Specification of the Exim Mail
Transfer Agent

Exim Maintainers

Specification of the Exim Mail Transfer Agent

Author: Exim Maintainers

Copyright © 2022 The Exim Maintainers

Revision 4.96-RC1 15 May 2022

Contents

1. INTFOAUCTION ..ottt 1
1.1 EXIiM dOCUMENTATIONeiiiiiiii e 1
1.2 FTP Site @and WEDSITEScuoriiiiiiiiiiiee s 2
1.3 MAIIING TISTS ettt 2
1.4 BUQ FEPOIES ..ttt bbbttt bttt 3
1.5 Where to find the Exim distriDution ..o 3
1.6 LIMITALIONS ..ottt 4
1.7 Runtime configuration ..ot 4
1.8 CalliNg INTEITACE ...c.eeeeieeic et 4
1.9 TEIrMINOIOQY ..evenetiieiee ettt 4

2. INCOrporated COUE ...ttt 6

3. How Exim receives and delivers mailccooooiice 8
3.1 OVerall PhIlOSOPNYooveiiiiiieiee ettt 8
3.2 POICY CONTIOL ...ttt sttt ae b et eneeneseens 8
3.3 USEI FIHEIS ettt 8
3.4 Message identifiCation ..o 9
3.5 ReCEIVING MAIL ..ottt 9
3.6 Handling an inComiNg MESSAJEccccereuiririiririeirieeetet ettt 10
3.7 Life OF @ MESSAGE ...cecuiieiiieieee et 10
3.8 Processing an address for deliVErY ... 11
3.9 Processing an address for Verification ... 12
3.10 Running an individual FOULENcoiiiriiiiiiccc s 12
3.11 DUPliCAte AAIESSEScviiiiiiiieic et 13
3.12 Router PreCONItIONSccoveuiirieirieirieet ettt 13
3.13 Delivery in detailco.coriiiiie s 14
3.14 Retry MECHANISIMc.oiiiiiiii ettt 15
3.15 Temporary delivery failure ... 15
3.16 Permanent delivery failure ... 16
3.17 Failures to deliver bouNCe MESSAJEScevviiiiriiiiiiiiccee s 16

4. Building and installing EXim ... 17
4.1 UNPACKING ittt sttt 17
4.2 Multiple machine architectures and operating Systemscccccccveevencincerecnineene. 17
4.3 PCREZ IIDFAIY ...eoveieiieeee ettt 17
4.4 DBM lIBFAriES ...c.coveuiriiiiieiieee ettt 17
4.5 Pre-building configurationccooeireiniiniiicc s 19
4.6 SUPPOIL FOF ICONV() eiuiieieiiiiiieteie ettt 19
4.7 Including TLS/SSL encryption SUPPOITc.ceiriririeieirieeerse et 20
4.8 USE OF ICPWIAPPELS ...ttt 20
4.9 Including SUPPOIT FOr IPVBc.covrieiiiiiieiieiee s 21
4.10 Dynamically loaded lookup module SUPPOItc.ceirieiirieiniieieeeeceeceeenes 21
4.11 The DBUIldING PrOCESSooviviiiiiiieirtcee ettt 21
4.12 Output from “MaKE”c.ooiiiiiiiiee et 22
4.13 Overriding build-time options for EXim ..o 22
4.14 OS-Specific NEAET filESoveeiiiee e 24
4.15 Overriding build-time options for the MONItOr ... 24
4.16 Installing Exim binaries and SCrPLScccoerreririinieinire s 24
4.17 Installing info doCUMENTALIONc.ooviiiiiiiiiic s 25
4.18 Setting up the SPOOI AIFECLONYc.coveiiiiiiiiiieee s 25
419 TESHING ettt 26

