: main Type: boolean Default: true

The SMTP protocol specification requires the client to wait for a response from the server at certain
points in the dialogue. Without PIPELINING these synchronization points are after every command;
with PIPELINING they are fewer, but they still exist.

Some spamming sites send out a complete set of SMTP commands without waiting for any
response. Exim protects against this by rejecting a message if the client has sent further input when
it should not have. The error response ‘554 SMTP synchronization error’ is sent, and the connec-
tion is dropped. Testing for this error cannot be perfect because of transmission delays (unexpected
input may be on its way but not yet received when Exim checks). However, it does detect many
instances.

The check can be globally disabled by setting smtp_enforce_sync false. If you want to disable the
check selectively (for example, only for certain hosts), you can do so by an appropriate use of a
control modifier in an ACL (see section 39.18). See also pipelining_advertise hosts.

smtp_etrn_command Use main Type stringt Default: unset

If this option is set, the given command is run whenever an SMTP ETRN command is received from
a host that is permitted to issue such commands (see chapter 39). The string is split up into separate
arguments which are independently expanded. The expansion variable $domain is set to the
argument of the ETRN command, and no syntax checking is done on it. For example:

sntp_etrn_comuand = /etc/etrn_comuand $domai n $sender _host _addr ess

A new process is created to run the command, but Exim does not wait for it to complete.
Consequently, its status cannot be checked. If the command cannot be run, a line is written to the
panic log, but the eTrRn caller still receives a 250 success response. Exim is normally running under
its own uid when receiving SMTP, 0 it is not possible for it to change the uid before running the
command.

smtp_etrn_serialize Use: main Type: boolean Default: true

When this option is set, it prevents the simultaneous execution of more than one identical command
as aresult of ETrRN in an SMTP connection. See section 44.9 for details.

smtp_load_reserve Usee main Type: fixed-point Default: unset

If the system load average ever gets higher than this, incoming SMTP calls are accepted only from
those hosts that match an entry in smtp_reserve_hosts. If smtp_reserve_hosts is not set, no
incoming SMTP calls are accepted when the load is over the limit. The option has no effect on
ancient operating systems on which Exim cannot determine the load average. See also
deliver_queue load_max and queue_only load.

smtp_max_synprot_errors Use: main Type: integer Default: 3

Exim rgjects SMTP commands that contain syntax or protocol errors. In particular, a syntactically
invalid email address, as in this command:

RCPT TO <abc xyz@. b.c>

causes immediate rejection of the command, before any other tests are done. (The ACL cannot be
run if there is no valid address to set up for it.) An example of a protocol error is receiving RcpPT
before maiL. If there are too many syntax or protocol errors in one SMTP session, the connection is
dropped. The limit is set by this option.

When the piPELINING extension to SMTP is in use, some protocol errors are ‘expected’, for instance,
a rcPT command after a rejected maiL command. Exim assumes that pipeLiniNG will be used if it
advertises it (see pipelining_advertise_hosts), and in this situation, ‘expected’ errors do not count
towards the limit.

Exim 4.50 [157] main configuration (14)

smtp_max_unknown_commands Use: main Type: integer Default: 3

If there are too many unrecognized commands in an incoming SMTP session, an Exim server drops
the connection. This is a defence against some kinds of abuse that subvert web clients into making
connections to SMTP ports; in these circumstances, a number of non-SMTP command lines are sent
first.

smtp_ratelimit_hosts Use: main Type: host listt Default: unset

Some sites find it helpful to be able to limit the rate at which certain hosts can send them messages,
and the rate a which an individual message can specify recipients. When a host matches
smtp_ratelimit_hosts, the values of smtp_ratelimit_mail and smtp_ratelimit_rcpt are used to
control the rate of acceptance of maiL and rcPT commands in a single SMTP session, respectively.
Each option, if set, must contain a set of four comma-separated values:

* A threshold, before which there is no rate limiting.

* An initial time delay. Unlike other times in Exim, numbers with decimal fractional parts are
allowed here.

» A factor by which to increase the delay each time.

* A maximum value for the delay. This should normally be less than 5 minutes, because after
that time, the client is liable to timeout the SMTP command.

For example, these settings have been used successfully at the site which first suggested this
feature, for controlling mail from their customers:

2,0.5s,1.05,4m
4, 0. 25s, 1. 015, 4m

The first setting specifies delays that are applied to maiL commands after two have been received
over a single connection. The initial delay is 0.5 seconds, increasing by a factor of 1.05 each time.
The second setting applies delays to rcer commands when more than four occur in a single
message.

It is also possible to configure delays explicitly in ACLs. See section 39.17 for details.

snp_ratelimt_mail
snmp_ratelimt_rcpt

smtp_ratelimit_mail Use: main Type: string Default: unset
See smtp_ratelimit_hosts above.

smtp_ratelimit_rcpt Use: main Type: string Default: unset
See smtp_ratelimit_hosts above.

smtp_receive_timeout Use: main Type: time Default: 5m

This sets a timeout value for SMTP reception. It applies to all forms of SMTP input, including
batch SMTP If aline of input (either an SMTP command or a data line) is not received within this
time, the SMTP connection is dropped and the message is abandoned. A line is written to the log
containing one of the following messages:

SMIP conmand ti neout on connection from..
SMIP data ti neout on connection from..

The former means that Exim was expecting to read an SMTP command; the latter means that it was
in the pbATA phase, reading the contents of a message.

The value set by this option can be overridden by the -os command-line option. A setting of zero
time disables the timeout, but this should never be used for SMTP over TCP/IP. (It can be useful in
some cases of local input using -bs or -bS) For non-SMTP input, the reception timeout is
controlled by receive_timeout and -or.

Exim 4.50 [158] main configuration (14)

smtp_reserve_hosts Use: main Type: host listt Default: unset

This option defines hosts for which SMTP connections are reserved; see smtp_accept_reserve and
smtp_load_reserve above.

smtp_return_error_details Use: main Type: boolean Default: false

In the default state, Exim uses bland messages such as ‘Administrative prohibition’ when it rejects
SMTP commands for policy reasons. Many sysadmins like this because it gives away little
information to spammers. However, some other syadmins who are applying strict checking policies
want to give out much fuller information about failures. Setting smtp_return_error_details true
causes Exim to be more forthcoming. For example, instead of ‘ Administrative prohibition’, it might
give:

550- Rej ected after DATA: '> mssing at end of address:
550 failing address in "Fronl header is: <user@om ain

spamd_address Use: main Type: string Default: 127.0. 0.1 783

This option is available when Exim is compiled with the content-scanning extension. It specifies
how Exim connects to SpamAssassin’s spamd daemon. See section 40.2 for more details.

split_spool_directory Use: main Type: boolean Default: false

If this option is set, it causes Exim to split its input directory into 62 subdirectories, each with a
single aphanumeric character as its name. The sixth character of the message id is used to allocate
messages to subdirectories; this is the least significant base-62 digit of the time of arrival of the

message.

Splitting up the spool in this way may provide better performance on systems where there are long
mail queues, by reducing the number of files in any one directory. The msglog directory is aso split
up in a similar way to the input directory; however, if preserve message logs is set, all old msglog
files are still placed in the single directory msglog.OLD.

It is not necessary to take any specia action for existing messages when changing
split_spool_directory. Exim notices messages that are in the ‘wrong’ place, and continues to
process them. If the option is turned off after a period of being on, the subdirectories will
eventually empty and be automatically deleted.

When split_spool_directory is set, the behaviour of queue runner processes changes. Instead of
creating a list of all messages in the queue, and then trying to deliver each one in turn, it constructs
a list of those in one sub-directory and tries to deliver them, before moving on to the next sub-
directory. The sub-directories are processed in a random order. This spreads out the scanning of the
input directories, and uses less memory. It is particularly beneficial when there are lots of messages
on the queue. However, if queue run_in_order is set, none of this new processing happens. The
entire queue has to be scanned and sorted before any deliveries can start.

spool_directory Use main Type stringt Default: set at compile time

This defines the directory in which Exim keeps its spool, that is, the messages it is waiting to
deliver. The default value is taken from the compile-time configuration setting, if there is one. If
not, this option must be set. The string is expanded, so it can contain, for example, a reference to
$primary_hostname.

If the spool directory name is fixed on your installation, it is recommended that you set it at build
time rather than from this option, particularly if the log files are being written to the spool directory
(see log_file _path). Otherwise log files cannot be used for errors that are detected early on, such as
failures in the configuration file.

By using this option to override the compiled-in path, it is possible to run tests of Exim without
using the standard spool.

