A New API for PCRE

Revision: 4
Updated: 27 August 2013
Author: Philip Hazel

This document contains a proposal for a completely new API for PCRE. Changes from revisjon to
revision of this document will be marked by vertical bars on the right, like this. Some familiarity yith
the old API is assumed because | haven't fully described what all the various functions and options
actually do, especially when they are unchanged from the old API.

This new API does not have any user-visible C structures, excepicfe2_callout_block. Instead,
function calls are used as the means of interacting with the library. This makes it easier to interface
the library to languages other than C and C++ that cannot access C structure definitions or C macros.

1 Names and numbers

The new API will be introduced for release 9.0. In order to avoid confusion, especially when both
APIs are simultaneously installed, the new API uses different names for functions, options, structures,
and header files. All the new names begin ith e2 or PCRE2.

The libraries are calletibpcre2-8, libpcre2-16, andlibpecre2-32, so that both old and new libraries
may exist together. The names of the man pages also beginpwite2 for the same reason.
However, the names of thiebpcreposix library and thepcregrep and pcretest commands are not
changed, so installing PCRE 9.0 overwrites any previous versions.

2 Handling different data widths
Every function comes in three different forms, for example:

pcre2_conpile_8()
pcre2_conpil e_16()
pcre2_conpil e_32()

There are also three different sets of data types:

PCRE2_UCHAR8, PCRE2_UCHAR16, PCRE2_UCHAR32
PCRE2_SPTR8, PCRE2_SPTR16, PCRE2_SPTR32

The UCHAR types define unsigned data items of the appropriate widths. For example,
PCRE2_UCHAR16 is usually defined as ‘unsigned short’. TBETR types are constant pointers to
the equivalenUCHAR types, that is, they are pointers to strings of unsigned data items.

Many applications use only one data width. For their convenience, macros are defined whose names
are the generic forms such psre2_compile() and PCRE2_UCHAR. These macros use the value of

the macroPCRE2_DATA W DTH to generate the appropriate width-specific function and macro
namesPCRE2_ DATA W DTHis not defined by default.

Applications that use more than one data width are advised not to dRERE2 DATA W DTH, but

instead to use the real function names, and any code that is to be included in an environment where
the value ofPCRE2_DATA W DTHis unknown should do likewise. (Unfortunately, it is not possible

in C code to save and restore the value of a macro.)

In the rest of this document, functions and data types are described using their generic names, without
the 8, 16, or 32 suffix. This can also be done in the user documentation for the new API.

3 Data blocks and multithreading

In a multithreaded application it is important to keep thread-specific data separate from data that can
be shared between threads. The library code itself is thread-safe: it contains no static or global
variables. The API is designed to be fairly simple for non-threaded applications while at the same
time ensuring that multithreaded applications can use it.

1

There are several different blocks of data that are used to pass information between the application the
the PCRE libraries.

* A pointer to the compiled form of a pattern is returned to the user whee2 compile() is
successful. The data in the compiled pattern is fixed, and does not change when the pattern is
matched. Therefore, it is thread-safe, so the same compiled pattern can be used by more than one
thread simultaneously. An application can compile all its patterns at the start, before forking off
multiple threads that use them.

* The new API introduces the idea ofcantext in which PCRE functions are called. A context is
nothing more than a collection of parameters that control the way PCRE operates. Grouping them
together in the context is a convenient way of passing them to PCRE functions without using lots
of arguments. The same context can be used for processing many different patterns or the same
pattern several times.

Some of what were function options in the previous APl have been moved into the context,
because they are expected to be overall settings for an application, and are not likely to change
from pattern to pattern (though they can be changed if necessary). Options that are likely to differ
from pattern to pattern are passed as arguments to the functions, as before.

In a multithreaded application, if the parameters in a context are indeed values that are never
changed, there can be a single context that is used by all the threads. However, if any thread needs
to change any value in the context, it must make its own thread-specific copy.

» The matching functions need a block of memory for working space and for storing the results of a
match. This includes details of what was matched, as well as additional information such as the
name of g * MARK) setting. Each thread must provide its own version of this memory.

