
A New API for PCRE

Revision: 4
Updated: 27 August 2013
Author: Philip Hazel

This document contains a proposal for a completely new API for PCRE. Changes from revision to
revision of this document will be marked by vertical bars on the right, like this. Some familiarity with
the old API is assumed because I haven’t fully described what all the various functions and options
actually do, especially when they are unchanged from the old API.

This new API does not have any user-visible C structures, except forpcre2_callout_block. Instead,
function calls are used as the means of interacting with the library. This makes it easier to interface
the library to languages other than C and C++ that cannot access C structure definitions or C macros.

1 Names and numbers
The new API will be introduced for release 9.0. In order to avoid confusion, especially when both
APIs are simultaneously installed, the new API uses different names for functions, options, structures,
and header files. All the new names begin with pcre2 or PCRE2.

The libraries are calledlibpcre2-8, libpcre2-16, and libpcre2-32, so that both old and new libraries
may exist together. The names of the man pages also begin withpcre2 for the same reason.
However, the names of thelibpcreposix library and thepcregrep and pcretest commands are not
changed, so installing PCRE 9.0 overwrites any previous versions.

2 Handling different data widths
Every function comes in three different forms, for example:

pcre2_compile_8()
pcre2_compile_16()
pcre2_compile_32()

There are also three different sets of data types:

PCRE2_UCHAR8, PCRE2_UCHAR16, PCRE2_UCHAR32
PCRE2_SPTR8, PCRE2_SPTR16, PCRE2_SPTR32

The UCHAR types define unsigned data items of the appropriate widths. For example,
PCRE2_UCHAR16 is usually defined as ‘unsigned short’. TheSPTR types are constant pointers to
the equivalent UCHAR types, that is, they are pointers to strings of unsigned data items.

Many applications use only one data width. For their convenience, macros are defined whose names
are the generic forms such aspcre2_compile() andPCRE2_UCHAR. These macros use the value of
the macroPCRE2_DATA_WIDTH to generate the appropriate width-specific function and macro
names. PCRE2_DATA_WIDTH is not defined by default.

Applications that use more than one data width are advised not to definePCRE2_DATA_WIDTH, but
instead to use the real function names, and any code that is to be included in an environment where
the value ofPCRE2_DATA_WIDTH is unknown should do likewise. (Unfortunately, it is not possible
in C code to save and restore the value of a macro.)

In the rest of this document, functions and data types are described using their generic names, without
the 8, 16, or 32 suffix. This can also be done in the user documentation for the new API.

3 Data blocks and multithreading
In a multithreaded application it is important to keep thread-specific data separate from data that can
be shared between threads. The library code itself is thread-safe: it contains no static or global
variables. The API is designed to be fairly simple for non-threaded applications while at the same
time ensuring that multithreaded applications can use it.

1

There are several different blocks of data that are used to pass information between the application the
the PCRE libraries.

• A pointer to the compiled form of a pattern is returned to the user whenpcre2_compile() is
successful. The data in the compiled pattern is fixed, and does not change when the pattern is
matched. Therefore, it is thread-safe, so the same compiled pattern can be used by more than one
thread simultaneously. An application can compile all its patterns at the start, before forking off
multiple threads that use them.

• The new API introduces the idea of acontext in which PCRE functions are called. A context is
nothing more than a collection of parameters that control the way PCRE operates. Grouping them
together in the context is a convenient way of passing them to PCRE functions without using lots
of arguments. The same context can be used for processing many different patterns or the same
pattern several times.

Some of what were function options in the previous API have been moved into the context,
because they are expected to be overall settings for an application, and are not likely to change
from pattern to pattern (though they can be changed if necessary). Options that are likely to differ
from pattern to pattern are passed as arguments to the functions, as before.

In a multithreaded application, if the parameters in a context are indeed values that are never
changed, there can be a single context that is used by all the threads. However, if any thread needs
to change any value in the context, it must make its own thread-specific copy.

• The matching functions need a block of memory for working space and for storing the results of a
match. This includes details of what was matched, as well as additional information such as the
name of a (*MARK) setting. Each thread must provide its own version of this memory.