Exim 4.50 [159] main configuration (14)

strip_excess_angle _brackets Use: main Type: boolean Default: false

If this option is set, redundant pairs of angle brackets round ‘route-addr’ items in addresses are
stripped. For example, <<xxx@a.b.c.d>> is treated as <xxx@a.b.c.d>. If this is in the envelope
and the message is passed on to another MTA, the excess angle brackets are not passed on. If this
option is not set, multiple pairs of angle brackets cause a syntax error.

strip_trailing_dot Use: main Type: boolean Default: false

If this option is set, a trailing dot at the end of a domain in an address is ignored. If thisisin the
envelope and the message is passed on to another MTA, the dot is not passed on. If this option is
not set, a dot at the end of a domain causes a syntax error. However, addresses in header lines are
checked only when an ACL requests header syntax checking.

syslog_duplication Use: main Type: boolean Default: true

When Exim is logging to syslog, it writes the log lines for its three separate logs at different syslog
priorities so that they can in principle be separated on the logging hosts. Some installations do not
require this separation, and in those cases, the duplication of certain log lines is a nuisance. If
syslog_duplication is set false, only one copy of any particular log line is written to syslog. For
lines that normally go to both the main log and the reject log, the reect log version (possibly
containing message header lines) is written, at Loc_NoTICE priority. Lines that normally go to both
the main and the panic log are written at the Loc_ALERT priority.

syslog_facility Use: main Type: string Default: unset

This option sets the syslog ‘facility’ name, used when Exim is logging to syslog. The value must be
one of the strings ‘mail’, ‘user’, ‘news’, ‘uucp’, ‘daemon’, or ‘localx’ where x is a digit between O
and 7. If this option is unset, ‘mail’ is used. See chapter 48 for details of Exim'’s logging.

syslog_processname Use: main Type: string Default: exi m

This option sets the syslog ‘ident’ name, used when Exim is logging to syslog. The value must be
no longer than 32 characters. See chapter 48 for details of Exim’s logging.

syslog_timestamp Use: main Type: boolean Default: true

If syslog_timestamp is set false, the timestamps on Exim’s log lines are omitted when these lines
are sent to syslog. See chapter 48 for details of Exim’s logging.

system_filter Use: main Type: stringt Default: unset

This option specifies an Exim filter file that is applied to all messages at the start of each delivery
attempt, before any routing is done. System filters must be Exim filters; they cannot be Sieve filters.
If the system filter generates any deliveries to files or pipes, or any new mail messages, the
appropriate system_filter_..._transport option(s) must be set, to define which transports are to be
used. Details of this facility are given in chapter 42.

system_filter_directory_transport Use: main Type: stringt Default: unset

This sets the name of the transport driver that is to be used when the save command in a system
message filter specifies a path ending in ‘/’, implying delivery of each message into a separate file
in some directory. During the delivery, the variable $address file contains the path name.

system_filter_file_transport Use: main Type: stringt Default: unset

This sets the name of the transport driver that is to be used when the save command in a system
message filter specifies a path not ending in ‘/". During the delivery, the variable $address file
contains the path name.

Exim 4.50 [160] main configuration (14)

system_filter_group Use: main Type: string Default: unset

This option is used only when system_filter _user is also set. It sets the gid under which the system
filter is run, overriding any gid that is associated with the user. The value may be numerical or
symbolic.

system_filter_pipe_transport Use: main Type: stringt Default: unset

This specifies the transport driver that is to be used when a pipe command is used in a system filter.
During the delivery, the variable $address pipe contains the pipe command.

system_filter_reply_transport Use: main Type: stringt Default: unset

This specifies the transport driver that is to be used when a mail command is used in a system
filter.

system_filter _user Use: main Type: string Default: unset

If this option is not set, the system filter is run in the main Exim delivery process, as root. When
the option is set, the system filter runs in a separate process, as the given user. Unless the string
consists entirely of digits, it is looked up in the password data. Failure to find the named user
causes a configuration error. The gid is either taken from the password data, or specified by
system_filter_group. When the uid is specified numerically, system_filter_group is required to
be set.

If the system filter generates any pipe, file, or reply deliveries, the uid under which the filter is run
is used when transporting them, unless a transport option overrides. Normally you should set
system_filter_user if your system filter generates these kinds of delivery.

tcp_nodelay Use: main Type: boolean Default: true

If this option is set false, it stops the Exim daemon setting the Tcp_NODELAY option on its listening
sockets. Setting TcP_NODELAY turns off the ‘Nagle algorithm’, which is a way of improving network
performance in interactive (character-by-character) situations. Turning it off should improve Exim's
performance a bit, so that is what happens by default. However, it appears that some broken clients
cannot cope, and time out. Hence this option. It affects only those sockets that are set up for
listening by the daemon. Sockets created by the smtp transport for delivering mail always set
TCP_NODELAY.

timeout_frozen_after Use: main Type: time Default: Os

If timeout_frozen_after is set to a time greater than zero, a frozen message of any kind that has
been on the queue for longer than the given time is automatically cancelled at the next queue run. If
it is a bounce message, it is just discarded; otherwise, a bounce is sent to the sender, in a similar
manner to cancellation by the -Mg command line option. If you want to timeout frozen bounce
messages earlier than other kinds of frozen message, see ignore_bounce _errors_after.

timezone Use: main Type: string Default: unset

The value of timezone is used to set the environment variable 1z while running Exim (if it is
different on entry). This ensures that al timestamps created by Exim are in the required timezone.
If you want all your timestamps to be in UTC (aka GMT) you should set

ti nezone = UTC

The default value is taken from TiIMEZONE_DEFAULT in Local/M akefile, or, if that is not set, from the
value of the TZ environment variable when Exim is built. If timezone is set to the empty string,
either at build or run time, any existing Tz variable is removed from the environment when Exim
runs. This is appropriate behaviour for obtaining wall-clock time on some, but unfortunately not all,
operating systems.

Exim 4.50 [161] main configuration (14)

tls advertise hosts Use: main Type: host listt Default: unset

When Exim is built with support for TLS encrypted connections, the availability of the starTTLS
command to set up an encrypted session is advertised in response to eHLo only to those client hosts
that match this option. See chapter 38 for details of Exim’s support for TLS.

tls _certificate Use: main Type: stringt Default: unset

The value of this option is expanded, and must then be the absolute path to a file which contains
the server’s certificates. The server’s private key is also assumed to be in this file if tls privatekey
is unset. See chapter 38 for further details.

Note: The certificates defined by this option are used only when Exim is receiving incoming
messages as a server. If you want to supply certificates for use when sending messages as a client,
you must set the tls_certificate option in the relevant smtp transport.

tls crl Use: main Type: stringt Default: unset

This option specifies a certificate revocation list. The expanded value must be the name of a file
that contains a CRL in PEM format.

tls_ dhparam Use: main Type: stringt Default: unset

The value of this option is expanded, and must then be the absolute path to a file which contains
the server's DH parameter values. This is used only for OpenSSL. When Exim is linked with
GnuTLS, this option is ignored. See section 38.2 for further details.

tls_on_connect_ports Use: main Type: string list Default: unset

This option specifies a list of incoming SSMTP (aka SMTPS) ports that should operate the obsolete
SSMTP (SMTPS) pratocol, where a TLS session is immediately set up without waiting for the
client to issue a stTarTTLS command. For further details, see section 13.4.

tls privatekey Use: main Type: stringt Default: unset

The value of this option is expanded, and must then be the absolute path to a file which contains
the server’s private key. If this option is unset, the private key is assumed to be in the same file as
the server’s certificates. See chapter 38 for further details.

tls remember_esmtp Use: main Type boolean Default: false

If this option is set true, Exim violates the RFCs by remembering that it is in ‘esmtp’ state after
successfully negotiating a TLS session. This provides support for broken clients that fail to send a
new eHLO after starting a TLS session.

tls require ciphers Use: main Type: stringt Default: unset

This option controls which ciphers can be used for incoming TLS connections. The smtp transport
has an option of the same name for controlling outgoing connections. This option is expanded for
each connection, so can be varied for different clients if required. The value of this option must be
a list of permitted cipher suites. The OpenSSL and GnhuTLS libraries handle cipher control in
somewhat different ways. If GhuTLS is being used, the client controls the preference order of the
available ciphers. Details are given in sections 38.3 and 38.4.

tls try verify hosts Use: main Type: host listt Default: unset
See tls verify hosts below.
tls verify certificates Use: main Type: stringt Default: unset

The vaue of this option is expanded, and must then be the absolute path to a file containing
permitted certificates for clients that match tls verify hosts or tls try verify hosts. Alternatively,
if you are using OpenSSL, you can set tls verify certificates to the name of a directory containing
certificate files. This does not work with GnuTLS; the option must be set to the name of a single
fileif you are using GnuTLS.

Exim 4.50 [162] main configuration (14)

tls verify_hosts Use: main Type: host listt Default: unset

This option, along with tls try verify hosts, controls the checking of certificates from clients. The
expected certificates are defined by tls verify certificates, which must be set. A configuration error
occurs if either tls verify_hosts or tls try _verify _hostsis set and tls verify_certificates is not set.

Any client that matches tls verify _hosts is constrained by tls verify certificates. The client must
present one of the listed certificates. If it does not, the connection is aborted.

A weaker form of checking is provided by tls try verify _hosts. If a client matches this option (but
not tls verify_hosts), Exim requests a certificate and checks it against tls verify certificates, but
does not abort the connection if there is no certificate or if it does not match. This state can be
detected in an ACL, which makes it possible to implement policies such as ‘accept for relay only if
a verified certificate has been received, but accept for local delivery if encrypted, even without a
verified certificate’.

Client hosts that match neither of these lists are not asked to present certificates.
trusted_groups Use: main Type: string list Default: unset

If this option is set, any process that is running in one of the listed groups, or which has one of
them as a supplementary group, is trusted. The groups can be specified numerically or by name. See
section 5.2 for details of what trusted callers are permitted to do. If neither trusted_groups nor
trusted_usersis set, only root and the Exim user are trusted.

trusted_users Use: main Type: string list Default: unset

If this option is set, any process that is running as one of the listed users is trusted. The users can
be specified numerically or by name. See section 5.2 for details of what trusted callers are permitted
to do. If neither trusted_groups nor trusted_usersis set, only root and the Exim user are trusted.

unknown_login Use: main Type: stringt Default: unset

This is a specialized feature for use in unusual configurations. By default, if the uid of the caller of
Exim cannot be looked up using getpwuid(), Exim gives up. The unknown_login option can be
used to set a login name to be used in this circumstance. It is expanded, so values like
user$caller_uid can be set. When unknown_login is used, the value of unknown_username is
used for the user’s real name (gecos field), unless this has been set by the -F option.

unknown_user name Use: main Type: string Default: unset
See unknown_login.
untrusted_set_sender Use: main Type: address listt Default: unset

When an untrusted user submits a message to Exim using the standard input, Exim normally creates
an envelope sender address from the user’s login and the default qualification domain. Data from
the -f option (for setting envelope senders on non-SM TP messages) or the SMTP maiL command (if
-bs or -bSis used) is ignored.