iii

4.20 Replacing another MTA With EXIMccooiiiiieeeeeee e 27

4.21 RUNNING the AEMON ..ottt ettt et e reeaa b ne 27
4.22 UPGrading EXIMccooiiiiiieieectceeete ettt ettt ettt ettt b et enbeereern s ae s 27
4.23 Stopping the Exim daemon 0N SOIArSc.ccveieiiiiiieieeciceeeeee e 27
. The EXim command liN@ ..o e 29
5.1 Setting options by program NAMEc.ocueveieiieiiiiiceeeeeeeeee e 29
5.2 Trusted and admin USEIScccooiiiieirieieieieeeetee ettt sttt st eneas 29
5.3 Command liN€ OPLIONSceouieiiiiieeeeeeeeeee ettt ettt eaea 30
. The Exim runtime configuration fileccoooeiiie e, 55
6.1 Using a different configuration file ... 55
6.2 Configuration file fOrmatcooveieiiiee e 56
6.3 File inclusions in the configuration fileccccoviiieiiiccee e 57
6.4 Macros in the configuration filecooovioiiiici e 57
6.5 MaCIrO SUDSHITULION ..ot 57
6.6 RedefiNiNg MACIOS ...c.ooovieieiee ettt ettt et b et esbesreeraensanne 58
6.7 OVerriding MACIO VAIUESccoouiiieieiieiieieeeeeeete ettt ea e ae s eneas 58
6.8 EXample Of MACIO USAQEcoviivieereiicieceeeeteettetet ettt ettt ettt b et s reeaaensane 58
6.9 BUIIIN MACIOS ..ottt b et eneas 58
6.10 Conditional skips in the configuration filec.ccooveieiiiiiceeeee, 59
6.11 ComMMON OPLION SYNTAX ...cuiiviciiiiieieeeeee ettt et b e eaeas 59
6.12 BOOIEAN OPLIONS ..ottt ettt et sbe b raenbere 59
B.13 INTEYET VAIUES ...ttt et ettt st b s ae et essesreesaessannen 60
6.14 OCtal INtEYET VAIUESceeiiieieeeeeeeee ettt eneas 60
6.15 Fixed POINT NUMDELS ...oeiieiiiiceeeeeetece ettt ettt st a b b ra b ae 60
B.16 TIME INTEIVAISooeieieieeeee ettt be st eneas 60
B.17 SHHNG VAIUES ...ttt ettt et a st ae b s e eneas 60
6.18 EXPANAEA SIINGS ..ooviiiiieiiiecteeeete ettt sttt re e st b e ae et essesbeesaensannens 61
6.19 USEr and groUp NAIMEScc.ocueeuieiieiiceeeecteeteet ettt et ve et te e ess s e s e e s essesreesaessansens 61
6.20 LISt CONSIIUCTION ..ottt sttt be st eneeneas 61
6.21 Changing list SEPAratorsccoccveiiioiieceee e 61
6.22 EMPLY itE€MS IN NISTS .ooviiiiiiiceeeee ettt s 62
6.23 Format of driver configurationsccocuovieieiiiicceeecee e 62
. The default configuration filecccooi i 64
40 T Y= e (o T T SO STU SRRSO PRRSRRR 64
7.2 Main configuration SEHINGSc.ooviiieicecece e 64
7.3 ACL CONFIQUIALION ...ttt ettt enea 67
7.4 Router CONfIQUIAIONc.ocueiiiiicieeeee ettt et b et b ssenne 70
7.5 Transport CONFIGQUIALIONc.ooviiiieieiiececee ettt s 73
7.6 DEfaUIt FEINY FUIE ..ottt b b b eaeesene 75
7.7 Rewriting CONfIQUIAtIONc.coviiuiieiiiieceeeee ettt s 75
7.8 Authenticators configurationc.cooeoiiieiceceeeee e 75
. Regular @XPreSSIONS ..ottt sttt b e 77
. File and database IOOKUPScccoouioieiiiicceeeceee e 78
9.1 Examples of different I00KUP SYNTAXccovvieiiiiiiiieeecceeee et 78
9.2 LOOKUPD LYPES .oevieeecieeeeteettetet ettt ettt ettt ettt et et sb e b e s teesse s e s ae e st essesreesnensansen 79
9.3 SiNgle-Key I0OKUP LYPEScuocvieeiiiiieeeeeeeteeee ettt enea 79
9.4 Query-style I00KUD tYPESc.ocuiiiieeieeeeeeeeee ettt 82
9.5 Temporary errors iN IOOKUPSccvevviiuiiieiictieeeeete ettt ettt s eeaesene 83
9.6 Default values in single-Key I00KUPScooieieiiiiiiieieieeeceeee ettt 83