4 A simple example
In the old API, a straightforward use of PCRE, including studying the compiled pattern, looks like
this:

pcre *re;
pcre_extra *extra;
const char *error;
int ovector[30];
int erroffset;
int rc;
re = pcre_compile("pattern", 0, &error, &erroffset, NULL);
if (re == NULL)
 {
 /* Handle error */
 }
extra = pcre_study(re, 0, &error);
if (error != NULL)
 {
 /* Handle error */
 }
rc = pcre_exec(re, extra, "subject", 7, 0, 0, ovector, 30);
if (rc < 0)
 {
 /* Handle error */
 }
pcre_free(re);
pcre_free_study(extra);

In the new API there is more set-up and take-down work to be done, and error handling is different in
order to accommodate 16- and 32-bit error messages, but studying is automatic.

#define PCRE2_DATA_WIDTH 8 /* or 16 or 32 */
pcre2 *re;

2

pcre2_context *context;
pcre2_match_data *match_data;
size_t &erroroffset;
size_t ovector[20];
int errorcode;
int rc;
context = pcre2_init_context(NULL);
re = pcre2_compile(context, "pattern", 0, &errorcode, &erroffset);
if (re == NULL)
 {
 PCRE_UCHAR buffer[120];
 (void)pcre2_get_error_message(errorcode, buffer, 120);
 /* Handle error */
 }
match_data = pcre2_create_match_data(context, ovector, 20);
rc = pcre2_exec(context, re, "subject", -1, 0, 0, match_data);
if (rc < 0)
 {
 /* Handle error */
 }
pcre2_free(re);
pcre2_free_context(context);
pcre2_free_match_data(match_data);

5 Managing a context
Several functions are provided for creating a context and managing its contents.

5.1 Creating a context

Applications that do not do their own memory management can create a context very easily:

pcre2_context *context = pcre2_init_context(NULL);

When its argument is NULL,pcre2_init_context() usesmalloc() to get a block of memory in which to
store the context. Applications that do have their own memory management functions can set up a
context like this:

size_t context_size = pcre2_context_size();
pcre2_context *context = private_malloc(context_size, ...);
(void)pcre2_init_context(context);

A call to pcre2_init_context() sets default values for all the context parameters.

5.2 Setting callback data in a context

An application may specify an arbitrary data value that is to be passed back whenever PCRE calls a
function supplied by the application. External functions can be specified for memory management
and for callouts during pattern matching.

pcre2_set_user_data(pcre2_context *context, void *user_data);

If external functions are used without setting a value,NULL is passed. If in a threaded application the
data is different in different threads, a separate context must be used for each thread. An example
might be passing a thread identifier to external memory management functions.

5.3 Setting memory management fields in a context

An application that has its own memory management functions must register them in a context before
calling PCRE functions that get or free memory, in particular, before callingpcre2_compile().
Normally this is done as soon as the context is initialized:

3

pcre2_set_memory_management(context, private_malloc,
 private_free);

The prototypes for the private memory management functions are:

void *private_malloc(size_t, void *);
void *private_free(void *, void *);

When code in PCRE calls these functions, the final argument is taken from the user data field in the
context.

By default, PCRE is compiled to use the system stack for recursive function calls when matching
patterns using the interpreter (not JIT) withpcre2_exec(). In some environments, where the size of
this stack is limited, PCRE is often compiled to use heap storage instead. The memory blocks that are
used for this purpose are all the same size, and are requested and freed in last-out-first-in order. A
private memory manager could implement this kind of usage more efficiently than the general case; to
make this possible, two further memory management functions can be added to a context:

pcre2_set_recursion_memory_management(context,
 private_recursion_malloc, private_recursion_free);

This must be done after callingpcre2_set_memory_management() because that function sets the
recursion functions to be the same as the normal ones. When PCRE is compiled to use the system
stack for recursion, these additional memory management functions are never called.

5.4 Copying a context

An exact copy of a context can be made by:

pcre2_context *new_context = pcre2_copy_context(old_context);

This could be useful as a way of initializing some standard parameters when creating a new thread, or
for saving a context for later use. The memory for the new context is obtained using themalloc()
setting in the old context.