However, untrusted users are permitted to set an empty envelope sender address, to declare that a
message should never generate any bounces. For example:

exim-f <> user @onuai n. exanpl e

The untrusted_set_sender option allows you to permit untrusted users to set other envelope sender
addresses in a controlled way. When it is set, untrusted users are alowed to set envelope sender
addresses that match any of the patterns in the list. Like all address lists, the string is expanded.
The identity of the user is in $sender_ident, so you can, for example, restrict users to setting
senders that start with their login ids followed by a hyphen by a setting like this:

untrusted_set _sender = “$sender _i dent -

If you want to allow untrusted users to set envelope sender addresses without restriction, you
can use

Exim 4.50 [163] main configuration (14)

untrusted _set sender = *

The untrusted_set_sender option applies to all forms of local input, but only to the setting of the
envelope sender. It does not permit untrusted users to use the other options which trusted user can
use to override message parameters. Furthermore, it does not stop Exim from removing an existing
Sender: header in the message, or from adding a Sender: header if necessary. See local_sender_
retain and local_from_check for ways of overriding these actions. The handling of the Sender:
header is also described in section 43.15.

The log line for a message’s arrival shows the envelope sender following ‘<=". For local messages,
the user’'s login aways follows, after ‘U=". In -bp displays, and in the Exim monitor, if an
untrusted user sets an envelope sender address, the user’s login is shown in parentheses after the
sender address.

uucp_from_pattern Use: main Type: string Default: see below

Some applications that pass messages to an MTA via a command line interface use an initial line
starting with ‘From’ to pass the envelope sender. In particular, this is used by UUCP software.
Exim recognizes such a line by means of a regular expression that is set in uucp_from_pattern.
When the pattern matches, the sender address is constructed by expanding the contents of
uucp_from_sender, provided that the caller of Exim is a trusted user. The default pattern
recognizes lines in the following two forms:

From phl0 Fri Jan 5 12:35 GMI 1996
From ph10 Fri, 7 Jan 97 14:00: 00 GVI

The pattern can be seen by running
exim-bP uucp_frompattern

It checks only up to the hours and minutes, and alows for a 2-digit or 4-digit year in the second
case. The first word after ‘From’ is matched in the regular expression by a parenthesized subpattern.
The default value for uucp_from_sender is ‘$1’, which therefore just uses this first word (‘ph10’ in
the example above) as the message’s sender. See also ignore_fromline_hosts.

uucp_from_sender Use: main Type: stringt Default: $1
See uucp_from_pattern above.
warn_message file Use: main Type: string Default: unset

This option defines a template file containing paragraphs of text to be used for constructing the
warning message which is sent by Exim when a message has been on the queue for a specified
amount of time, as specified by delay_warning. Details of the file's contents are given in chapter
45. See also bounce_message file.

write rejectlog Use: main Type: boolean Default: true

If this option is set false, Exim no longer writes anything to the reject log. See chapter 48 for
details of what Exim writes to its logs.

Exim 4.50 [164] main configuration (14)

15. Generic options for routers

This chapter describes the generic options that apply to al routers, identifying those that are precon-
ditions. For a general description of how a router operates, see sections 3.10 and 3.11. The latter
specifies the order in which the preconditions are tested. The order of expansion of the options that
provide data for a transport is: errors_to, headers add, headers remove, transport.

address_data Use routers Type: stringt Default: unset

The string is expanded just before the router is run, that is, after all the precondition tests have
succeeded. If the expansion is forced to fail, the router declines. Other expansion failures cause
delivery of the address to be deferred.

When the expansion succeeds, the value is retained with the address, and can be accessed using the
variable $address_data in the current router, subsequent routers, and the eventua transport.

Warning: if the current or any subsequent router is aredirect router that runs a user’s filter file, the
contents of $address data are accessible in the filter. This is not normally a problem, because such
data is usualy either not confidential or it ‘belongs to the current user, but if you do put
confidential data into $address data you need to remember this point.

Even if the router declines or passes, the value of $address data remains with the address, though
it can be changed by another address data setting on a subseguent router. If a router generates
child addresses, the value of $address data propagates to them. This also applies to the special
kind of ‘child’ that is generated by a router with the unseen option.

The idea of address data is that you can use it to look up a lot of data for the address once, and
then pick out parts of the data later. For example, you could use a single LDAP lookup to return a
string of the form

ui d=1234 gi d=5678 mai | box=/mai | / xyz forward=/honme/ xyz/.forward
In the transport you could pick out the mailbox by a setting such as
file = ${extract{mail box}{$address_data}}

This makes the configuration file less messy, and aso reduces the number of lookups (though Exim
does cache lookups).

The address data facility is also useful as a means of passing information from one router to
another, and from a router to a transport. In addition, if $address data is set by a router when
verifying a recipient address from an ACL, it remains available for use in the rest of the ACL
statement. After verifying a sender, the value is transferred to $sender_address data.

address test Use: routers Type: boolean (precondition) Default: true

If this option is set false, the router is skipped when routing is being tested by means of the -bt
command line option. This can be a convenience when your first router sends messages to an
external scanner, because it saves you having to set the ‘aready scanned’ indicator when testing
real address routing.

cannot_route message Use: routers Type: stringt Default: unset

This option specifies a text message that is used when an address cannot be routed because Exim
has run out of routers. The default message is ‘Unrouteable address’. This option is useful only on
routers that have more set false, or on the very last router in a configuration, because the value that
is used is taken from the last router that inspects an address. For example, using the default
configuration, you could put:

cannot _route_nessage = Renpte domain not found in DNS
on the first (dnslookup) router, and

Exim 4.50 [165] generic router options (15)

cannot _rout e_nmessage = Unknown | ocal user

on the final router that checks for local users. If string expansion fails, the default message is used.
Unless the expansion failure was explicitly forced, a message about the failure is written to the
main and panic logs, in addition to the normal message about the routing failure.

caseful_local_part Use: routers Type: boolean Default: false

By default, routers handle the local parts of addresses in a case-insensitive manner, though the
actual case is preserved for transmission with the message. If you want the case of letters to be
significant in a router, you must set this option true. For individual router options that contain
address or local part lists (for example, local_parts), case-sensitive matching can be turned on by
‘+caseful’ as alist item. See section 10.19 for more details.

The value of the $local_part variable is forced to lower case while a router is running unless
caseful_local_part is set. When a router assigns an address to a transport, the value of $local_part
when the transport runs is the same as it was in the router. Similarly, when a router generates child
addresses by aliasing or forwarding, the values of $original_local_part and $parent_local_part are
those that were used by the redirecting router.

This option applies to the processing of an address by a router. When a recipient address is being
processed in an ACL, there is a separate control modifier that can be used to specify case-sensitive
processing within the ACL (see section 39.18).

check_local _user Use: routers Type: boolean (precondition) Default: false

When this option is true, Exim checks that the local part of the recipient address (with affixes
removed if relevant) is the name of an account on the local system. The check is done by calling
the getpwnam() function rather than trying to read /etc/passwd directly. This means that other
methods of holding password data (such as NIS) are supported. If the local part is a local user,
$home is set from the password data, and can be tested in other preconditions that are evaluated
after this one (the order of evaluation is given in section 3.11). However, the value of $home can
be overridden by router _home directory. If the local part is not alocal user, the router is skipped.

If you want to check that the local part is either the name of alocal user or matches something else,
you cannot combine check local_user with a setting of local_parts, because that specifies the
logical and of the two conditions. However, you can use a passwd lookup in a local_parts setting
to achieve this. For example:

| ocal _parts = passwd; $l ocal _part : |search;/etc/other/users

Note, however, that the side effects of check local user (such as setting up a home directory) do
not occur when a passwd lookup is used in alocal_parts (or any other) precondition.

condition Use: routers Type: stringt (precondition) Default: unset

This option specifies a general precondition test that has to succeed for the router to be caled. The
condition option is the last precondition to be evaluated (see section 3.11). The string is expanded,
and if the result is a forced failure, or an empty string, or one of the strings ‘0" or ‘no’ or ‘fase
(checked without regard to the case of the letters), the router is skipped, and the address is offered
to the next one. If the result is any other value, the router is run (as this is the last precondition to
be evaluated, all the other preconditions must be true).

The condition option provides a means of applying custom conditions to the running of routers.
Note that in the case of a simple conditional expansion, the default expansion values are exactly
what is wanted. For example:

condition = ${if >{$nmessage_age}{600}}
Because of the default behaviour of the string expansion, this is equivalent to

condition = ${if >{$message_age}{600}{true}{}}
If the expansion fails (other than forced failure) delivery is deferred. Some of the other precondition
options are common specia cases that could in fact be specified using condition.

Exim 4.50 [166] generic router options (15)

debug_print Use routers Type: stringt Default: unset

If this option is set and debugging is enabled (see the -d command line option), the string is
expanded and included in the debugging output. If expansion of the string fails, the error message is
written to the debugging output, and Exim carries on processing. This option is provided to help
with checking out the values of variables and so on when debugging router configurations. For
example, if a condition option appears not to be working, debug_print can be used to output
the variables it references. The output happens after checks for domains, local_parts, and
check_local_user but before any other preconditions are tested. A newline is added to the text if it
does not end with one.

disable logging Use: routers Type: boolean Default: false

If this option is set true, nothing is logged for any routing errors or for any deliveries caused by this
router. You should not set this option unless you really, really know what you are doing. See aso
the generic transport option of the same name.

domains Use: routers Type: domain listt (precondition) Default: unset

If this option is set, the router is skipped unless the current domain matches the list. If the match is
achieved by means of a file lookup, the data that the lookup returned for the domain is placed in
$domain_data for use in string expansions of the driver’s private options. See section 3.11 for a
list of the order in which preconditions are evaluated.

driver Use: routers Type: string Default: unset
This option must always be set. It specifies which of the available routers is to be used.
errors to Use: routers Type: stringt Default: unset

If arouter successfully handles an address, it may queue the address for delivery or it may generate
child addresses. In both cases, if there is a delivery problem during later processing, the resulting
bounce message is sent to the address that results from expanding this string, provided that the
address verifies successfully. errors to is expanded before headers add, headers remove, and
transport.