9.7 Partial matching in sSingle-Key I00KUPSc.ocieiiiiiieieieeceeeeeeeeee et 84
9.8 LOOKUP CACNING ittt sttt ettt et b e s ae et essesreesaensennan 85
9.9 QUOLING IOOKUP LA ...ttt e eaea 85
9.10 MOre abOut ANSADcooiiiieeee ettt eneas 86
9.11 DNsdb 100KUP MOGIfIEISooviiieeieieeteceeete ettt et re e 86
9.12 Pseudo dnsdb reCOrd tYPEScoovieiieieiieceeeecteee ettt s 87
9.13 Multiple dNSAD IOOKUPSoooviiieiieiecticee ettt s sa e 88
9.14 MOre @bOUL LDAP ...ttt eneas 88
9.15 Format Of LDAP QUETIEScvoiieieeieeteceeeeeeeetee ettt ettt ve e ve e 88
.16 LDAP QUOTING .ottt ettt st ettt e ss bt ssessesbeesaensannens 89
9.17 LDAP CONNECHIONS ..ottt sttt be st eneeneas 89
9.18 LDAP authentication and control informationcccoeeeeeiiiieiiiieeeeee, 90
9.19 Format of data returned by LDAPcooiiieeeeeee et 92
9.20 MOre @bOUL NISH ..ottt ns 93
.21 SQL IOOKUPS ...ovvvietititeteeeteete ettt ettt ettt ettt b s ts et e sse s et eseesessesenseneas 94
9.22 More about MySQL, PostgreSQL, Oracle, InterBase, and Redisc..ccccccveuvneee. 94
9.23 Specifying the Server in the QUETY ..o 95
9.24 Special MySQL fEATUIEScooueieeeeeeeeeeeeeee ettt 95
9.25 Special PostgreSQL fEAtUIESc..oveuieiiiiiceeeeeeeee et 96
9.26 More about SQLIEccceiieieieiiiieieeiceee ettt 96
9.27 MOre abOUt REAIS ..ottt 96
10. Domain, host, address, and local part listsc.cceoveiiiiiii 98
10.1 EXPANSION OF [ISTS ..ooiiiiciiceieeeeeee ettt 98
10.2 Negated itemMS INTISIS ..ocviiiieicece e 98
10.3 File NAMES IN LISIS ..o 99
10.4 An Isearch file is not an out-of-liNe liStc.covviieieiiieee e, 99
10.5 Results of list CheCKiNGcovvouieiiieeee s 99
10.6 NAMEA SIS ..ttt sttt st eaeenes 100
10.7 Named lists compared With MACIOSccoeveviiiiieieeeceeeeee e 101
10.8 Named liSt CACNING ..oviouieieeeeeee ettt eneas 101
10.9 DOMAIN TISES ..eeeeeeiieiieeeee ettt sttt b et sa e neeaeenes 101
1010 HOSELISES .ottt sttt st enes 104
10.11 Special host list PAEINSc.coooviiiiiieeeee s 104
10.12 Host list patterns that match by IP address ..., 104
10.13 Host list patterns for single-key lookups by host addressccccevvevevevieiieennnnn. 105
10.14 Host list patterns that match by host name ..., 106
10.15 Behaviour when an IP address or name cannot be foundc.cccoveveiinennnnn. 107
10.16 Mixing wildcarded host names and addresses in host listscccccoeveeveviieennnnn. 107
10.17 Temporary DNS errors when looking up host informationccccccoeevineinnneee 108
10.18 Host list patterns for single-key lookups by host namecccccoeveieieienineennennn. 108
10.19 Host list patterns for query-style I00KUPSccooeeieeiiiiieieiceeeeeeee e 108
10.20 AAreSS lISESveeeieeieeee ettt sttt sttt aes 109
10.21 Case of letters in address liStSccocveieieiiiieicieceeee e 111
10.22 LOCAl PAIt lISES ..ottt sttt ennas 111
11, SENG EXPANSIONSo.ooveiiiiieeee ettt 112
11.1 Literal text in expanded SIHNGS ...c.ooioieieieeee e 112
11.2 Character escape sequences in expanded Stringsccocevveieeciccieececcceeeeee, 112
11.3 Testing String EXPaNnSIONScccooviiiiiiieieiieeeeeeeee ettt ettt eneas 112
11.4 Forced expansion fAIlUIEccooviiiieieiceeeeee e 113
11.5 EXPANSION ITEIMS ..ocviiiiiicieeeeeee ettt ettt et b et a e aeessennas 113
11.6 EXPANSION OPEIALOISocviiiiieiieieie ettt ettt sttt a e b seennas 126
11.7 EXPanSIion CONAITIONSccoovviiiiiieiiieceeeee ettt ettt sa e eneas 133
11.8 Combining expansion CONAItIONScccveiiiiiiicieeceeee e 140
11.9 EXPanSIon VariabIES ..ottt 140