5.5 Freeing a context

When a context is no longer needed, its memory can be freed by:

pcre2_free_context(context);

If a private memory management function forfree() is set in the context, it is used to release the
context’s memory. Otherwise, the system free() is used.

5.6 Setting other parameters in a context

The following functions are provided for setting the remaining parameters in a context. All of them
yield 1 for success or 0 if invalid data is given.

pcre2_set_match_limit(context, uint32_t limit);
pcre2_set_recursion_limit(context, uint32_t limit);

These values limit the resources used by a matching function (formerly passed in apcre_extra
structure). The default values are specified when PCRE is built, and are normally quite large.

pcre2_set_newline_convention(context, uint32_t newline_code);

This specifies which character codes are to be interpreted as newline. The second argument is one
of PCRE2_NEWLINE_CR, PCRE2_NEWLINE_LF, PCRE2_NEWLINE_CRLF, PCRE2_
NEWLINE_ANY, or PCRE2_NEWLINE_ANYCRLF. The default is specified when PCRE is built; it is
normally the standard for the operating system.

pcre2_set_bsr_convention(context, uint32_t bsr_code);

4

This specifies what characters the escape sequence\R matches. The allowed values are
PCRE2_BSR_UNICODE (any Unicode newline sequence) orPCRE2_BSR_ANYCRLF (only CR, LF,
or CRLF). The default is specified when PCRE is built.

pcre2_set_global_options(context,
 uint32_t unset_option_bits),
 uint32_t set_option_bits,

This function sets and unsets on/off options that are to apply to every pattern that is processed using
this context. The second and third arguments are a combination of these bits:

PCRE2_DOLLAR_ENDONLY $ matches only at the end
PCRE2_DUPNAMES allow duplicate named subpatterns
PCRE2_JAVASCRIPT_COMPAT modified pattern interpretation
PCRE2_NEVER_UTF forbid (*UTF) in patterns
PCRE2_UTF patterns and subjects are coded in UTF
PCRE2_UCP use Unicode Properties for \d etc.

The current setting is modified by unsetting the bits in the second argument, and then setting those in
the third argument. None of these options are set by default.

Question: Should the name ofPCRE2_JAVASCRIPT_COMPAT be changed? Some people have
suggested that it makes users think full JavaScript compatibility is available. The effect of this option
is to make five changes to the way matching works, though I think somebody recently posted that one
of these differences with JavaScript has gone away. Adding independent options for each of the
differences seems silly (as well as wasting bits), but I can’t think of a useful alternative name, unless
it is something bland likePCRE2_PATTERN_TYPE2. Maybe it’s theCOMPAT bit that is the issue
and something like PCRE2_JAVASCRIPT_PATTERN would be clearer?

pcre2_set_callout(context, user_callout_function);

This records a user callout function. The prototype for the callout function is unchanged:

int user_callout(pcre2_callout_block *, void *);

The callout block itself is also unchanged. Setting the function toNULL, which is the default, disables
callouts.

pcre2_set_character_tables(context, unsigned char *tables);

This sets a pointer to custom character tables. The default is to use PCRE’s inbuilt tables that were set
up when it was built.

5.7 Reading parameter fields in a context

The following functions return the values of fields in a context:

uint32_t pcre2_get_bsr_convention(context);
unsigned char *pcre2_get_character_tables(context);
uint32_t pcre2_get_global_options(context);
uint32_t pcre2_get_match_limit(context);
uint32_t pcre2_get_newline_convention(context);
uint32_t pcre2_get_recursion_limit(context);
void *pcre2_get_user_data(context);

Question 1: I haven’t specified a function for reading memory management or callout functions. Are
these necessary? The only use I can think of is for saving and restoring a context, but this can be done
by making a copy of the whole context.

Question 2: In fact, do we really need these ‘get’ functions at all? An application can easily remem-
ber what it has set in a context if it needs to.