If the option is unset, or the expansion is forced to fail, or the result of the expansion fails to verify,
the errors address associated with the incoming address is used. At top level, this is the envelope
sender. A non-forced expansion failure causes delivery to be deferred.

If an address for which errors_to has been set ends up being delivered over SMTP, the envelope
sender for that delivery is the errors to value, so that any bounces that are generated by other
MTAs on the delivery route are also sent there. The most common use of errors to is probably to
direct mailing list bounces to the manager of the list, as described in section 46.2.

The errors to setting associated with an address can be overridden if it subsequently passes
through other routers that have their own errors_to settings, or if it is delivered by a transport with
areturn_path setting.

You can set errors_to to the empty string by either of these settings:

errors_to
errors_to

nn

An expansion item that yields an empty string has the same effect. If you do this, a locally detected
delivery error for addresses processed by this router no longer gives rise to a bounce message; the
error is discarded. If the address is delivered to a remote host, the return path is set to <>, unless
overridden by the return_path option on the transport.

If for some reason you want to discard local errors, but use a non-empty maiL command for remote
delivery, you can preserve the origina return path in $address_data in the router, and reinstate it in
the transport by setting return_path.

Exim 4.50 [167] generic router options (15)

expn Use: routers Type: boolean (precondition) Default: true

If this option is turned off, the router is skipped when testing an address as a result of processing an
SMTP expn command. You might, for example, want to turn it off on a router for users’ .forward
files, while leaving it on for the system alias file. See section 3.11 for a list of the order in which
preconditions are evaluated.

The use of the SMTP exen command is controlled by an ACL (see chapter 39). When Exim is
running an expn command, it is similar to testing an address with -bt. Compare vrry, whose
counterpart is -bv.

fail_verify Use: routers Type: boolean Default: false

Setting this option has the effect of setting both fail_verify_sender and fail_verify_recipient to the
same value.

fail_verify_recipient Use: routers Type: boolean Default: false

If this option is true and an address is accepted by this router when verifying a recipient,
verification fails.

fail_verify_sender Use: routers Type: boolean Default: false

If this option is true and an address is accepted by this router when verifying a sender, verification
fails.

fallback_hosts Use: routers Type: string list Default: unset

String expansion is not applied to this option. The argument must be a colon-separated list of host
names or |IP addresses. If a router queues an address for a remote transport, this host list is
associated with the address, and used instead of the transport’s fallback host list. If
hosts randomize is set on the transport, the order of the list is randomized for each use. See the
fallback _hosts option of the smtp transport for further details.

group Use routers Type: stringt Default: see below

When a router queues an address for a transport, and the transport does not specify a group, the
group given here is used when running the delivery process. The group may be specified numeri-
cally or by name. If expansion fails, the error is logged and delivery is deferred. The default is
unset, unless check _local_user is set, when the default is taken from the password information. See
also initgroups and user and the discussion in chapter 23.

headers add Use routers Type: stringt Default: unset

This option specifies a string of text that is expanded at routing time, and associated with any
addresses that are accepted by the router. However, this option has no effect when an address is just
being verified. The way in which the text is used to add header lines at transport time is described
in section 43.16.

The headers add option is expanded after errors to, but before headers remove and transport.
If the expanded string is empty, or if the expansion is forced to fail, the option has no effect. Other
expansion failures are treated as configuration errors.

Warning: The headers add option cannot be used for a redirect router that has the one time
option set.

headers remove Use routers Type: stringt Default: unset

This option specifies a string of text that is expanded at routing time, and associated with any
addresses that are accepted by the router. However, this option has no effect when an address is just
being verified. The way in which the text is used to remove header lines at transport time is
described in section 43.16.

The headers remove option is expanded after errors to and headers add, but before transport.
If the expansion is forced to fail, the option has no effect. Other expansion failures are treated as
configuration errors.

Exim 4.50 [168] generic router options (15)

Warning: The headers remove option cannot be used for a redirect router that has the one_time
option set.

ignore_target_hosts Use: routers Type: host listt Default: unset

Although this option is a host list, it should normally contain |P address entries rather than names.
If any host that is looked up by the router has an IP address that matches an item in this list, Exim
behaves as if that IP address did not exist. This option allows you to cope with rogue DNS
entries like

renot e. domai n. exanple. A 127.0.0.1
by setting
i gnore_target _hosts = 127.0.0.1

on the relevant router. If all the hosts found by a dnslookup router are discarded in this way, the
router declines. In a conventional configuration, an attempt to mail to such a domain would
normally provoke the ‘unrouteable domain’ error, and an attempt to verify an address in the domain
would fail.

Similarly, if ignore_target_hosts is set on an ipliteral router, the router declines if presented with
one of the listed addresses.

This option may aso be useful for ignoring link-local and site-local 1Pv6 addresses. Because, like
al host lists, the value of ignore_target_hosts is expanded before use as a ligt, it is possible to
make it dependent on the domain that is being routed. During its expansion, $host_address is set to
the IP address that is being checked.

initgroups Use routers Type: boolean Default: false

If the router queues an address for a transport, and this option is true, and the uid supplied by the
router is not overridden by the transport, the initgroups() function is called when running the
transport to ensure that any additional groups associated with the uid are set up. See also group and
user and the discussion in chapter 23.

local_part_prefix Use: routers Type: string list (precondition) Default: unset

If this option is set, the router is skipped unless the local part starts with one of the given strings, or
local_part_prefix_optional is true. See section 3.11 for a list of the order in which preconditions
are evaluated.

The list is scanned from left to right, and the first prefix that matches is used. A limited form of
wildcard is available; if the prefix begins with an asterisk, it matches the longest possible sequence
of arbitrary characters at the start of the local part. An asterisk should therefore always be followed
by some character that does not occur in normal local parts. Wildcarding can be used to set up
multiple user mailboxes, as described in section 46.7.

During the testing of the local_parts option, and while the router is running, the prefix is removed
from the local part, and is available in the expansion variable $local_part_prefix. If the router
accepts the address, this remains true during subsequent delivery. In particular, the local part that is
transmitted in the rcer command for LMTPR, SMTR, and BSMTP deliveries has the prefix removed
by default. This behaviour can be overridden by setting rcpt_include_affixes true on the relevant
transport.

The prefix facility is commonly used to handle local parts of the form owner-something. Another
common use is to support local parts of the form real-username to bypass a user’s .forward file —
helpful when trying to tell a user their forwarding is broken — by placing a router like this one
immediately before the router that handles .forward files:

Exim 4.50 [169] generic router options (15)

real | ocal user:
driver = accept
| ocal _part_prefix = real -
check | ocal _user
transport = | ocal _delivery

If both local_part_prefix and local_part_suffix are set for a router, both conditions must be met if
not optional. Care must be taken if wildcards are used in both a prefix and a suffix on the same
router. Different separator characters must be used to avoid ambiguity.

local_part_prefix_optional Use: routers Type: boolean Default: false
See |local_part_prefix above.
local_part_suffix Use: routers Type: string list (precondition) Default: unset

This option operates in the same way as local_part_prefix, except that the local part must end
(rather than start) with the given string, the local_part_suffix_optional option determines whether
the suffix is mandatory, and the wildcard * character, if present, must be the last character of the
suffix. This option facility is commonly used to handle local parts of the form something-request
and multiple user mailboxes of the form user name-foo.

local_part_suffix_optional Use: routers Type: boolean Default: false
See |local_part_suffix above.
local_parts Use: routers Type: local part listt (precondition) Default: unset

The router is run only if the local part of the address matches the list. See section 3.11 for a list of
the order in which preconditions are evaluated, and section 10.20 for a discussion of local part lists.
Because the string is expanded, it is possible to make it depend on the domain, for example:

| ocal _parts = dbm/usr/local/special s/ $domai n

If the match is achieved by alookup, the data that the lookup returned for the local part is placed in
the variable $local_part_data for use in expansions of the router’s private options. You might use
this option, for example, if you have alarge number of loca virtual domains, and you want to send
all postmaster mail to the same place without having to set up an alias in each virtual domain:

post nast er:
driver = redirect
| ocal _parts = postnaster
data = postnaster @eal . donmai n. exanpl e

log_as local Use: routers Type: boolean Default: see below

Exim has two logging styles for delivery, the idea being to make local deliveries stand out more
visibly from remote ones. In the ‘local’ style, the recipient address is given just as the local part,
without a domain. The use of this style is controlled by this option. It defaults to true for the accept
router, and false for all the others.

more Use routers Type: booleant Default: true

The result of string expansion for this option must be a valid boolean value, that is, one of the
strings ‘yes’, ‘no’, ‘true’, or ‘false’. Any other result causes an error, and delivery is deferred. If the
expansion is forced to fail, the default value for the option (true) is used. Other failures cause
delivery to be deferred.

If this option is set false, and the router is run, but declines to handle the address, no further routers
are tried, routing fals, and the address is bounced. However, if the router explicitly passes an
address to the following router by means of the setting

sel f = pass
or otherwise, the setting of more is ignored. Also, the setting of more does not affect the behaviour
if one of the precondition tests fails. In that case, the address is always passed to the next router.

Exim 4.50 [170] generic router options (15)

pass_on_timeout Use: routers Type: boolean Default: false

If a router times out during a host lookup, it normally causes deferral of the address. If
pass_on_timeout is set, the address is passed on to the next router, overriding no_more. This may
be helpful for systems that are intermittently connected to the Internet, or those that want to pass to
a smart host any messages that cannot immediately be delivered.