12, EMDEAAEA PEOIL oo e e e e e e e e ee e s eeeeeseraeeenees 162

12.1 Setting up s0 Perl can be USEQ ..o 162
12.2 Calling Perl SUDIOULINESc.ocviieeieiiciiieeeeee ettt 162
12.3 Calling Exim functions from Perlc.oovoiiiiieeeeeeee e 163
12.4 Use of standard output and error by Perl ..o, 163
13. Starting the daemon and the use of network interfacesccccocooeee. 164
13.1 Starting a listening daemoOncooiiiieicceeee s 164
13.2 Special IP listening addreSSEScooeveieiiiieiiceeeeeeete e 165
13.3 Overriding local_interfaces and daemon_smtp_portsccccceevvevieveiciciececeeneann. 165
13.4 Support for the submissions (aka SSMTP or SMTPS) protocolccccocveveuenenne. 165
13.5 IPV6 AAAIESS SCOPES ...vecvieniiiiceieeieie ettt ettt ettt et sa et sbeeteesbeseebeessesesseessensas 166
13.6 DiSADIING IPVB ...ttt eseneas 166
13.7 Examples of starting a listening daemonc.ccoceeveiiiecieieicceeeee e 166
13.8 Recognizing the 10Cal NOSEccoooiiiieecee s 167
13.9 Delivering to @ remote NOStccviiiiieeeee e 167
14. Main coNfigUIAtioNcooviiiiii ettt 168
14,1 MISCEIANEOUSoviiiieeeee ettt sttt b e b ss e se s enes 168
14.2 EXIM PAramMEIEISooviiieeeee ettt ettt ettt be s b reeneennas 168
14.3 Privilege CONIOIScvicvieiiiiceceeee ettt ettt b e ennas 168
T4 4 LOQUING woitiitiietite ettt ettt ettt ettt et ettt et e e teesse b e ebeessesbesbeeteesbenbeebeess et e aaeeneennas 169
14.5 FrOZEN MESSAUES ...ooovicvieeieieiieeeeeteete ettt ettt ettt te s et e s teessesbesbeeseesbessesseessessesseessensas 169
14.6 Data IOOKUPSoooveeeieiiiieetee ettt ettt ettt ettt ettt sbe st e ebe e b e beereessessesseesnensas 169
14.7 MESSAYE IUS ..ottt ettt b ettt ete b b e teese e s aeeneennas 169
14.8 Embedded Perl STartupccocoveieioieeeeeee et 169
T4.9 D@EBIMON ..ottt ettt ettt st et et s e b st e nse st eneeseenen 169
14.10 RESOUICE CONIIOI ...ouieiieeee ettt 170
14,11 POICY CONIIOIS ..ottt st ettt a e re e ennas 170
14.12 CallOUt CACNE ...ttt eseneas 171
TA.AB TLS ottt ettt ettt b st n et se st e e s e eseneas 171
14.14 Local USEr NANAIING ...c.ccvoiiiiieeee ettt ettt sb e ennas 171
14.15 All incoming messages (SMTP and non-SMTP)ccoceeiiiiiicceeeeeee 172
14.16 Non-SMTP inCOMING MESSAJESc.ecveveeieieetieieieieeeeteetet ettt eae s 172
14.17 InCOMING SMTP MESSAGEScuveviviiiieeeeeeeteeteee ettt 172
14.18 SMTP EXIENSIONS ..ooooviieiiieiiieteeet ettt se e eseneas 173
14.19 ProCesSiNG MESSAQESoovivvieeieieiieteetieteete ettt ettt et e sre et esbesbeeseessessesseessesesseessensas 173
14.20 SYSIEM LI ..ottt 173
14.21 Routing @nd dElIVEIYovivieieeeeeeee ettt 173
14.22 Bounce and warning MESSAQESccecvervierieeeriiireereeiesreereeeessesteeseessessesseessessesseessesses 174
14.23 Alphabetical list of main OptioNScovevvieiiciiieee e 174
15. Generic OptionNs fOF FOUREESocooviiiiiiecce e 225
16. TRE @CCEPL FOUREEoooieeiee ettt sttt 240
17. The dNSIOOKUP FOULETooieiiieeeee ettt ettt et ae s 241
17.1 Problems with DNS I00KUPSoovouiiiiiiieeeeeeee e 241
17.2 Declining addresses by dNSIOOKUPc.ccvievieieiiiiiieicieecectee et 241
17.3 Private options for dNSIOOKUPcovievieieiiiceeeeeeee et 242
17.4 Effect of qualify_single and search_parentscccccovvveieneiieicceiececeeeeeenn 244
18. ThE IPHIEral FOUREYooeieiieee ettt st e 245

19. ThE IPIOOKUP FOULEKoeooeiiieeee ettt et et 246

20. The ManUAIrOULE FOURETcocooiiiiiee e 248
20.1 Private options for ManualrOULEcccivvieieiiiiiieiceeeeeeet e 248
20.2 Routing rules in roUte_lIStcoviiiiieieeceeeeeeeeee ettt 249
20.3 Routing rules in route_datalccoeeeiiiiiiieieiecceeee et 250
20.4 Format of the list Of NOSIS ...c.ocuiiiiiie e 250
20.5 Format of 0N€ NOSTITEMoviiieie et 251
20.6 How the list Of NOSIS IS USEAc.ooviiieiiiiieceeeeeee e 251
20.7 How the OptioNS @re USEAc.eoviiiciieiiiiecieeteee ettt ettt b e sbeereennens 252
20.8 Manualroute eXamMPIESccociiiiriieieieeceetet ettt b et reenaens 252

21. The qUErYPIOGram FOULEKcoooviiiiieeieiete ettt ettt v et b e re e s aeesaennas 255

22, TRE redir@Ct FOUTENc.ooeieieeee ettt 257
22.1 RedireCtion dataccooueieieieeee e 257
22.2 Forward files and address Verification ... 258
22.3 Interpreting redireCtion dataocceeieiiiiieieiieceee s 258
22.4 ltems in a non-filter redireCtion liStc.oceeieeiiiicieeeeee s 258
22.5 Redirecting to a local MailbOXc.ccveieiiiiiiiieieeceeee ettt 258
22.6 Special items in redireCtion lISTScccoveieiiiceeeeeeeee e 259
22.7 DUPICAIE AAAIESSESocveeeiiiictieieetieteetete ettt ettt et b et te b b reessesbesreereennens 261
22.8 Repeated redireCtion EXPanSionccooeeieciiiieieieeeeeeee ettt eenens 261
22.9 Errors in redir€ClioN lISESc.ocviiiiiicicieeceeee ettt 261
22.10 Private options for the redireCt rOULESocovieiiiiieieceeeeeee s 262