6 Compiling a pattern
A pattern is compiled by calling the following function:

5

pcre2 *pcre2_compile(
 pcre2_context *context,
 PCRE2_SPTR pattern,
 uint32_t options,
 int *error_code,
 size_t *error_offset);

The pattern is a zero-terminated string. The following option bits are available:

PCRE2_ANCHORED pattern is anchored
PCRE2_AUTO_CALLOUT generate auto callouts
PCRE2_CASELESS assume caseless at start
PCRE2_DOTALL dot matches all characters
PCRE2_EXTENDED ignore white space in pattern
PCRE2_FIRSTLINE must match before first newline
PCRE2_JIT compile for non-partial JIT matching
PCRE2_JIT_PARTIAL_SOFT compile for soft partial JIT matching
PCRE2_JIT_PARTIAL_HARD compile for hard partial JIT matching
PCRE2_MULTILINE ^ and $ may match in mid-subject
PCRE2_NO_AUTO_CAPTURE parentheses do not capture by default
PCRE2_NO_START_OPTIMIZE disable start-of-match optimization
PCRE2_NO_UTF_CHECK disable pattern UTF validity check
PCRE2_UNGREEDY invert greediness

Note: thePCRE_EXTRA option, which caused unknown escape sequences to give an error, like Perl’s
-w option, is now assumed always to be on.

When successful,pcre2_compile() returns a pointer to an opaque structure that contains the compiled
pattern. This data is read-only, that is, it is never changed during pattern matching. Therefore, com-
piled patterns may be safely shared between threads.

If there is a compilation error, the function returnsNULL. A positive error code and the offset in the
pattern where the error occurred are placed in the variables pointed to byerror_code anderror_offset,
respectively. The code can be translated into a textual error message by this function:

int pcre2_get_error_message(int error_code, PCRE2_UCHAR *buffer,
 size_t buffer_size);

This copies a zero-terminated error message into the supplied buffer, whose data items are of the
appropriate width (8, 16, or 32). It returns 1 if all is well, 0 if the buffer is too small. (The old API
always returned 8-bit error messages.)

When a compiled pattern is no longer needed, it can be freed by:

pcre2_free_compiled_code(context, code);

7 Explicit studying is abolished
I introduced a separatepcre_study() function when PCRE was first implemented because I wasn’t
sure how much resource this would take. It turns out to be not very much (and processors are getting
faster and faster). Therefore, in the new API, studying happens automatically and you don’t have to
worry about it. JIT compiling, on the other hand, is still expensive, so must remain optional.

8 Matching functions
The first releases of PCRE returned only the contents ofovector. When more information was needed,
I found ways of passing it back in a compatible manner (e.g. in thepcre_extra block). It is time to tidy
this up. I propose a new opaque structure calledpcre2_match_data, which contains space for remem-
bering the results of a match, and also contains working space for the matching function.

The primary data is in theovector. This is now a vector ofsize_t instead ofint. There is a special
value,PCRE_OVECTOR_UNSET, probably defined as(~(size_t)0), that is used for unset fields.

6

There are several different ways this might be set up. Of the three ideas below, I think I prefer option
A because it is the simplest and easiest to document. In all three cases there will be a
pcre2_free_match_data() function that releases the match data memory.

8.1 Option A: caller supplies ovector

This would work like this:

size_t ovector[20];
pcre2_match_data *match_data =
 pcre2_create_match_data(context, ovector, 20);

The application providesovector and specifies its size; a pointer to it is stored in thematch_data
block for use by the matching function. We can get rid of the fiddle whereby the top one third of the
ovector is used as working space because the working space can be elsewhere in the block. As in the
current API, passing ovector as NULL is allowed if the caller has no interest in the matched strings.

8.2 Option B: ovector is in the match data

In this case, all the caller provides is a size for the ovector:

pcre2_match_data *match_data =
 pcre2_create_match_data(context, 20);

As that stands, the caller does not know whereovector is. We could use a function to get a pointer to
it, or instead use this:

pcre2_match_data *match_data =
 pcre2_create_match_data(context, 20, &ovector_pointer);

If the user is not interested in the matched strings, a size of zero can be given.

8.3 Option C: combining options A and B

This option uses the following creation function:

pcre2_create_match_data(void *context, int ovector_size,
 size_t **ovector_ptr);

If ovector_ptr is NULL, the caller doesn’t care about the matched strings (and therefore does not need
a pointer to ovector). There is no need to allocate any space; the value of ovector_size is ignored.