4 A simple example

In the old API, a straightforward use of PCRE, including studying the compiled pattern, looks like
this:

pcre *re;

pcre_extra *extra,;

const char *error;

i nt ovector[30];

int erroffset;

int rc;

re = pcre_conpile("pattern', 0, &error, &erroffset, NULL);
if (re == NULL)

/* Handl e error */

}

extra = pcre_study(re, 0, &error);
if (error !'= NULL)

/* Handl e error */

}
rc = pcre_exec(re, extra, "subject", 7, 0, 0, ovector, 30);
if (rc <0)

/* Handl e error */
pcre_free(re);
pcre_free_study(extra);

In the new API there is more set-up and take-down work to be done, and error handling is different in
order to accommodate 16- and 32-bit error messages, but studying is automatic.

#defi ne PCRE2_DATA W DTH 8 /[* or 16 or 32 */
pcre2 *re;

pcre2_context *context;
pcre2_match_data *mat ch_dat a;
size t &erroroffset;
size_t ovector[20];
i nt errorcode;
int rc;
context = pcre2_init_context (NULL);
re = pcre2_conpile(context, "pattern", 0, &errorcode, &erroffset);
if (re == NULL)
{
PCRE_UCHAR buffer[120];
(voi d) pcre2_get _error_nessage(errorcode, buffer, 120);
/* Handl e error */

mat ch_data = pcre2_create_match_dat a(context, ovector, 20);
rc = pcre2_exec(context, re, "subject", -1, 0, 0, match_data);
if (rc <0)

/* Handl e error */

pcre2 _free(re);
pcre2_free_context(context);
pcre2_free_mat ch_dat a(mat ch_dat a) ;

5 Managing a context
Several functions are provided for creating a context and managing its contents.

5.1 Creating a context
Applications that do not do their own memory management can create a context very easily:
pcre2 context *context = pcre2_init_context(NULL);

When its argument is NULLpcre2_init_context() usesmalloc() to get a block of memory in which to
store the context. Applications that do have their own memory management functions can set up a
context like this:

size_t context_size = pcre2 _context _size();
pcre2_context *context = private_malloc(context _size, ...);
(void)pcre2_ init_context(context);

A call to pcre2_init_context() sets default values for all the context parameters.

5.2 Setting callback data in a context

An application may specify an arbitrary data value that is to be passed back whenever PCRE calls a
function supplied by the application. External functions can be specified for memory management
and for callouts during pattern matching.

pcre2_set user_data(pcre2_context *context, void *user_data);

If external functions are used without setting a valNel.L is passed. If in a threaded application the
data is different in different threads, a separate context must be used for each thread. An example
might be passing a thread identifier to external memory management functions.

5.3 Setting memory management fields in a context

An application that has its own memory management functions must register them in a context before
calling PCRE functions that get or free memory, in particular, before calticg2 _compile().
Normally this is done as soon as the context is initialized:

3

pcre2_set _nenory_managenent (context, private_mall oc,
private_free);

The prototypes for the private memory management functions are:

void *private_malloc(size_t, void *);
void *private_free(void *, void *);

When code in PCRE calls these functions, the final argument is taken from the user data field in the
context.

By default, PCRE is compiled to use the system stack for recursive function calls when matching
patterns using the interpreter (not JIT) withre2_exec(). In some environments, where the size of

this stack is limited, PCRE is often compiled to use heap storage instead. The memory blocks that are
used for this purpose are all the same size, and are requested and freed in last-out-first-in order. A
private memory manager could implement this kind of usage more efficiently than the general case; to
make this possible, two further memory management functions can be added to a context:

pcre2_set _recursion_nmenory_nanagenent (cont ext,
private_recursion_malloc, private recursion_free);

This must be done after callingcre2_set_ memory_management() because that function sets the
recursion functions to be the same as the normal ones. When PCRE is compiled to use the system
stack for recursion, these additional memory management functions are never called.

5.4 Copying a context
An exact copy of a context can be made by:
pcre2 _context *new context = pcre2 copy_context(old context);

This could be useful as a way of initializing some standard parameters when creating a new thread, or
for saving a context for later use. The memory for the new context is obtained usimgatiue()
setting in the old context.