There are occasional other temporary errors that can occur while doing DNS lookups. They are
treated in the same way as a timeout, and this option applies to all of them.

pass_router Use: routers Type: string Default: unset

When a router returns ‘pass’, the address is normally handed on to the next router in sequence.
This can be changed by setting pass router to the name of another router. However (unlike
redirect_router) the named router must be below the current router, to avoid loops. Note that this
option applies only to the special case of ‘pass’. It does not apply when a router returns ‘ decline’.

redirect_router Use: routers Type: string Default: unset

Sometimes an administrator knows that it is pointless to reprocess addresses generated from alias or
forward files with the same router again. For example, if an alias file trandates real names into
login ids there is no point searching the aias file a second time, especidly if it is alarge file.

The redirect_router option can be set to the name of any router instance. It causes the routing of
any generated addresses to start at the named router instead of at the first router. This option has no
effect if the router in which it is set does not generate new addresses.

require files Use routers Type: string listt (precondition) Default: unset

This option provides a general mechanism for predicating the running of a router on the existence
or non-existence of certain files or directories. Before running a router, as one of its precondition
tests, Exim works its way through the require files list, expanding each item separately.

Because the list is split before expansion, any colons in expansion items must be doubled, or the
facility for using a different list separator must be used. If any expansion is forced to fail, the item
isignored. Other expansion failures cause routing of the address to be deferred.

If any expanded string is empty, it is ignored. Otherwise, except as described below, each string
must be a fully qualified file path, optionaly preceded by ‘!". The paths are passed to the stat()
function to test for the existence of the files or directories. The router is skipped if any paths not
preceded by ‘!’ do not exist, or if any paths preceded by ‘!’ do exist.

If stat() cannot determine whether a file exists or not, delivery of the message is deferred. This can
happen when NFS-mounted filesystems are unavailable.

This option is checked after the domains, local_parts, and senders options, so you cannot use it to
check for the existence of a file in which to look up a domain, local part, or sender. (See section
3.11 for a full list of the order in which preconditions are evaluated.) However, as these options are
all expanded, you can use the exists expansion condition to make such tests. The require files
option is intended for checking files that the router may be going to use internally, or which are
needed by a transport (for example .procmailrc).

During delivery, the stat() function is run as root, but there is a facility for some checking of the
accessibility of a file by another user. This is not a proper permissions check, but just a ‘rough’
check that operates as follows:

If anitem in arequire_files list does not contain any forward slash characters, it is taken to be the
user (and optional group, separated by a comma) to be checked for subsequent files in the list. If no
group is specified but the user is specified symbolically, the gid associated with the uid is used. For
example:

mai | : /sone/file
$l ocal _part: $hone/ . procrailrc

require_files
require_files

If a user or group name in arequire files list does not exist, the require_files condition fails.

Exim 4.50 [171] generic router options (15)

Exim performs the check by scanning along the components of the file path, and checking the
access for the given uid and gid. It checks for ‘x’ access on directories, and ‘r’ access on the fina
file. Note that this means that file access control lists, if the operating system has them, are ignored.

Warning 1: When the router is being run to verify addresses for an incoming SMTP message,
Exim is not running as root, but under its own uid. This may affect the result of a require files
check. In particular, stat() may yield the error eacces (‘Permission denied’). This means that the
Exim user is not permitted to read one of the directories on the file's path.

Warning 2: Even when Exim is running as root while delivering a message, stat() can yield eacces
for afilein an NFS directory that is mounted without root access. In this case, if a check for access
by a particular user is requested, Exim creates a subprocess that runs as that user, and tries the
check again in that process.

The default action for handling an unresolved eacces is to consider it to be caused by a configur-
ation error, and routing is deferred because the existence or non-existence of the file cannot be
determined. However, in some circumstances it may be desirable to treat this condition as if the file
did not exist. If the file name (or the exclamation mark that precedes the file name for non-
existence) is preceded by a plus sign, the eacces error is treated as if the file did not exist. For
example:

require_files = +/sone/file

If the router is not an essential part of verification (for example, it handles users .forward files),
another solution is to set the verify option false so that the router is skipped when verifying.

retry _use local_part Use: routers Type: boolean Default: see below

When a delivery suffers a temporary routing failure, a retry record is created in Exim’'s hints
database. For addresses whose routing depends only on the domain, the key for the retry record
should not involve the local part, but for other addresses, both the domain and the local part should
be included. Usually, remote routing is of the former kind, and local routing is of the latter kind.

This option controls whether the local part is used to form the key for retry hints for addresses that
suffer temporary errors while being handled by this router. The default value is true for any router
that has check_local_user set, and false otherwise. Note that this option does not apply to hints
keys for transport delays; they are controlled by a generic transport option of the same name.

The setting of retry_use local_part applies only to the router on which it appears. If the router
generates child addresses, they are routed independently; this setting does not become attached to
them.

router_home directory Use routers Type: stringt Default: unset

This option sets a home directory for use while the router is running. (Compare transport_
home _directory, which sets a home directory for later transporting.) In particular, if used on a
redirect router, this option sets a value for $home while a filter is running. The value is expanded;
forced expansion failure causes the option to be ignored — other failures cause the router to defer.

Expansion of router_home directory happens immediately after the check local_user test (if
configured), before any further expansions take place. (See section 3.11 for a list of the order in
which preconditions are evaluated.) While the router is running, router_home_directory overrides
the value of $home that came from check local user.

When a router accepts an address and routes it to a transport (including the cases when a redirect
router generates a pipe, file, or autoreply delivery), the home directory setting for the transport is
taken from the first of these values that is set:

* The home_directory option on the transport;
e Thetransport_home_directory option on the router;
e The password data if check_local_user is set on the router;

Exim 4.50 [172] generic router options (15)

e Therouter_home directory option on the router.

In other words, router_home_directory overrides the password data for the router, but not for the
transport.

self Use: routers Type: string Default: freeze

This option applies to those routers that use a recipient address to find a list of remote hosts.
Currently, these are the dnslookup, ipliteral, and manualroute routers. Certain configurations of
the queryprogram router can also specify a list of remote hosts. Usually such routers are con-
figured to send the message to a remote host via an smtp transport. The self option specifies what
happens when the first host on the list turns out to be the local host. The way in which Exim checks
for the local host is described in section 13.7.

Normally this situation indicates either an error in Exim’s configuration (for example, the router
should be configured not to process this domain), or an error in the DNS (for example, the MX
should not point to this host). For this reason, the default action is to log the incident, defer the
address, and freeze the message. The following alternatives are provided for use in special cases:

» defer
Delivery of the message is tried again later, but the message is not frozen.

* reroute: <domain>
The domain is changed to the given domain, and the address is passed back to be reprocessed
by the routers. No rewriting of headers takes place. This behaviour is essentially a redirection.

* reroute: rewrite: <domain>
The domain is changed to the given domain, and the address is passed back to be reprocessed
by the routers. Any headers that contain the original domain are rewritten.

* pass
The router passes the address to the next router, or to the router named in the pass router
option if it is set. This overrides no_more.

During subsequent routing and delivery, the variable $self_hostname contains the name of the
local host that the router encountered. This can be used to distinguish between different cases
for hosts with multiple names. The combination

sel f = pass
no_nore

ensures that only those addresses that routed to the local host are passed on. Without
no_more, addresses that were declined for other reasons would also be passed to the next
router.

o fail
Delivery fails and an error report is generated.

* send
The anomaly is ignored and the address is queued for the transport. This setting should be
used with extreme caution. For an smtp transport, it makes sense only in cases where the
program that is listening on the SMTP port is not this version of Exim. That is, it must be
some other MTA, or Exim with a different configuration file that handles the domain in
another way.

senders Use routers Type: address listt (precondition) Default: unset

If this option is set, the router is skipped unless the message's sender address matches something on
the list. See section 3.11 for a list of the order in which preconditions are evaluated.

There are issues concerning verification when the running of routers is dependent on the sender.
When Exim is verifying the address in an errors_to setting, it sets the sender to the null string.
When using the -bt option to check a configuration file, it is necessary also to use the -f option to
set an appropriate sender. For incoming mail, the sender is unset when verifying the sender, but is

Exim 4.50 [173] generic router options (15)

available when verifying any recipients. If the SMTP vrry command is enabled, it must be used
after maiL if the sender address matters.

trandate ip_address Use routers Type: stringt Default: unset

There exist some rare networking situations (for example, packet radio) where it is helpful to be
able to trandate IP addresses generated by normal routing mechanisms into other |P addresses, thus
performing a kind of manual IP routing. This should be done only if the normal IP routing of the
TCP/IP stack is inadeguate or broken. Because this is an extremely uncommon requirement, the
code to support this option is not included in the Exim binary unless sUPPORT_TRANSLATE_IP_
ADDRESS=YES is set in Local/M akefile.

The trandate_ip_address string is expanded for every IP address generated by the router, with the
generated address set in $host_address. If the expansion is forced to fail, no action is taken. For
any other expansion error, delivery of the message is deferred. If the result of the expansion is an IP
address, that replaces the origina address; otherwise the result is assumed to be a host name — this
is looked up using gethostbyname() (or getipnodebyname() when available) to produce one or more
replacement IP addresses. For example, to subvert all 1P addresses in some specific networks, this
could be added to a router:

translate_i p_address =\
${ 1 ookup{ ${ mask: $host _addr ess/ 26}}| search{/sonme/fil e}{$val ue}fail}

The file would contain lines like

10.2.3.128/ 26 sone. host
10. 8. 4. 34/ 26 10. 44. 8. 15

You should not make use of this facility unless you really understand what you are doing.
transport Use routers Type: stringt Default: unset

This option specifies the transport to be used when a router accepts an address and sets it up for
delivery. A transport is never needed if a router is used only for verification. The value of the
option is expanded at routing time, after the expansion of errors to, headers add, and
headers remove, and result must be the name of one of the configured transports. If it is not,
delivery is deferred.