23. Environment for running local transportscccocoviiieieiiiicce, 270
23.1 CONCUITENT AEIIVETIES ...ttt 270
23.2 UIdS AN QIAS ...eeeieeieiicieeeeeete ettt ettt ettt b et et b e re s enbesbeereennens 270
23.3 Current and home AIr€CIOMIESc.ocivviiiiieieieeeeeeeee et 271
23.4 Expansion variables derived from the addresscccvoieeeviiiieeeieeeeeeieeeeens 271

24. Generic options for traNSPOILSc.ooooiiiiiiiieeeee e 272

25. Address batching in local tranSportsccccooieieiiiicicceee e 279

26. The appendfile tranSPOrt ... 281
26.1 The file and direCtory OPtIONSccooeeiiiiieceeeeeeeee ettt 281
26.2 Private options for appendfileccoovoiiiieieice e 282
26.3 Operational details for appendingccoeoveiiuiiiiicieiceeee e 292
26.4 Operational details for delivery to @ new fileccooeeoiieieiiiiceee, 293
26.5 MailAir AEIVEIY ...ooeveeeiteeeee ettt ettt ettt b bt se e b e sbeeseennens 294
26.6 Using tags to reCcord MESSAJE SIZESccvovveevieiiiiiciieieieceeeetee ettt re e eenns 295
26.7 UsiNg @ MailAIrSiZe fil€cc.oovievieiiiieeceeeee ettt 295
26.8 MalISTOre EIVEIYoeviieeeeeeeeeee ettt ettt sbesbeereennens 295
26.9 Non-special NEW file AEIIVEIYcoioieiiiieeeeeeeee e 296

27. The autoreply traNSPOIT ..ot 297
27.1 Private options for QUIOIEPIYcc.ovuieieieieceeeeeee e 297

28. The IMIP IranSPOrt ..o 300

Vil

29. The PIiPe trANSPOITc.ooeieieee ettt et b et e re s s reesaennas 302

29.1 CONCUITENT AEIIVEIY ..ottt ettt eaeas 302
29.2 Returned status and data ..o 302
29.3 How the COMMANA IS FUN ...oouiiiiiiieieieeee et 303
29.4 Environment VariabIEScooooieioiiieeeeeeeee e 304
29.5 Private optioNs fOr PIPEcc.oovieuieiiiiceceeceet ettt 304
29.6 Using an external local delivery agent ...t 309
30. The SMIP IrANSPOLIToooei et 311
30.1 Multiple messages on a single CONNECHIONc.ocveieviiieieeeeeeeee e, 311
30.2 Use of the $host and $host_address variablescoooveeeeeeeeeeeeeeeeeeeeeeeeeeeeeee. 311
30.3 Use of $tls_cipher and $tls peerdn ... 311
30.4 Private options fOr SMIP ...ccoooiioiieieeceee e 311
30.5 How the limits for the number of hosts to try are usedcccooveeeiiviciecenieenen, 324
31, AddreSS FEWHITINGccoooiiiiieeee ettt ettt e ennas 326
31.1 Explicitly configured address reWritingccccevvieieieniinieieeee et 326
31.2 When does rewriting NapPENTc.oouiiiiceeeeeeee e 326
31.3 Testing the rewriting rules that apply on iNputccooviiieiieiiicee, 327
31.4 REWIHING FUIES ..ottt ettt et b e s teeas b reenneneas 327
31.5 ReWNING PAIEINS ..ooiiiiiieeee ettt et aa s 328
31.6 Rewriting replaCemeENtSc.ooi it 329
31.7 ReWIHING FlagS oottt ettt st en s 329
31.8 Flags specifying which headers and envelope addresses to rewrite 329
31.9 The SMTP-time rewriting flagccoooeeuiieieeeeeeeee e 329
31.10 Flags controlling the rewriting ProCESSccovevvieieieriieeeeeeeeeeee e 330
31.11 ReWrtiNg EXAMPIESocuiiiiiieeee ettt et nnas 330
32. Retry configuration ... s 332
32.1 Changing rELrY FUIESc.oouiiuiieeiceceeeeeee ettt eae s 332
32.2 FOrmat Of FEIIY TUIES ..ottt st 332
32.3 Choosing which retry rule to use for address errorsccccceoevevvevveeeececeeieeee. 333
32.4 Choosing which retry rule to use for host and message errorscccccoeveveuenennn. 333
32.5 Retry rules for SPECIfIC EITOIScoovviiiicieiiceceeeee e 334
32.6 Retry rules for specified SENUEISocveiieiicieicceeeeeee e 335
32.7 REtry PAr@meEIEISoovioiiciieiiieetecee ettt ettt ettt ettt et reeanennas 336
32.8 REtry rule EXamPIESocvoiiiiiieieieeeeeee ettt ettt neas 336
32.9 Timeout Of retry datacoooiieieieecee e 337
32.10 LoNG-1erm fAllUrESocvoceieeiieeeeeeee ettt ettt 337
32.11 Deliveries that work intermittentlyc.cccoooveiiiieiiee e, 338
33. SMTP authenticationccooooiiiie s 339
33.1 Generic options for authentiCatorsccccoieveieiciiiceeeeeeee e 340
33.2 The AUTH parameter on MAIL COMMANASc.occveeeviiiiieieiecieeeceeree e 342
33.3 Authentication 0n an EXim SEIrVEIccooviiiiiieeeeeeeee s 342
33.4 Testing server authentiCationccccoveviiiiieiiiicceee e 343
33.5 Authentication by an EXim clientcccoovioiiiiiee e, 344
34. The plaintext authenticatorcocooiiiiiii e 345
34.1 AVOIdING ClEAMEXT USE ...oeieeiiiieeeee ettt ettt e 345
34.2 Plaintext SEIVEr OPIONScc.oovieeieieiiciieeee ettt ettt ra e eneas 345
34.3 UsiNg PlainteXt iN @ SEIVETocueeieiiieeeee ettt 345