5.5 Freeing a context
When a context is no longer needed, its memory can be freed by:

pcre2_free_context(context);

If a private memory management function fivee() is set in the context, it is used to release the
context's memory. Otherwise, the systirag®() is used.

5.6 Setting other parameters in a context

The following functions are provided for setting the remaining parameters in a context. All of them
yield 1 for success or O if invalid data is given.

pcre2_set _match_limt(context, uint32_t limt);
pcre2_set _recursion_limt(context, uint32_t limt);

These values limit the resources used by a matching function (formerly passegcie axtra
structure). The default values are specified when PCRE is built, and are normally quite large.

pcre2_set _new i ne_convention(context, uint32_t new ine_code);

This specifies which character codes are to be interpreted as newline. The second argument is one
of PCRE2_NEW.I NE_CR, PCRE2_NEW.INE LF, PCRE2_NEW.I NE_CRLF, PCRE2_

NEWLI NE_ANY, or PCRE2_NEWLI NE_ANYCRLF. The default is specified when PCRE is built; it is
normally the standard for the operating system.

pcre2_set _bsr_convention(context, uint32_t bsr_code);

4

This specifies what characters the escape sequéritematches. The allowed values are
PCRE2_BSR_UNI CODE (any Unicode newline sequence)RCRE2_BSR_ANYCRLF (only CR, LF,
or CRLF). The default is specified when PCRE is built.

pcre2 set gl obal options(context,
uint32_ t unset _option_bits),
uint32_t set _option_bits,

This function sets and unsets on/off options that are to apply to every pattern that is processed using
this context. The second and third arguments are a combination of these bits:

PCRE2 DOLLAR ENDONLY $ matches only at the end
PCRE2_DUPNANES allow duplicate named subpatterns
PCRE2_JAVASCRI PT_COWPAT modified pattern interpretation

PCRE2 NEVER UTF forbid (* UTF) in patterns

PCRE2_UTF patterns and subjects are coded in UTF
PCRE2_UCP use Unicode Properties fod etc.

The current setting is modified by unsetting the bits in the second argument, and then setting those in
the third argument. None of these options are set by default.

Question: Should the name oPCRE2_JAVASCRI PT_COWVPAT be changed? Some people have
suggested that it makes users think full JavaScript compatibility is available. The effect of this option
is to make five changes to the way matching works, though | think somebody recently posted that one
of these differences with JavaScript has gone away. Adding independent options for each of the
differences seems silly (as well as wasting bits), but | can’t think of a useful alternative name, unless
it is something bland likd?’CRE2_PATTERN_TYPE2. Maybe it's theCOVPAT bit that is the issue

and something lik€CRE2_JAVASCRI PT_PATTERN would be clearer?

pcre2_set call out (context, user_callout_function);
This records a user callout function. The prototype for the callout function is unchanged:
i nt user_callout(pcre2_callout_block *, void *);

The callout block itself is also unchanged. Setting the functiddUubL, which is the default, disables
callouts.

pcre2_set character _tabl es(context, unsigned char *tables);

This sets a pointer to custom character tables. The default is to use PCRE's inbuilt tables that were set
up when it was built.

5.7 Reading parameter fields in a context
The following functions return the values of fields in a context:

ui nt 32_t pcre2_get bsr_conventi on(context);
unsi gned char *pcre2_get _character_tabl es(context);
ui nt 32_t pcre2_get gl obal _opti ons(context);

ui nt 32_t pcre2_get _match_limt(context);

ui nt 32_t pcre2_get _new i ne_conventi on(cont ext);
ui nt 32_t pcre2_get _recursion_limt(context);
voi d *pcre2_get _user_dat a(context);

Question 1: | haven't specified a function for reading memory management or callout functions. Are
these necessary? The only use | can think of is for saving and restoring a context, but this can be done
by making a copy of the whole context.

Question 2: In fact, do we really need these ‘get’ functions at all? An application can easily remem-
ber what it has set in a context if it needs to.