If ovector_ptr is not NULL and *ovector_ptr is also not NULL, the caller has supplied a pointer to an
ovector, guaranteed to contain at leastovector_size elements. In this case, the caller is responsible for
freeing ovector afterwards, if necessary.

Finally, if ovector_ptr is not NULL but *ovector_ptr is NULL, the caller expects the function to
allocateovector and give back a pointer to it in *ovector_ptr. In this case,ovector is freed as part of
pcre2_free_match_data().

9 Perl-compatible matching
The following function matches in a Perl-compatible manner:

int pcre2_exec(
 pcre2_context *context,
 const pcre2 *code,
 PCRE2_SPTR subject,
 int length,
 size_t startoffset,
 uint32_t options,
 pcre2_match_data *match_data);

A negative length means ‘zero-terminated string’. The following option bits are available:

7

PCRE2_ANCHORED pattern is anchored
PCRE2_NOTBOL subject is not the beginning of a line
PCRE2_NOTEOL subject is not the end of a line
PCRE2_NOTEMPTY must not match an empty string
PCRE2_NOTEMPTY_ATSTART not empty at start of subject
PCRE2_NO_START_OPTIMIZE disable start-of-match optimization
PCRE2_NO_UTF_CHECK disable subject UTF validity check
PCRE2_PARTIAL_SOFT soft partial match
PCRE2_PARTIAL_HARD hard partial match

The return codes are unchanged from the old API: zero or positive for a complete match, negative for
error or a partial match. Matched strings and substrings are passed back viaovector, as before. Note,
however, that the value for an unset capturing group isPCRE_OVECTOR_UNSET instead of a nega-
tive number, because ovector is now of type size_t.

9.1 Errors while matching

An error message can be obtained for any error code using the same function as forpcre2_compile():

int pcre2_get_error_message(int error_code, PCRE2_UCHAR *buffer,
 size_t buffer_size);

The offset in the subject where the error occurred can be obtained by:

size_t pcre2_get_error_offset(pcre_match_data *);

When the error isPCRE2_ERROR_BADUTF8 or PCRE2_ERROR_SHORTUTF8, another function
can be called to obtain a detailed reason code:

int pcre2_get_error_reason(pcre2_match_data *);

This yields values such asPCRE2_UTF8_ERR1 (truncated UTF-8 character). The use of these
functions replaces the previous rather untidy scheme of putting values into the output vector.

9.2 Additional match information

As well as the offsets that are passed back inovector for a successful match, other data from the most
recent match is remembered, whether it succeeded or failed. This can be extracted from the match
data using the following functions:

PCRE2_SPTR pcre2_get_mark(pcre2_match_data *);

If the match found a(*MARK) name to pass back, a pointer to it is returned. Otherwise the function
returns NULL. The name is a zero-terminated string within the compiled pattern (as before).

size_t pcre2_get_startchar(pcre2_match_data *);

This function returns the offset of the character where the final matching process began. For an
anchored pattern, the value is alwaysstartoffset. This offset is different to the starting offset of the
matched string if \K was encountered.

size_t pcre2_get_leftchar(pcre2_match_data *);
size_t pcre2_get_rightchar(pcre2_match_data *);

These functions return the offsets of the leftmost and one more than the rightmost characters that
were inspected during the final match. Lookbehinds and lookaheads can make these offsets less than
or greater than the offsets of the matched string, respectively. For example, when the pattern

(?<=abc)def(?=ghi)

is matched against the string "abcdefghi" the offsets inovector are 3 and 6, corresponding to
"def", whereas the leftmost and rightmost offsets are 0 and 9.

8

9.3 Change to partial matching

In the current API, after a partial match, the first three values inovector are the leftmost character, the
end of the partial match (the end of the subject), and the start match offset. (This is because there have
been various changes and additions over the years.) In the new API, only two values are set in
ovector, and they are those of the partially matched string, giving consistency with a complete match.
The other offsets are now available for all matches using the functions just described.