The transport option is not used by the redirect router, but it does have some private options that
set up transports for pipe and file deliveries (see chapter 22).

transport_current_directory Use routers Type: stringt Default: unset

This option associates a current directory with any address that is routed to a local transport. This
can happen either because a transport is explicitly configured for the router, or because it generates
a delivery to a file or a pipe. During the delivery process (that is, at transport time), this option
string is expanded and is set as the current directory, unless overridden by a setting on the transport.
If the expansion fails for any reason, including forced failure, an error is logged, and delivery is
deferred. See chapter 23 for details of the local delivery environment.

transport_home_directory Use: routers Type: stringt Default: see below

This option associates a home directory with any address that is routed to alocal transport. This can
happen either because a transport is explicitly configured for the router, or because it generates a
delivery to afile or a pipe. During the delivery process (that is, at transport time), the option string
is expanded and is set as the home directory, unless overridden by a setting of home_directory on
the transport. If the expansion fails for any reason, including forced failure, an error is logged, and
delivery is deferred.

If the transport does not specify a home directory, and transport_home_directory is not set for the
router, the home directory for the tranport is taken from the password data if check_local_user is
set for the router. Otherwise it is taken from router_home_directory if that option is set; if not, no
home directory is set for the transport.

Exim 4.50 [174] generic router options (15)

See chapter 23 for further details of the local delivery environment.
unseen Use routers Type: booleant Default: false

The result of string expansion for this option must be a valid boolean value, that is, one of the
strings ‘yes’, ‘no’, ‘true’, or ‘false’. Any other result causes an error, and delivery is deferred. If the
expansion is forced to fail, the default value for the option (false) is used. Other failures cause
delivery to be deferred.

When this option is set true, routing does not cease if the router accepts the address. Instead, a copy
of the incoming address is passed to the next router, overriding a false setting of more. There is
little point in setting more false if unseen is always true, but it may be useful in cases when the
value of unseen contains expansion items (and therefore, presumably, is sometimes true and
sometimes false).

The unseen option can be used to cause copies of messages to be delivered to some other
destination, while also carrying out a normal delivery. In effect, the current address is made into a
‘parent’ that has two children — one that is delivered as specified by this router, and a clone that
goes on to be routed further.

Header lines added to the address (or specified for removal) by this router or by previous routers
affect the ‘unseen’ copy of the message only. The clone that continues to be processed by further
routers starts with no added headers and none specified for removal.

However, any data that was set by the address data option in the current or previous routers is
passed on. Setting this option has a similar effect to the unseen command qualifier in filter files.

user Use: routers Type: stringt Default: see below

When a router queues an address for a transport, and the transport does not specify a user, the user
given here is used when running the delivery process. The user may be specified numerically or by
name. If expansion fails, the error is logged and delivery is deferred. This user is also used by the
redirect router when running a filter file. The default is unset, except when check_local_user is set.
In this case, the default is taken from the password information. If the user is specified as a name,
and group is not set, the group associated with the user is used. See aso initgroups and group and
the discussion in chapter 23.

verify Use: routers Type: boolean (precondition) Default: true
Setting this option has the effect of setting verify_sender and verify_recipient to the same value.
verify_only Use: routers Type: boolean (precondition) Default: false

If this option is set, the router is used only when verifying an address or testing with the -bv option,
not when actually doing a delivery, testing with the -bt option, or running the SMTP ExPn
command. It can be further restricted to verifying only senders or recipients by means of
verify_sender and verify_recipient.

Warning: When the router is being run to verify addresses for an incoming SMTP message, Exim
is not running as root, but under its own uid. If the router accesses any files, you need to make sure
that they are accessible to the Exim user or group.

verify_recipient Use: routers Type: boolean (precondition) Default: true

If this option is false, the router is skipped when verifying recipient addresses or testing recipient
verification using -bv. See section 3.11 for alist of the order in which preconditions are evaluated.

verify_sender Use: routers Type: boolean (precondition) Default: true

If this option is false, the router is skipped when verifying sender addresses or testing sender
verification using -bvs. See section 3.11 for a list of the order in which preconditions are evaluated.

Exim 4.50 [175] generic router options (15)

16. The accept router

The accept router has no private options of its own. Unless it is being used purely for verification (see
verify_only) atransport is required to be defined by the generic transport option. If the preconditions
that are specified by generic options are met, the router accepts the address and queues it for the given
transport. The most common use of this router is for setting up deliveries to local mailboxes. For
example:

| ocal users:
driver = accept
domai ns = nydonai n. exanpl e
check | ocal _user
transport = | ocal _delivery

The domains condition in this example checks the domain of the address, and check local _user
checks that the local part is the login of a local user. When both preconditions are met, the accept
router runs, and queues the address for the local_delivery transport.

Exim 4.50 [176] accept router (16)

17. The dnslookup router

The dnslookup router looks up the hosts that handle mail for the recipient’s domain in the DNS. A
transport must always be set for this router, unless verify_only is set.

If SRV support is configured (see check_srv below), Exim first searches for SRV records. If none are
found, or if SRV support is not configured, MX records are looked up. If no MX records exist, address
records are sought. However, mx_domains can be set to disable the direct use of address records.

MX records of equal priority are sorted by Exim into a random order. Exim then looks for address
records for the host names obtained from MX or SRV records. When a host has more than one IP
address, they are sorted into a random order, except that 1Pv6 addresses are always sorted before 1Pv4
addresses. If all the IP addresses found are discarded by a setting of the ignore_target_hosts generic
option, the router declines.

Unless they have the highest priority (lowest MX value), MX records that point to the local host, or to
any host name that matches hosts treat_as local, are discarded, together with any other MX records
of equal or lower priority.

If the host pointed to by the highest priority MX record, or looked up as an address record, is the local
host, or matches hosts treat_as local, what happens is controlled by the generic self option.

17.1 Problems with DNS lookups

There have been problems with DNS servers when SRV records are looked up. Some mis-behaving
servers return a DNS error or timeout when a non-existent SRV record is sought. Similar problems
have in the past been reported for MX records. The global dns again_means nonexist option can
help with this problem, but it is heavy-handed because it is a global option.

For this reason, there are two options, srv_fail_domains and mx_fail_domains, that control what
happens when a DNS lookup in a dnsdookup router results in a DNS failure or a ‘try again’ response.
If an attempt to look up an SRV or MX record causes one of these results, and the domain matches the
relevant list, Exim behaves as if the DNS had responded ‘no such record’. In the case of an SRV
lookup, this means that the router proceeds to look for MX records; in the case of an MX lookup, it
proceeds to look for A or AAAA records, unless the domain matches mx_domains, in which case
routing fails.

17.2 Private options for dnslookup
The private options for the dnslookup router are as follows:

check_secondary_mx Use: dndookup Type: boolean Default: false

If this option is set, the router declines unless the local host is found in (and removed from) the list
of hosts obtained by MX lookup. This can be used to process domains for which the local host is a
secondary mail exchanger differently to other domains. The way in which Exim decides whether a
host is the local host is described in section 13.7.

check_srv Use: dndookup Type: stringt Default: unset

The dnslookup router supports the use of SRV records (see RFC 2782) in addition to MX and
address records. The support is disabled by default. To enable SRV support, set the check _srv
option to the name of the service required. For example,

check_srv = smtp

looks for SRV records that refer to the normal smtp service. The option is expanded, so the service
name can vary from message to message or address to address. This might be helpful if SRV
records are being used for a submission service. If the expansion is forced to fail, the check_srv
option isignored, and the router proceeds to look for MX records in the normal way.

Exim 4.50 [177] dnslookup router (17)

When the expansion succeeds, the router searches first for SRV records for the given service (it
assumes TCP protocol). A single SRV record with a host name that consists of just a single dot
indicates ‘no such service for this domain’; if this is encountered, the router declines. If other kinds
of SRV record are found, they are used to construct a host list for delivery according to the rules of
RFC 2782. MX records are not sought in this case.

When no SRV records are found, MX records (and address records) are sought in the traditional
way. In other words, SRV records take precedence over MX records, just as MX records take
precedence over address records. Note that this behaviour is not sanctioned by RFC 2782, though a
previous draft RFC defined it. It is apparently believed that MX records are sufficient for email and
that SRV records should not be used for this purpose. However, SRV records have an additional
‘weight’ feature which some people might find useful when trying to split an SMTP load between
hosts of different power.

See section 17.1 above for a discussion of Exim’s behaviour when there is a DNS lookup error.
mx_domains Use: dnslookup Type: domain listt Default: unset

A domain that matches mx_domains is required to have either an MX or an SRV record in order to
be recognised. (The name of this option could be improved.) For example, if all the mail hosts in
fict.example are known to have MX records, except for those in discworld.fict.example, you could
use this setting:

nk_domains = ! *.discworld.fict.example : *.fict.exanple

This specifies that messages addressed to a domain that matches the list but has no MX record
should be bounced immediately instead of being routed using the address record.

mx_fail_domains Use: dnslookup Type: domain listt Default: unset

If the DNS lookup for MX records for one of the domains in this list causes a DNS lookup error,
Exim behaves as if no MX records were found. See section 17.1 for more discussion.

qualify_single Use: dndookup Type: boolean Default: true

When this option is true, the resolver option rRes DEFNAMES IS set for DNS lookups. Typically, but
not standardly, this causes the resolver to qualify single-component names with the default domain.
For example, on a machine called dictionary.ref.example, the domain thesaurus would be changed
to thesaurus.ref.example inside the resolver. For details of what your resolver actually does, consult
your man pages for resolver and resolv.conf.

rewrite_headers Use: dndookup Type: boolean Default: true

If the domain name in the address that is being processed is not fully qualified, it may be expanded
to its full form by a DNS lookup. For example, if an address is specified as dormouse@teaparty,
the domain might be expanded to teaparty.wonderland.fict.example. Domain expansion can also
occur as a result of setting the widen_domains option. If rewrite_headers is true, al occurrences
of the abbreviated domain name in any Bcc:, Cc:, From:, Reply-to:, Sender:, and To: header lines
of the message are rewritten with the full domain name.

This option should be turned off only when it is known that no message is ever going to be sent
outside an environment where the abbreviation makes sense.