6 Compiling a pattern
A pattern is compiled by calling the following function:

5

pcre2 *pcre2_conpil e(
pcre2_context *context,

PCRE2_SPTR pattern,
uint32_t opti ons,

i nt *error_code,
size_t *error_offset);

The pattern is a zero-terminated string. The following option bits are available:

PCRE2_ ANCHORED pattern is anchored
PCRE2_AUTO_CALLOUT generate auto callouts
PCRE2_CASELESS assume caseless at start
PCRE2_DOTALL dot matches all characters
PCRE2_EXTENDED ignore white space in pattern
PCRE2_FI RSTLI NE must match before first newline
PCRE2_JIT compile for non-partial JIT matching

PCRE2_JI T_PARTI AL_SOFT compile for soft partial JIT matching
PCRE2_JI T_PARTI AL_HARD compile for hard partial JIT matching

PCRE2_MULTI LI NE A and $ may match in mid-subject
PCRE2_NO_AUTO_CAPTURE parentheses do not capture by default
PCRE2_NO _START_OPTI M ZE disable start-of-match optimization
PCRE2_NO _UTF_CHECK disable pattern UTF validity check
PCRE2__UNGREEDY invert greediness

Note: the PCRE_EXTRA option, which caused unknown escape sequences to give an error, like Perl’s
- woption, is now assumed always to be on.

When successfufcre2_compile() returns a pointer to an opaque structure that contains the compiled
pattern. This data is read-only, that is, it is never changed during pattern matching. Therefore, com-
piled patterns may be safely shared between threads.

If there is a compilation error, the function retulNBLL. A positive error code and the offset in the
pattern where the error occurred are placed in the variables pointedetodnycode anderror_offset,
respectively. The code can be translated into a textual error message by this function:

int pcre2_get_error_nessage(int error_code, PCRE2_UCHAR *buffer,
size_t buffer_size);

This copies a zero-terminated error message into the supplied buffer, whose data items are of the
appropriate width (8, 16, or 32). It returns 1 if all is well, O if the buffer is too small. (The old API
always returned 8-bit error messages.)

When a compiled pattern is no longer needed, it can be freed by:
pcre2_free_conpil ed_code(context, code);

7 Explicit studying is abolished

| introduced a separatacre_study() function when PCRE was first implemented because | wasn'’t
sure how much resource this would take. It turns out to be not very much (and processors are getting
faster and faster). Therefore, in the new API, studying happens automatically and you don't have to
worry about it. JIT compiling, on the other hand, is still expensive, so must remain optional.

8 Matching functions

The first releases of PCRE returned only the contentweadtor. When more information was needed,
| found ways of passing it back in a compatible manner (e.g. ipthe extra block). It is time to tidy
this up. | propose a new opaque structure calle@?2 match_data, which contains space for remem-
bering the results of a match, and also contains working space for the matching function.

The primary data is in thevector. This is now a vector o&ize t instead ofint. There is a special
value,PCRE_OVECTOR_UNSET, probably defined a6~(si ze_t) 0) , that is used for unset fields.

6

There are several different ways this might be set up. Of the three ideas below, | think | prefer option
A because it is the simplest and easiest to document. In all three cases there will be a
pcre2_free_match_data() function that releases the match data memory.

8.1 Option A: caller supplies ovector
This would work like this:

size_t ovector[20];
pcre2_match_data *match_data =
pcre2_create_mat ch_data(context, ovector, 20);

The application providesvector and specifies its size; a pointer to it is stored in thatch data

block for use by the matching function. We can get rid of the fiddle whereby the top one third of the
ovector is used as working space because the working space can be elsewhere in the block. As in the
current API, passingvector as NULL is allowed if the caller has no interest in the matched strings.

8.2 Option B: ovector is in the match data
In this case, all the caller provides is a size forotleetor:

pcre2 _nmatch _data *match_data =
pcre2 create _match_data(context, 20);

As that stands, the caller does not know wheavrector is. We could use a function to get a pointer to
it, or instead use this:

pcre2_nmatch_data *match_data =
pcre2_create_mat ch_data(context, 20, &ovector_pointer);

If the user is not interested in the matched strings, a size of zero can be given.

8.3 Option C: combining options A and B
This option uses the following creation function:

pcre2_create_match_data(void *context, int ovector_size,
size_t **ovector_ptr);

If ovector_ptr is NULL, the caller doesn'’t care about the matched strings (and therefore does not need
a pointer taovector). There is no need to allocate any space; the valoeedior_size is ignored.