34.4 The PLAIN authentication MECNANISIMoooueeeiieeeeeeeeeeeeeeeeeeeeeee e 346

34.5 The LOGIN authentication mechanismcccccveiiiiiicieieieeeeeeeeeeee e 347
34.6 Support for different kinds of authenticationcccooeveieiiiiiccce 347
34.7 Using plaintext in @ CIENT ..o 347
35. The cram_md5 authenticatorooeiiii e 349
35.1 USINg Cram_mdS5 AS @ SEIVENoovieuieeieiiieeieeeeieete ettt eve st rs s v snennas 349
35.2 Using cram_md5 as @ ClIENTcoooviiiiieie e 349
36. The cyrus_sasl authenticatorc.ccooi i 351
36.1 USING CYrUS_SASI @S @ SEIVENooviiecieeeete ettt ettt ennas 351
37. The dovecot authenticator ... 353
38. The gsasl authenticator ... 354
38.1 gsasl auth VariADIESooviiiiieieeceee et 356
39. The heimdal_gssapi authenticator ..., 358
39.1 heimdal_gssapi auth variablescccooioiiiiiiiiiceceeeeeee s 358
40. The spa aUtReNtiCatoOrocooeiie e 359
40.1 USING SPA @S @ SEIVEL ...ovieeieiieteeeieie ettt ettt ettt et s e v st esbesteereessessesreersessesseessensas 359
40.2 USING SPA AS A CHIENT ...ttt 359
41. The external authentiCator ... 361
411 EXIErNAl OPLONS ...ocveeiiieceeeeee ettt ettt et et re s reennennas 361
41.2 USING eXIErNal iN @ SEIVELocuieieicieeeeeee ettt ettt st sreeaaennas 361
41.3 Using external in @ CHENTcoovioiiiieiee et 362
42. The tls @UthentiCator ... 363
43. Encrypted SMTP connections using TLS/SSLccooooiiiiiicceee, 364
43.1 Support for the “submissions” (aka “ssmtp” and “smtps”) protocolc.c......... 364
43.2 OPENSSL VS GNUTLS ...ttt 364
43.3 GnuTLS parameter COMPULAtIoNc.cccvcviieiiiiiicieeceece e 365
43.4 Requiring specific ciphers in OPenSSL ... 366
43.5 Requiring specific ciphers or other parameters in GnuTLSc.ccooveiiiiicienean. 367
43.6 Configuring an Exim server to use TLS ... 368
43.7 Requesting and verifying client certificatescccooovveviiieciciiic, 369
43.8 Revoked CErtifilCates ..ot 370
43.9 Caching of static server configuration itemsccccoeevveieiiiiccceeeee 371
43.10 Configuring an Exim clientto use TLSccoovoioioiiieeeeeeee 371
43.11 Caching of static client configuration itemsccooveeveieiiiiiceeeee 372
43.12 Use of TLS Server Name INndicationcccocevveieiiiiiciceceeeeeeeeeeee e 373
43.13 Multiple messages on the same encrypted TCP/IP connectioncccccoeuveneee. 374
43.14 Certificates and all thatccoooireiiee e 374
43.15 CertifiCate CRAINS ..c.ccveeiieeieeeee e 375
43.16 Self-signed CertifiCatescooviiiiiiiiicicececeeeeee s 375
43.17 TLS RESUMPLION ..ottt et ae s 376
4318 DANE ...ttt ettt a e s s ne e 377

ix

Q4. ACCESS CONTION LSS ... e e e e e e 380

441
44.2

44.3

44.4

44.5

44.6

44.7

44.8

44.9

44.10
44.11
44.12
44.13
44.14
44.15
44.16
44.17
44.18
44.19
44.20
44.21
44.22
44.23
44.24
44.25
44.26
44.27
44.28
44.29
44.30
44.31
44.32
44.33
44.34
44.35
44.36
44.37
44.38
44.39
44.40
44.41
44.42
44.43
44.44
44.45
44.46
44.47
44.48
44.49
44.50
44.51
4452
44.53
44.54
44.55