9.4 Obtaining the frame size

In the current API, a call topcre_exec() with NULL arguments is a convention for obtaining the size
of the stack or heap frame (depending on how PCRE was compiled) that is used for recursive calls of
the matching function. This facility is now provided by a separate function:

int size = pcre2_get_frame_size();

10 DFA matching
The DFA matching function needs workspace. A vector of at least 20ints is recommended; more is
needed for patterns that have a lot of potential matches. I have used additional arguments, as in the
current API, but an alternative would be to have a separatepcre2_dfa_match_data block, in which
case the rules for handling the workspace should be the same as for handling the ovector (see options
A, B, and C above).

int pcre2_dfa_exec(
 pcre2_context *context,
 const pcre2 *code,
 PCRE2_SPTR subject,
 int length,
 size_t startoffset,
 uint32_t options,
 pcre2_match_data *match_data,
 int *workspace,
 size_t wscount);

The following option bits are available in addition to those of pcre2_exec():

PCRE2_DFA_RESTART restart after a partial match
PCRE2_DFA_SHORTEST find only the shortest match

11 JIT matching
The functions for detailed JIT matching are adjusted for the new API in fairly obvious ways:

pcre2_jit_stack *pcre2_jit_stack_alloc(pcre2_context *,
 size_t, size_t);
void pcre2_jit_stack_free(pcre2_context *, jit_stack);
void pcre2_assign_jit_stack(pcre2_context *, const pcre2 *,
 pcre2_jit_callback, void *);
void pcre2_jit_free_unused_memory(pcre2_context *);
int pcre2_jit_exec(pcre2_context *, const pcre2 *, PCRE2_SPTR,
 int, size_t, uint32_t, pcre2_match_data *, pcre2_jit_stack *);

The context is passed to all of them, and the abolition ofpcre_extra means that apcre2 pointer is
passed instead. The arguments forpcre2_jit_exec() are now the same as the newpcre2_exec(), plus a
JIT stack pointer.

12 Pattern information
The function for obtaining information about a compiled pattern is now:

int pcre2_get_info(const pcre2 *, uint32_t, void *);

9

Many of the information items are unchanged, but I have removed those that are obsolete or dep-
recated, and done some renaming. This is the new list, with further comment below on those that are
changed:

PCRE2_INFO_BACKREFMAX highest backreference
PCRE2_INFO_CAPTURECOUNT number of capturing subpatterns
PCRE2_INFO_COMPILE_OPTIONS options set for compile
PCRE2_INFO_FIRSTDATA_ITEM value of first data item
PCRE2_INFO_FIRSTDATA_TYPE type of first data information
PCRE2_INFO_FIRSTTABLE table of first data values
PCRE2_INFO_HASCRORLF has explicit CR or LF
PCRE2_INFO_JCHANGED (?J) or (?-J) was used
PCRE2_INFO_JIT successful JIT compilation
PCRE2_INFO_JITSIZE JIT compiled code size
PCRE2_INFO_LASTDATA_ITEM value of last data item
PCRE2_INFO_LASTDATA_TYPE type of last data information
PCRE2_INFO_MATCH_EMPTY can match an empty string
PCRE2_INFO_MATCHLIMIT limit set within the pattern
PCRE2_INFO_MAXLOOKBEHIND maximum lookbehind, in characters
PCRE2_INFO_MINLENGTH minimum length, in characters
PCRE2_INFO_NAMECOUNT number of name table entries
PCRE2_INFO_NAMEENTRYSIZE size of each entry
PCRE2_INFO_NAMETABLE pointer to the name table
PCRE2_INFO_PATTERN_OPTIONS options set within the pattern
PCRE2_INFO_RECURSIONLIMIT limit set within the pattern
PCRE2_INFO_SIZE size of compiled pattern (bytes)

Options that are explicitly passed topcre2_compile() and those that are deduced from the pattern, for
example, by the use of(?i), are saved separately in the updated code; hence the splitting of
PCRE_INFO_OPTIONS into two new options.

PCRE_INFO_STUDYSIZE was only ever provided to make it possible to save and restore the
separate study data, so it is no longer relevant.