If ovector_ptr is not NULL and *ovector_ptr is also not NULL, the caller has supplied a pointer to an
ovector, guaranteed to contain at leastector_size elements. In this case, the caller is responsible for
freeingovector afterwards, if necessary.

Finally, if ovector_ptr is not NULL but *ovector_ptr is NULL, the caller expects the function to
allocateovector and give back a pointer to it ino¥ector_ptr. In this casepvector is freed as part of
pcre2_free_match_data().

9 Perl-compatible matching
The following function matches in a Perl-compatible manner:
int pcre2_exec(

pcre2_cont ext *cont ext,
const pcre2 *code,
PCRE2_SPTR subj ect,

i nt | engt h,
size_t startof fset,
uint32_t opti ons,

pcre2_match_data *mat ch_dat a) ;
A negative length means ‘zero-terminated string’. The following option bits are available:

7

PCRE2_ ANCHORED pattern is anchored

PCRE2_NOTBOL subject is not the beginning of a line
PCRE2_NOTEOL subject is not the end of a line
PCRE2_NOTEMPTY must not match an empty string

PCRE2 _NOTEMPTY_ATSTART not empty at start of subject
PCRE2_NO START_OPTI M ZE disable start-of-match optimization

PCRE2_NO UTF_CHECK disable subject UTF validity check
PCRE2_PARTI AL_SOFT soft partial match
PCRE2_PARTI AL_HARD hard partial match

The return codes are unchanged from the old API: zero or positive for a complete match, negative for
error or a partial match. Matched strings and substrings are passed bawkot@, as before. Note,
however, that the value for an unset capturing groupGRE_OVECTOR_UNSET instead of a nega-

tive number, becauswector is now of typesize t.

9.1 Errors while matching

An error message can be obtained for any error code using the same functiopag2ocompile():

int pcre2_get_error_nessage(int error_code, PCRE2_UCHAR *buffer,
size_t buffer_size);

The offset in the subject where the error occurred can be obtained by:
size_ t pcre2 _get _error_offset(pcre_match data *);

When the error iPCRE2_ERROR _BADUTF8 or PCRE2_ERRCR_SHORTUTF8, another function
can be called to obtain a detailed reason code:

int pcre2 get _error_reason(pcre2 match _data *);

This yields values such aBCRE2_UTF8_ ERRL (truncated UTF-8 character). The use of these
functions replaces the previous rather untidy scheme of putting values into the output vector.

9.2 Additional match information

As well as the offsets that are passed bactvector for a successful match, other data from the most
recent match is remembered, whether it succeeded or failed. This can be extracted from the match
data using the following functions:

PCRE2 SPTR pcre2 _get _mark(pcre2 match_data *);

If the match found 4 * MARK) name to pass back, a pointer to it is returned. Otherwise the function
returns NULL. The name is a zero-terminated string within the compiled pattern (as before).
size_t pcre2_get _startchar(pcre2 _nmatch data *);

This function returns the offset of the character where the final matching process began. For an
anchored pattern, the value is alwayartoffset. This offset is different to the starting offset of the
matched string if K was encountered.

size_t pcre2_get leftchar(pcre2_match_data *);
size_t pcre2_get _rightchar(pcre2 nmatch data *);

These functions return the offsets of the leftmost and one more than the rightmost characters that
were inspected during the final match. Lookbehinds and lookaheads can make these offsets less than
or greater than the offsets of the matched string, respectively. For example, when the pattern

(?<=abc) def (?=ghi)

is matched against the stringicdef ghi " the offsets inovector are 3 and 6, corresponding to
"def ", whereas the leftmost and rightmost offsets are 0 and 9.

8

9.3 Change to partial matching

In the current API, after a partial match, the first three valuas/@stor are the leftmost character, the

end of the partial match (the end of the subject), and the start match offset. (This is because there have
been various changes and additions over the years.) In the new API, only two values are set in
ovector, and they are those of the partially matched string, giving consistency with a complete match.
The other offsets are now available for all matches using the functions just described.