When an MX record is looked up in the DNS and matches a wildcard record, name servers
normally return a record containing the name that has been looked up, making it impossible to
detect whether a wildcard was present or not. However, some name servers have recently been seen
to return the wildcard entry. If the name returned by a DNS lookup begins with an asterisk, it is not
used for header rewriting.

Exim 4.50 [178] dnslookup router (17)

same_domain_copy_routing Use: dnslookup Type: boolean Default: false

Addresses with the same domain are normally routed by the dnslookup router to the same list of
hosts. However, this cannot be presumed, because the router options and preconditions may refer to
the local part of the address. By default, therefore, Exim routes each address in a message
independently. DNS servers run caches, so repeated DNS lookups are not normally expensive, and
in any case, personal messages rarely have more than a few recipients.

If you are running mailing lists with large numbers of subscribers at the same domain, and you are
using a dnslookup router which is independent of the local part, you can set same _domain_
copy_routing to bypass repeated DNS lookups for identical domains in one message. In this case,
when dnslookup routes an address to a remote transport, any other unrouted addresses in the
message that have the same domain are automatically given the same routing without processing
them independently, provided the following conditions are met:

* No router that processed the address specified headers add or headers remove.
* Therouter did not change the address in any way, for example, by ‘widening’ the domain.
search_parents Use: dndookup Type: boolean Default: false

When this option is true, the resolver option rRes bDNsSRcH is set for DNS lookups. This is different
from the qualify_single option in that it applies to domains containing dots. Typically, but not
standardly, it causes the resolver to search for the name in the current domain and in parent
domains. For example, on a machine in the fict.example domain, if looking up teaparty.wonderland
failed, the resolver would try teaparty.wonderland.fict.example. For details of what your resolver
actually does, consult your man pages for resolver and resolv.conf.

Setting this option true can cause problems in domains that have a wildcard MX record, because
any domain that does not have its own MX record matches the local wildcard.

srv_fail_domains Use: dnslookup Type: domain listt Default: unset

If the DNS lookup for SRV records for one of the domains in this list causes a DNS lookup error,
Exim behaves as if no SRV records were found. See section 17.1 for more discussion.

widen_domains Use: dndookup Type: string list Default: unset

If a DNS lookup fails and this option is set, each of its strings in turn is added onto the end of the
domain, and the lookup is tried again. For example, if
wi den_domai ns = fict.exanpl e: ref.exanple

is set and a lookup of klingon.dictionary fails, klingon.dictionary.fict.example is looked up, and if
this fails, klingon.dictionary.ref.example is tried. Note that the qualify_single and search_parents
options can cause some widening to be undertaken inside the DNS resolver.

17.3 Effect of qualify_single and search_parents

When a domain from an envelope recipient is changed by the resolver as a result of the qualify_single
or search_parents options, Exim rewrites the corresponding address in the message’'s header lines
unless rewrite_headers is set false. Exim then re-routes the address, using the full domain.

These two options affect only the DNS lookup that takes place inside the router for the domain of the
address that is being routed. They do not affect lookups such as that implied by

domai ns = @x_any
that may happen while processing a router precondition before the router is entered. No widening ever
takes place for these lookups.

Exim 4.50 [179] dnslookup router (17)

18. The ipliteral router

This router has no private options. Unless it is being used purely for verification (see verify_only) a
transport is required to be defined by the generic transport option. The router accepts the address if its
domain part takes the form of an RFC 2822 domain literal, that is, an IP address enclosed in square
brackets. For example, this router handles the address

root @ 192. 168. 1. 1]
by setting up delivery to the host with that I1P address.

If the IP address matches something in ignore_target_hosts, the router declines. If an IP litera turns
out to refer to the local host, the generic self option determines what happens.

The RFCs require support for domain literals; however, their use is controversia in today’s Internet. If
you want to use this router, you must also set the main configuration option allow_domain_literals.
Otherwise, Exim will not recognize the domain literal syntax in addresses.

Exim 4.50 [180] ipliteral router (18)

19. The iplookup router

The iplookup router was written to fulfil a specific requirement in Cambridge University (which in
fact no longer exists). For this reason, it is not included in the binary of Exim by default. If you want
to include it, you must set

ROUTER | PLOOKUP=yes
in your Local/M akefile configuration file.

The iplookup router routes an address by sending it over a TCP or UDP connection to one or more
specific hosts. The host can then return the same or a different address — in effect rewriting the
recipient address in the message’s envelope. The new address is then passed on to subsequent routers.

If this process fails, the address can be passed on to other routers, or delivery can be deferred.

Background, for those that are interested: We have an Oracle database of all Cambridge users, and one
of the items of data it maintains for each user is where to send mail addressed to user @cam.ac.uk. The
MX records for cam.ac.uk point to a central machine that has a large alias list that is abstracted from
the database. Mail from outside is switched by this system, and originally internal mail was also done
this way. However, this resulted in a fair number of messages travelling from some of our larger
systems to the switch and back again. The Oracle machine now runs a UDP service that can be called
by the iplookup router in Exim to find out where user @cam.ac.uk addresses really have to go; this
saves passing through the central switch, and in many cases saves doing any remote delivery at all.

Since iplookup isjust a rewriting router, a transport must not be specified for it.

hosts Use: iplookup Type: string Default: unset

This option must be supplied. Its value is a colon-separated list of host names. The hosts are looked
up using gethostbyname() (or getipnodebyname() when available) and are tried in order until one
responds to the query. If none respond, what happens is controlled by optional.

optional Use: iplookup Type: boolean Default: false

If optional istrue, if no response is obtained from any host, the address is passed to the next router,
overriding no_more. If optional is false, delivery to the address is deferred.

port Use: iplookup Type: integer Default: 0
This option must be supplied. It specifies the port number for the TCP or UDP call.

protocol Use: iplookup Type: string Default: udp
This option can be set to ‘udp’ or ‘tcp’ to specify which of the two protocols is to be used.

query Use: iplookup Type: stringt
Default: $I ocal _part @donai n $l ocal _part @donai n

This defines the content of the query that is sent to the remote hosts. The repetition serves as a way
of checking that a response is to the correct query in the default case (see response pattern
below).

reroute Use: iplookup Type: stringt Default: unset

If this option is not set, the rerouted address is precisely the byte string returned by the remote host,
up to the first white space, if any. If set, the string is expanded to form the rerouted address. It can
include parts matched in the response by response pattern by means of numeric variables such as
$1, $2, etc. The variable $0 refers to the entire input string, whether or not a pattern isin use. In al
cases, the rerouted address must end up in the form local_part@domain.

Exim 4.50 [181] iplookup router (19)

response_pattern Use: iplookup Type: string Default: unset

This option can be set to a regular expression that is applied to the string returned from the remote
host. If the pattern does not match the response, the router declines. If response pattern is not set,
no checking of the response is done, unless the query was defaulted, in which case there is a check
that the text returned after the first white space is the original address. This checks that the answer
that has been received is in response to the correct question. For example, if the response is just a
new domain, the following could be used:

response_pattern = ~(["@+) $
reroute = $l ocal _part @1

timeout Use: iplookup Type: time Default: 55

This specifies the amount of time to wait for a response from the remote machine. The same
timeout is used for the connect() function for a TCP call. It does not apply to UDP,

Exim 4.50 [182] iplookup router (19)

20. The manualroute router

The manualroute router is so-called because it provides a way of manually routing an address
according to its domain. It is mainly used when you want to route addresses to remote hosts according
to your own rules, bypassing the normal DNS routing that looks up MX records. However,
manualroute can also route to local transports, a facility that may be useful if you want to save
messages for dia-in hosts in local files.

The manualroute router compares a list of domain patterns with the domain it is trying to route. If
there is no match, the router declines. Each pattern has associated with it a list of hosts and some other
optional data, which may include a transport. The combination of a pattern and its data is called a
‘routing rule’. For patterns that do not have an associated transport, the generic transport option must
specify a transport, unless the router is being used purely for verification (see verify_only).

In the case of verification, matching the domain pattern is sufficient for the router to accept the
address. When actually routing an address for delivery, an address that matches a domain pattern is
queued for the associated transport. If the transport is not a local one, a host list must be associated
with the pattern; |P addresses are looked up for the hosts, and these are passed to the transport aong
with the mail address. For local transports, a host list is optional. If it is present, it is passed in $host
as a single text string.

The list of routing rules can be provided as an inline string in route list, or the data can be obtained
by looking up the domain in a file or database by setting route_data. Only one of these settings may
appear in any one instance of manualroute. The format of routing rules is described below, following
the list of private options.

20.1 Private options for manualroute

The private options for the manualroute router are as follows:

host_find_failed Use: manualroute Type: string Default: freeze

This option controls what happens when manualroute tries to find an |P address for a host, and the
host does not exist. The option can be set to one of

decl i ne
def er
fail
freeze
pass

The default assumes that this state is a serious configuration error. The difference between ‘pass
and ‘decline’ is that the former forces the address to be passed to the next router (or the router
defined by pass router), overriding no_more, whereas the latter passes the address to the next
router only if moreis true.

This option applies only to a definite ‘does not exist’ state; if a host lookup gets a temporary error,
delivery is deferred unless the generic pass_on_timeout option is set.

hosts_randomize Use: manualroute Type: boolean Default: false

If this option is set, the order of the items in a host list in a routing rule is randomized each time
the list is used, unless an option in the routing rule overrides (see below). Randomizing the order of
a host list can be used to do crude load sharing. However, if more than one mail address is routed
by the same router to the same host list, the host lists are considered to be the same (even though
they may be randomized into different orders) for the purpose of deciding whether to batch the
deliveriesinto a single SMTP transaction.