PCRE2_INFO_FIRSTDATA_TYPE gives information about the first data unit in a non-anchored
pattern. If there is a fixed first value, for example, the letterc from a pattern such as
(cat|cow|coyote), 1 is returned. In this situation, the value can be retrieved using
PCRE2_INFO_FIRSTDATA_ITEM, which returns the fixed first data item value.

If there is no fixed first value, and if either (a) the pattern was compiled with the
PCRE2_MULTILINE option, and every branch starts with "^", or (b) every branch of the pattern
starts with ".*" andPCRE2_DOTALL is not set (if it were set, the pattern would be anchored), 2 is
returned, indicating that the pattern matches only at the start of a subject string or after any newline
within the string. Otherwise 0 is returned. For anchored patterns, 0 is returned. In all these cases,
PCRE2_INFO_FIRSTDATA_ITEM returns 0.

PCRE2_INFO_LASTDATA_TYPE returns 1 if there is a rightmost literal data item that must exist,
other than at the start of the subject, for a match to be possible. Otherwise it returns 0. In situations
where 1 is returned,PCRE2_INFO_LASTDATA_ITEM can be used to retrieve the value. In other
cases, it returns 0.

13 Reference counts
The old API contains a function calledpcre_refcount() which can be used to maintain a reference
count within a compiled pattern. This breaks the assumption that a compiled pattern is a read-only
structure. Also, it is not atomic, and therefore not thread-safe.

I do not think that introducing thread-specific functions such as atomic updates into the API just for
this case is a good idea because it complicates the code and the specification, and makes building
PCRE difficult in environments that do not support threads. Though it has been in PCRE since release
6.0, I propose to abolish pcre_refcount().

10

Applications that need to maintain reference counts should instead define their own structure, some-
thing like this:

struct my_code {
 pcre2 *code;
 int refcount;
 ...whatever...
};

Then they can manipulate the reference count any way they like, and thepcre2 structure remains
read-only.

14 Character tables
I propose no change to the way PCRE handles character tables, so this function remains:

const unsigned char *pcre2_maketables(void);

Note, however, that the pointer to custom character tables is now held in the context.

15 Configuration information
There is no change to the function for obtaining configuration information:

int pcre2_config(int what, void *where);

The available information is unchanged. However, if building PCRE is simplified so that including
UTF always also includes Unicode property support (see below),PCRE_CONFIG_UCP can be
removed.

16 PCRE version
For consistency with the rest of the API, pcre_version() is changed to:

int pcre2_version(PCRE2_UCHAR *buffer, size_t size);

The version and date string is copied into the supplied buffer. This allows the different libraries to
return the version information in data items of the appropriate width. The function returns 1 on
success, or 0 if the buffer is too small.

17 Byte-ordering functions
The prototypes for these functions are the obvious adaptions:

int pcre2_pattern_to_host_byte_order(pcre2 *);
int pcre2_utf16_to_host_byte_order(PCRE2_UCHAR16 *, PCRE2_SPTR16,
 int, int *, int);
int pcre2_utf32_to_host_byte_order(PCRE2_UCHAR32 *, PCRE2_SPTR32,
 int, int *, int);

18 Substring extraction functions
As theovector pointer and the details of the most recent match are remembered in the match_data,
there is no need to pass them to the string extraction functions. Apart from changes to the variable
types and the addition of a context argument for functions that get memory, these are otherwise
unchanged.

int pcre2_copy_named_substring(
 pcre2_match_data *match_data,
 PCRE2_SPTR name,
 PCRE2_UCHAR *buffer,
 size_t buffsize);

11

int pcre2_copy_substring(
 pcre2_match_data *match_data,
 int stringnumber,
 PCRE2_UCHAR *buffer,
 size_t buffsize);

int pcre2_get_named_substring(
 pcre2_context *context,
 pcre2_match_data *match_data,
 PCRE2_SPTR name,
 PCRE2_UCHAR **);

int pcre2_get_substring(
 pcre2_context *context,
 pcre2_match_data *match_data,
 int stringnumber,
 PCRE2_UCHAR **);

void pcre2_free_substring(
 pcre2_context *context,
 PCRE2_SPTR string);

int pcre2_get_substring_list(
 pcre2_context *context,
 pcre2_match_data *match_data,
 PCRE2_UCHAR ***);

void pcre2_free_substring_list(
 pcre2_context *context,
 PCRE2_SPTR *list);

int pcre2_get_stringnumber(
 const pcre2 *code,
 PCRE2_SPTR name);

int pcre2_get_stringtable_entries(
 const pcre2 *code,
 PCRE2_SPTR name,
 PCRE2_UCHAR **first,
 PCRE2_UCHAR **last);