9.4 Obtaining the frame size

In the current API, a call tpcre_exec() with NULL arguments is a convention for obtaining the size
of the stack or heap frame (depending on how PCRE was compiled) that is used for recursive ¢alls of
the matching function. This facility is now provided by a separate function:

int size = pcre2 _get frame_size();

10 DFA matching

The DFA matching function needs workspace. A vector of at leashi®0is recommended; more is
needed for patterns that have a lot of potential matches. | have used additional arguments, as in the
current API, but an alternative would be to have a sepgrete?_dfa_match_data block, in which

case the rules for handling the workspace should be the same as for handling the ovector (see options
A, B, and C above).

i nt pcre2_dfa_exec(

pcre2_cont ext *cont ext,
const pcre2 *code,
PCRE2_SPTR subj ect,

i nt | engt h,
size_t startof f set,
uint32_t opti ons,
pcre2_match_data *mat ch_dat a,

i nt *wor kspace,
size_t wscount);

The following option bits are available in addition to thospané2_exec():

PCRE2_DFA_RESTART restart after a partial match
PCRE2_DFA_SHORTEST find only the shortest match

11 JIT matching
The functions for detailed JIT matching are adjusted for the new API in fairly obvious ways:

pcre2_jit_stack *pcre2 jit_stack_alloc(pcre2_context *,
size t, size_t);

void pcre2 jit_stack _free(pcre2_context *, jit_stack);

voi d pcre2_assign_jit_stack(pcre2_context *, const pcre2 *,
pcre2_jit_callback, void *);

void pcre2_jit _free_unused_nenory(pcre2_context *);

int pcre2 jit_exec(pcre2_context *, const pcre2 *, PCRE2_SPTR
int, size_t, uint32_t, pcre2 _match_data *, pcre2_jit_stack *);

The context is passed to all of them, and the abolitiorpaé_extra means that gcre2 pointer is
passed instead. The argumentsgore?_jit_exec() are how the same as the ngare2_exec(), plus a
JIT stack pointer.

12 Pattern information
The function for obtaining information about a compiled pattern is now:
int pcre2_get_info(const pcre2 *, uint32_t, void *);

9

Many of the information items are unchanged, but | have removed those that are obsolete or dep-
recated, and done some renaming. This is the new list, with further comment below on those that are

changed:

PCRE2_| NFO_BACKREFMAX
PCRE2_| NFO_CAPTURECOUNT
PCRE2_| NFO_COWPI LE_OPTI ONS
PCRE2_| NFO_FI RSTDATA | TEM
PCRE2_| NFO_FI RSTDATA_TYPE
PCRE2_| NFO_FI RSTTABLE
PCRE2_| NFO_HASCRORLF
PCRE2_| NFO_JCHANGED
PCRE2_INFO JI T

PCRE2_| NFO_JI TSI ZE

PCRE2_| NFO_LASTDATA | TEM
PCRE2_| NFO_LASTDATA_TYPE
PCRE2_| NFO_MATCH_EMPTY
PCRE2_| NFO MATCHLIM T
PCRE2_| NFO_MAXLOOKBEHI ND
PCRE2_| NFO_M NLENGTH
PCRE2_| NFO_NAMECOUNT
PCRE2_| NFO_NAVEENTRYSI ZE
PCRE2_| NFO_NAVETABLE
PCRE2_| NFO_PATTERN_OPTI ONS
PCRE2_| NFO_RECURSI ONLI M T
PCRE2_| NFO_SI ZE

highest backreference

number of capturing subpatterns
options set for compile

value of first data item

type of first data information
table of first data values

has explicit CR or LF

(?J) or(?-J) was used
successful JIT compilation

JIT compiled code size

value of last data item

type of last data information
can match an empty string

limit set within the pattern
maximum lookbehind, in characters
minimum length, in characters
number of name table entries
size of each entry

pointer to the name table
options set within the pattern
limit set within the pattern

size of compiled pattern (bytes)

Options that are explicitly passed pore2_compile() and those that are deduced from the pattern, for
example, by the use of?i), are saved separately in the updated code; hence the splitting of
PCRE_| NFO_OPTI ONS into two new options.

PCRE_| NFO_STUDYSI ZE was only ever provided to make it possible to save and restore the
separate study data, so it is no longer relevant.