TESHNG ACLS .ottt ettt et ae v a bt seeaeeaeas 380
Specifying When ACLS @re USEAc.cooeieuiiiiiiieieeieceeeeeeee et 380
ThE NON-SIMTP ACLS ...ttt 381
The SMTP CONNECE ACL ... 381
The EHLO/HELQO ACL ...ttt 381
THE DATA ACLS ...ttt s e se s nesns 381
The SMTP DKIM ACL ...t 382
The SMTP MIME ACL ...t 382
The SMTP PRDR ACL ..ot 382
THE QUIT ACL .ottt eseneas 383
The NO-QUIT ACL ..ottt 383
FINAING @N ACL 0 USE ...ovivieieeeeeeeeeeeeeee ettt 383
ACL FELUIN COUES ...vniieiieieieeteete ettt ss s s s s eseneas 384
UNSEE ACL OPLIONS ...oeieiiieeeeee ettt 384
Data for MeSSAgE ACLSovieieeeeeeeee et 385
Data for NoN-mMesSage ACLScoouiiiiciceeeeeeee e 385
FOrmMat Of @N ACL ..ottt ens 385
ACL VEIDS ..ottt ettt ss et s s nneseneas 386
ACL VaNIADIES ...ttt s e eseneas 387
Condition and modifier ProCESSINGcocvieiiieieieicieceeeeeeeee e 388
ACL MOGIFIEIS ettt ss s s s e eseneas 389
Use of the control MOIfIErooi i 393
Summary of message fiXup CONLrolcocoveieiiiiiceceeeeee e 397
Adding header INES iNACLSocoouiieieieeeeeeeeee e 398
Removing header IN€S iN ACLSc.oveieieiiieeeeeeeeeeee s 399
ACL CONAIIONS ...ttt ettt s e s s se e eseneas 400
USING DNS TISTS ..ottt 404
Specifying the IP address for a DNS list [00KUPc.coveveiiiiiiicicieeceee, 405
DNS lists keyed on domain NAMESccooueiviieuieieiieieeeeeeee e 406
Multiple explicit keys for @ DNS Stcc.coooiiiiiieiiicieeeeeeeeee e 406
Data returned by DNS lISSccocioiiiiiiceceeeeeeee s 407
Variables set from DNS liStScccooveirieieicieee e 407
Additional matching conditions for DNS liStSccccoceovevieiiiiiieeceee, 408
Negated DNS matching conditionsccoouevveiiiiiicieeeeeeeee e 408
Handling multiple DNS records from a DNS listccooeieieiiiecceeeeee 409
Detailed information from merged DNS listscccooiveieieicieceeee 410
DNS lIStS @NA IPVBoveieiieeeeeeee e 410
Previously seen user and NOSESccoocviviiiiiiieiiececeeee e 411
Rate limiting inCOMING MESSAQESccvevviviieeieiecieeeceeeeeee e 411
Ratelimit options for what is being measuredc.cooooveeiiiicceiinceee 412
Ratelimit update MOAEScooeiiiiieeece s 413
Ratelimit options for handling fast clientscccoooiiieiciie 413
Limiting the rate of different @Ventscooveeiiiiciciiceeeee 414
USIiNG rate MITING .ooovieeceeeee ettt be e 414
AdAress VEIfICALIONociiiiiiieieeeeeee ettt 415
Callout VEFIFICALION ..ottt 416
Additional parameters for CalloUtSocoeveiiiieieeecee e, 417
CalloUt CACNING ..cveeeieeiteeeeee ettt ettt aeeaeas 419
QUOLA CACKNING ..ttt sttt b et eneneas 420
Sender address verification reportingccccveceeieiiiceeeeeeeeeeeee e 420
Redirection While VErifyiNgc.cccoouiiiiiiiiiecee e 420
Client SMTP authorization (CSA) ..o 421
Bounce address tag validation ... 422
Using an ACL to control relayingc.ccceeiiieicieieieeeeeeeeeeeeeeee e 423
Checking a relay configurationccccoceoiieieiiiceeeeeeeeeeee e 424