Exim 4.50 [183] manualroute router (20)

When hosts randomize is true, a host list may be split into groups whose order is separately
randomized. This makes it possible to set up MX-like behaviour. The boundaries between groups
are indicated by an item that is just + in the host list. For example:

route list = * host1l: host2: host 3: +: host 4: host 5

The order of the first three hosts and the order of the last two hosts is randomized for each use, but
the first three always end up before the last two. If hosts randomize is not set, a + item in the list
is ignored. If a randomized host list is passed to an smtp transport that also has hosts randomize
set, the list is not re-randomized.

route_data Use: manualroute Type: stringt Default: unset

If this option is set, it must expand to yield the data part of a routing rule. Typically, the expansion
string includes a lookup based on the domain. For example:

route_data = ${| ookup{$domai n} dbn{/etc/routes}}

If the expansion is forced to fail, or the result is an empty string, the router declines. Other kinds of
expansion failure cause delivery to be deferred.

route list Use: manualroute Type: string list, semicolon-separated Default: unset

This string is a list of routing rules, in the form defined below. Note that, unlike most string lists,
the items are separated by semicolons. This is so that they may contain colon-separated host lists.

same_domain_copy_routing Use: manualroute Type: boolean Default: false

Addresses with the same domain are normally routed by the manualroute router to the same list of
hosts. However, this cannot be presumed, because the router options and preconditions may refer to
the local part of the address. By default, therefore, Exim routes each address in a message
independently. DNS servers run caches, so repeated DNS lookups are not normally expensive, and
in any case, personal messages rarely have more than a few recipients.

If you are running mailing lists with large numbers of subscribers at the same domain, and you
are using a manualroute router which is independent of the local part, you can set
same_domain_copy_routing to bypass repeated DNS lookups for identical domains in one mess-
age. In this case, when manualroute routes an address to a remote transport, any other unrouted
addresses in the message that have the same domain are automatically given the same routing
without processing them independently. However, this is only done if headers add and
headers remove are unset.

20.2 Routing rulesin route list

The value of route_list is a string consisting of a sequence of routing rules, separated by semicolons.
If a semicolon is needed in arule, it can be entered as two semicolons. Empty rules are ignored. The
format of each ruleis

<domain pattern> <list of hosts> <options>
The following example contains two rules, each with a ssmple domain pattern and no options:

route_list =\
dict.ref.exanple mail-1.ref.example:mail-2.ref.exanple ; \
thes.ref.exanple mail-3.ref.exanple:mil-4.ref.exanple

The three parts of a rule are separated by white space. The pattern and the list of hosts can be enclosed
in quotes if necessary, and if they are, the usual quoting rules apply. Each rule in a route_list must
start with a single domain pattern, which is the only mandatory item in the rule. The pattern is in the
same format as one item in a domain list (see section 10.8), except that it may not be the name of an
interpolated file. That is, it may be wildcarded, or a regular expression, or a file or database ookup
(with semicolons doubled, because of the use of semicolon as a separator in aroute list).

Exim 4.50 [184] manualroute router (20)

The rules in route_list are searched in order until one of the patterns matches the domain that is being
routed. The list of hosts and then options are then used as described below. If there is no match, the
router declines. When route list is set, route_data must not be set.

20.3 Routing rulesin route_data

The use of route list is convenient when there are only a small number of routing rules. For larger
numbers, it is easier to use a file or database to hold the routing information, and use the route_data
option instead. The value of route data is a list of hosts, followed by (optional) options. Most
commonly, route_data is set as a string that contains an expansion lookup. For example, suppose we
place two routing rules in afile like this:

dict.ref.exanple: mail-1.ref.exanple:mail-2.ref.exanple
thes.ref.example: mail-3.ref.exanple:mail-4.ref.exanple

This data can be accessed by setting
route_data = ${| ookup{$donmi n} | search{/the/fil e/ nane}}

Failure of the lookup results in an empty string, causing the router to decline. However, you do not
have to use alookup in route_data. The only requirement is that the result of expanding the string is a
list of hosts, possibly followed by options, separated by white space. The list of hosts must be
enclosed in quotes if it contains white space.

20.4 Format of the list of hosts

A list of hosts, whether obtained via route_data or route_list, is always separately expanded before
use. If the expansion fails, the router declines. The result of the expansion must be a colon-separated
list of names and/or IP addresses. |P addresses are not enclosed in brackets.

If the list of hosts was obtained from a route list item, the following variables are set during its
expansion:

» If the domain was matched against a regular expression, the numeric variables $1, $2, etc. may
be set.

e $0isaways set to the entire domain.
* $lisalso set when partial matching is done in a file lookup.

e |If the pattern that matched the domain was a lookup item, the data that was looked up is
available in the expansion variable $value.

20.5 How thellist of hostsis used

When an address is routed to an smtp transport by manualroute, each of the hosts is tried, in the
order specified, when carrying out the SMTP delivery. However, the order can be changed by setting
the hosts_randomize option, either on the router (see section 20.1 above), or on the transport.

Hosts may be listed by name or by IP address. An unadorned name in the list of hosts is interpreted as
a host name. A name that is followed by / MX is interpreted as an indirection to a sublist of hosts
obtained by looking up MX records in the DNS. For example:

route_list =* x.y.z:p.g.r/Me.f.g

If the hosts randomize option is set, the order of the items in the list is randomized before any
lookups are done. Exim then scans the list; for any name that is not followed by / MX it looks up an IP
address. If this turns out to be an interface on the local host and the item is not the first in the list,
Exim discards it and any subsequent items. If it is the first item, what happens is controlled by the self
option of the router.

A name on the list that is followed by / MX is replaced with the list of hosts obtained by looking up
MX records for the name. This is always a DNS lookup; the bydns and byname options (see section
20.6 below) are not relevant here. The order of these hosts is determined by the preference values in

Exim 4.50 [185] manualroute router (20)

the MX records, according to the usual rules. Because randomizing happens before the MX lookup, it
does not affect the order that is defined by MX preferences.

If the local host is present in the sublist obtained from MX records, but is not the most preferred host
in that list, it and any equally or less preferred hosts are removed before the sublist is inserted into the
main list.

If the local host is the most preferred host in the MX list, what happens depends on where in the
original list of hosts the / MX item appears. If it is not the first item (that is, there are previous hosts in
the main list), Exim discards this name and any subsequent items in the main list.

If the MX item is first in the list of hosts, and the local host is the most preferred host, what happens
is controlled by the self option of the router.

DNS failures when lookup up the MX records are treated in the same way as DNS failures when
looking up IP addresses: pass_on_timeout and host_find_failed are used when relevant.

The generic ignore_target_hosts option applies to al hosts in the list, whether obtained from an MX
lookup or not.

20.6 How the options are used

The options are a sequence of words; in practice no more than three are ever present. One of the
words can be the name of a transport; this overrides the transport option on the router for this
particular routing rule only. The other words (if present) control randomization of the list of hosts on a
per-rule basis, and how the IP addresses of the hosts are to be found when routing to a remote
transport. These options are as follows:

e randomize: randomize the order of the hosts in this list, overriding the setting of
hosts randomize for this routing rule only.

e no_randomize: do not randomize the order of the hosts in this list, overriding the setting of
hosts randomize for this routing rule only.

e byname: use getipnodebyname() (gethostbyname() on older systems) to find IP addresses. This
function may ultimately cause a DNS lookup, but it may also look in /etc/hosts or other sources
of information.

e bydns: look up address records for the hosts directly in the DNS; fail if no address records are
found. If there is a temporary DNS error (such as a timeout), delivery is deferred.

For example:

route_list = domainl hostl:host2:host3 random ze bydns;\
domai n2 host 4: host5

If neither byname nor bydns is given, Exim behaves as follows: First, a DNS lookup is done. If this
yields anything other than HosT_NOT_FounD, that result is used. Otherwise, Exim goes on to try a call
to getipnodebyname() or gethostbyname(), and the result of the lookup is the result of that call.

Warning: It has been discovered that on some systems, if a DNS lookup called via getipnodebyname()
times out, HosT_NOT_FOUND is returned instead of TRy_AGaIN. That is why the default action isto try a
DNS lookup first. Only if that gives a definite ‘no such host’ is the local function called.

If no IP address for a host can be found, what happens is controlled by the host_find_failed option.

When an address is routed to a local transport, |P addresses are not looked up. The host list is passed
to the transport in the $host variable.

20.7 Manualroute examples

In some of the examples that follow, the presence of the remote smtp transport, as defined in the
default configuration file, is assumed:

Exim 4.50 [186] manualroute router (20)

e The manualroute router can be used to forward all external mail to a smart host. If you have set
up, in the main part of the configuration, a named domain list that contains your loca domains,
for example,

domai nli st | ocal _domai ns = ny. domai n. exanpl e

you can arrange for all other domains to be routed to a smart host by making your first router
something like this:

smart _route:
driver = manual route
domai ns = ! +|l ocal _domai ns
transport = renpte_sntp
route_list = * smarthost.ref.exanpl e

This causes al non-local addresses to be sent to the single host smarthost.ref.example. If a colon-
separated list of smart hosts is given, they are tried in order (but you can use hosts_randomize
to vary the order each time). Another way of configuring the same thing is this:

smart _route:
driver = manual route
transport = renote_sntp
route_list = !+l ocal _domains smarthost.ref.exanple

There is no difference in behaviour between these two routers as they stand. However, they
behave differently if no_more is added to them. In the first example, the router is skipped if the
domain does not match the domains precondition; the following router is always tried. If the
router runs, it always matches the domain and so can never decline. Therefore, no_more would
have no effect. In the second case, the router is never skipped; it aways runs. However, if it
doesn't match the domain, it declines. In this case no_more would prevent subsequent routers
from running.

* A mail hub is a host which receives mail for a number of domains via MX records in the DNS
and delivers it via its own private routing mechanism. Often the final destinations are behind a
firewall, with the mail hub being the one machine that can connect to machines both inside and
outside the firewall. The manualroute router is usually used on a mail hub to route incoming
messages to the correct hosts. For a small number of domains, the routing can be inline, usi