PCRE2_I NFO_FI RSTDATA_TYPE gives information about the first data unit in a non-anchored
pattern. If there is a fixed first value, for example, the letterfrom a pattern such as
(cat| cow coyote), 1 is returned. In this situation, the value can be retrieved using
PCRE2_I NFO_FI RSTDATA | TEM which returns the fixed first data item value.

If there is no fixed first value, and if either (a) the pattern was compiled with the
PCRE2_MULTI LI NE option, and every branch starts with "A", or (b) every branch of the pattern
starts with ".*" andPCRE2_DOTALL is not set (if it were set, the pattern would be anchored), 2 is

returned, indicating that the pattern matches only at the start of a subject string or after any newline
within the string. Otherwise 0 is returned. For anchored patterns, O is returned. In all these cases,
PCRE2 | NFO _FI RSTDATA | TEMreturns 0.

PCRE2_| NFO _LASTDATA _TYPE returns 1 if there is a rightmost literal data item that must exist,
other than at the start of the subject, for a match to be possible. Otherwise it returns 0. In situations
where 1 is returnedPCRE2 | NFO LASTDATA | TEMcan be used to retrieve the value. In other
cases, it returns 0.

13 Reference counts

The old API contains a function callgatre refcount() which can be used to maintain a reference
count within a compiled pattern. This breaks the assumption that a compiled pattern is a read-only
structure. Also, it is not atomic, and therefore not thread-safe.

I do not think that introducing thread-specific functions such as atomic updates into the API just for
this case is a good idea because it complicates the code and the specification, and makes building
PCRE difficult in environments that do not support threads. Though it has been in PCRE since release
6.0, | propose to aboligttre_refcount().

10

Applications that need to maintain reference counts should instead define their own structure, some-
thing like this:

struct ny_code {
pcre2 *code;
i nt refcount;
... whatever. ..

b

Then they can manipulate the reference count any way they like, anpctE2 structure remains
read-only.

14 Character tables
| propose no change to the way PCRE handles character tables, so this function remains:
const unsigned char *pcre2_naket abl es(voi d);

Note, however, that the pointer to custom character tables is now held in the context.

15 Configuration information
There is no change to the function for obtaining configuration information:
int pcre2_config(int what, void *where);

The available information is unchanged. However, if building PCRE is simplified so that including
UTF always also includes Unicode property support (see bel®@RE CONFI G_UCP can be
removed.

16 PCRE version
For consistency with the rest of the Aptre_version() is changed to:
i nt pcre2_version(PCRE2_UCHAR *buffer, size_t size);

The version and date string is copied into the supplied buffer. This allows the different libraries to
return the version information in data items of the appropriate width. The function returns 1 on
success, or 0 if the buffer is too small.

17 Byte-ordering functions
The prototypes for these functions are the obvious adaptions:

int pcre2 pattern_to_host byte order(pcre2 *);

int pcre2 utfl6 to _host byte order(PCRE2_UCHAR16 *, PCRE2_ SPTR16,
int, int * int);

int pcre2 utf32 to_host byte order (PCRE2_UCHAR32 *, PCRE2_ SPTR32,
int, int * int);

18 Substring extraction functions

As the ovector pointer and the details of the most recent match are remembered in the match_data,
there is no need to pass them to the string extraction functions. Apart from changes to the variable
types and the addition of a context argument for functions that get memory, these are otherwise
unchanged.

i nt pcre2 copy_nanmed_substri ng(
pcre2 match_data *match_dat a,
PCRE2_SPTR nane,

PCRE2_UCHAR *buf fer,
size_t buffsize);

11

i nt pcre2_copy_substring(
pcre2_match_data *mat ch_dat a,
i nt stringnunber,
PCRE2_UCHAR *buf f er,
size_t buffsize);

i nt pcre2_get _naned_substring(
pcre2_context *context,
pcre2_match_data *mat ch_dat a,
PCRE2_SPTR nane,

PCRE2_UCHAR **);

i nt pcre2_get _substring(
pcre2_context *context,
pcre2_match_data *mat ch_dat a,
i nt stringnunber,