19 Pre-compiled patterns

The facility for saving and restoring pre-compiled patterns is, I believe, used, so it should be pres-
erved. The new code combines what was formerly separate study data into the main pattern structure,
which makes things simpler, and the existing instructions for saving and restoring should continue to
work in the new API.

Question: Would it be better to provide explicit serializing and de-serializing functions? If so, they
should incorporate the function ofpcre2_pattern_to_host_byte_order(), which could then be
abolished.

20 C++
The C++ wrapper supports only the 8-bit library and is currently not maintained. Unless a maintainer
comes forward, I think it would be better to discard it. A new version should support 8-bit, 16-bit and
32-bit handling.

12

21 Substitution function

There have been requests for a substitution (find and replace) function. The existing C++ wrapper
contains such a function, so maybe now is the time to provide one in the main library. Here is a
possible specification:

int pcre2_substitute(
 pcre2_context *context, context
 pcre2 *code, compiled pattern
 PCRE2_SPTR subject, subject string
 int slength, length of subject string
 size_t startoffset, offset to start search
 uint32_t options, pcre_exec() options
 PCRE2_SPTR replacement, replacement string
 int rlength, length of replacement string
 PCRE2_UCHAR *buffer, where to put result string
 size_t blength, length of buffer
 size_t *rlength); where to return result length

The first six arguments are the same as the arguments for pcre2_exec().

Question: Should there be apcre2_match_data argument? I have not specified this because the
substitution function can get one for itself and free it when finished. It can find the number of
captured substrings in order to set up an appropriateovector. This uses more resources, but this is
after all a convenience function. An application that is worried about performance probably would use
its own code instead.

The allowed options, except for the partial matching options, are the same as forpcre_exec(). The
replacement string is given as a pointer and a length so that binary strings can be processed. A
negative length indicates a zero-terminated string. The string may contain substitution fragments in
these forms:

$<number> e.g. ab$1cd
${<number>} e.g. 12${3}34
$name e.g. a $name b
${name} e.g. a${name}b

The modified string is placed inbuffer, whose length isblength. For the convenience of applications
that are processing zero-terminated strings, a zero data item is added at the end. The length of the
modified string (excluding the terminating zero) is placed in the variable pointed to byrlength. The
function returns the length of the initial copied substring plus the length of the expanded replacement
string. This is the offset to ‘the rest of the string’.

If there is an error, a negative error code is returned.PCRE2_ERROR_NOMATCH is given for no
match, and PCRE2_ERROR_BADLENGTH if the buffer is not large enough.

This function does a single substitution on the first match that is found in the subject string. It is an
application’s responsibility to call the function again if global replacement is wanted. The value
returned by the function is the offset in the modified string at which to start the next search.

Question 1: Should it be possible to passNULL as a buffer, and have the function get the memory? If
this is allowed, there will have to be another argument, for passing back the address of the buffer. (Or,
it could be the result of the function, but then another argument is needed for passing back an error
code.)

Question 2: Should there be an option for requesting global changes? This is relatively straightfor-
ward when an output buffer is passed as an argument. It is much harder ifNULL is allowed because it
makes discovering how much memory to get much more complicated. Either all the pattern matches
must be done twice, or the strings must be copied into new memory for each match. (Or all the details
of each match must be remembered somewhere).

13

22 Build-time changes

Originally, UTF support was implemented without UCP support, so when the latter was added later, it
was made optional. Perhaps this is nowadays rather pointless; we could make UTF imply UCP.

23 The POSIX wrapper

There can, of course, be no change to the API for the POSIX wrapper. The revised functions for the
new API will use PCRE contexts with default settings.

-oOo-

14