PCRE2_UCHAR **);

voi d pcre2_free_substring(
pcre2_context *context,
PCRE2_SPTR string);

int pcre2_get_substring_list(
pcre2_context *context,
pcre2_match_data *mat ch_dat a,
PCRE2_UCHAR ***);

void pcre2_free_substring_list(
pcre2_context *context,
PCRE2_SPTR *|i st);

i nt pcre2_get_stringnunber (
const pcre2 *code,
PCRE2_SPTR nane) ;

int pcre2_get_stringtable_entries(
const pcre2 *code,
PCRE2_SPTR nane,
PCRE2_UCHAR **first,
PCRE2_UCHAR **| ast) ;

19 Pre-compiled patterns

The facility for saving and restoring pre-compiled patterns is, | believe, used, so it should be pres-
erved. The new code combines what was formerly separate study data into the main pattern structure,
which makes things simpler, and the existing instructions for saving and restoring should continue to
work in the new API.

Question: Would it be better to provide explicit serializing and de-serializing functions? If so, they
should incorporate the function oficre2 pattern to host _byte order(), which could then be
abolished.

20 C++

The C++ wrapper supports only the 8-bit library and is currently not maintained. Unless a maintainer
comes forward, | think it would be better to discard it. A new version should support 8-bit, 16-bit and
32-bit handling.

12

21 Substitution function

There have been requests for a substitution (find and replace) function. The existing C++ wrapper
contains such a function, so maybe now is the time to provide one in the main library. Here is a

possible specification:

int pcre2_substitute(
pcre2_context *context,
pcre2 *code,
PCRE2_SPTR subj ect,
i nt slength,
size_t startoffset,
uint32_t options,
PCRE2_SPTR r epl acemnent ,
int rlength,
PCRE2_ UCHAR *buffer,
size_t bl ength,
size_t *rlength);

context

compiled pattern

subject string

length of subject string
offset to start search
pcre_exec() options
replacement string

length of replacement string
where to put result string
length of buffer

where to return result length

The first six arguments are the same as the argumemé8r exec().

Question: Should there be gcre2_match_data argument? | have not specified this because the
substitution function can get one for itself and free it when finished. It can find the number of
captured substrings in order to set up an approposgetor. This uses more resources, but this is
after all a convenience function. An application that is worried about performance probably would use
its own code instead.

The allowed options, except for the partial matching options, are the same perdoexec(). The
replacement string is given as a pointer and a length so that binary strings can be procegsed. A
negative length indicates a zero-terminated string. The string may contain substitution fragments in
these forms:

$<nunber > e.g.ab$icd

${ <nunber >} e.0.12${3} 34
$nane e.g.a $nane b
${ nane} e.g.a${ nane} b

The modified string is placed ibuffer, whose length idlength. For the convenience of applications

that are processing zero-terminated strings, a zero data item is added at the end. The length of the
modified string (excluding the terminating zero) is placed in the variable pointed ttetgth. The

function returns the length of the initial copied substring plus the length of the expanded replacement
string. This is the offset to ‘the rest of the string'.

If there is an error, a negative error code is returre@RE2_ERROR _NOVATCH is given for no
match, and?CRE2_ERROR_BADLENGTH if the buffer is not large enough.

This function does a single substitution on the first match that is found in the subject string. It is an
application’s responsibility to call the function again if global replacement is wanted. The value
returned by the function is the offset in the modified string at which to start the next search.

Question 1: Should it be possible to pad&JLL as a buffer, and have the function get the memory? If
this is allowed, there will have to be another argument, for passing back the address of the buffer. (Or,
it could be the result of the function, but then another argument is needed for passing back an error
code.)

Question 2: Should there be an option for requesting global changes? This is relatively straightfor-
ward when an output buffer is passed as an argument. It is much haMldirlifis allowed because it
makes discovering how much memory to get much more complicated. Either all the pattern matches
must be done twice, or the strings must be copied into new memaory for each match. (Or all the details
of each match must be remembered somewhere).

13

22 Build-time changes

Originally, UTF support was implemented without UCP support, so when the latter was added later, it
was made optional. Perhaps this is nowadays rather pointless; we could make UTF imply UCP.

23 The POSIX wrapper

There can, of course, be no change to the API for the POSIX wrapper. The revised functions for the
new API will use PCRE contexts with default settings.

-000-

14