45. Content scanning at ACL timecooooioiiiiieeeee e 425

45.1 SCANNING fOF VIFUSES ...ttt ettt eae s 425
45.2 Scanning with SpamAssassin and RSpamdccccoeuevveieiiisecieeceeeeeeeeen 430
45.3 Calling SpamAssassin from an EXim ACLccooooiiiiiiiieceeeeeeeeee 431
45.4 Scanning MIME PartSccoooiiiiieiiieeceeeeee ettt 432
45.5 Scanning with regular EXPreSSIONSc.ccvcieuieieiciieeeeeieeeee e 435
46. Adding alocal scan function to EXimccccoooiiiiiiiiii e, 436
46.1 Building Exim to use a local scan functioncccccoeivieiieinicicceeceeeeee, 436
46.2 APIFOr I0CAI_SCAN() .oviovievieeiiiietieiete ettt ettt ettt e ae b reess s e reeenennas 436
46.3 Configuration options for 1ocal_SCaN()c.cceeeueiieieieiiceeeeeeeeeee e 437
46.4 Available EXimM VariabIESccccvcviiiiieieiieeeeeeeteet ettt 439
46.5 Structure 0f NEAAEN lINESocuieieiiieeee e 440
46.6 Structure of recipient ITEMScooiiiiiie s 440
46.7 Available EXim fUNCHONSc.ooiiieiceeeee et 441
46.8 More about Exim’s memory handlingc.cccoceviieieieniieceeee et 445
47. System-wide message filteringccooooiiiiiiice 446
47.1 Specifying @ SYStem filterc.cvouiiiiieeeee e 446
47.2 Testing @ SYSIEM LI ..o.eveeeieieeee e 446
47.3 Contents of @ SyStem filterccooiiiiiieeeeeeeee e 446
47.4 Additional variable for system filterscoooveiiiieiceee e, 447
47.5 Defer, freeze, and fail commands for system filters ..o, 447
47.6 Adding and removing headers in a system filter.........ccccooveveviiieecnccee, 448
47.7 Setting an errors address in a system filter ..o 448
47.8 Per-address filtErNG ..ooi oottt 449
48. MESSAQGE PIOCESSING ...cooviiiieiiiiiieiete ettt ettt ettt et e b e e teeseeseeteessesbeeteessessesseeseensas 450
48.1 Submission mode for Non-local MESSAQEScc.cvevievieieieieieeeeeeee e 450
48.2 LINE BNAINGS ..ooovivieiietiieeteeet ettt ettt et te et e b e s beetsesbesbeeteessesbeeteessessesseesneneas 451
48.3 UNQUAalified ArESSESoooviiieiieieiectectteeete ettt ettt et ss b s reess e reeenennas 451
48.4 The UUCP From lINE ...c.ocoouiiiieeeeeeeeeeeeee ettt 452
48.5 Resent- NEAUEr lINEScciiiiiieeeee ettt 452
48.6 The Auto-Submitted: header liNecccooeoiiiieiiieieeeeeeeee e 453
48.7 The BCC: NEAAEI lINE ..ottt ettt 453
48.8 The Date: Neader lINE ..ottt 453
48.9 The Delivery-date: header liNEcoovevvioiiiieiiiceceeeeeee e 453
48.10 The Envelope-to: header lINE ..o 453
48.11 The From: header liNEc.oovoiiiieieeeeee ettt 453
48.12 The Message-ID: header lINE ... 454
48.13 The Received: header liNEc.ooioiieieiicicececeee e 454
48.14 The References: header liNE ... 454
48.15 The Return-path: header lINE ..o 454
48.16 The Sender: header lINEc.cooiiiiiiceeeeeeee e 454
48.17 Adding and removing header lines in routers and transportscccocevevveennenne. 455
48.18 CoNStruCted adArESSESccociieieieieiieie ettt 456
48.19 Case Of I0CAI PAISc.covcuiiiiiiiceceeeeee ettt 457
48.20 DOtS iN [OCAI PAIS ..ccvivieeieeieieceeeee ettt ettt ettt sreeanennas 457
48.21 ReWNHING AIESSESceooiiiiieeiieiectecteete ettt ettt et e ve s b s teess s e beesnennas 457
49. SIMTP PrOCESSINGc.ocooviiieiitiiiitetee ettt ettt et ettt te et e s e s esseseesessessesseneerens 458
49.1 Outgoing SMTP and LMTP over TCP/IPcoovoveieeieeeeeeeeeeeeee e 458
49.2 Errors in outgoing SMTP ..ot 459

49.3 Incoming SMTP messages over TCP/IP ... 460

49.4 Unrecognized SMTP COMMANAScc.ocveieiiiiiiiicieeeteeieeeeee e 462
49.5 Syntax and protocol errors in SMTP commandsccccoeoveiviecieiceeeceeeee 462
49.6 Use of non-mail SMTP COMMANGSccooveviieiiieieiceeeeeeeeee e 462
49.7 The VRFY and EXPN COMMANGSccccoioiiiiieiiiicieceeeeeetee ettt 462
49.8 The ETRN COMMEANGcoiiiiiieieieeeeeeee ettt 462
49.9 INcoming 10CAI SMTP ..o 463
49.10 Outgoing batChed SMTPcooiiiieee e 463
49.11 Incoming batChed SMTPcooiiiieeeee e 464
50. Customizing bounce and warning MeSSAQesccoceveeeieiiiiieceeeee e 465
50.1 Customizing DOUNCE MESSAYEScooviveuieeieiictiteeeeeteeteetee ettt 465
50.2 Customizing Warning MESSAGEScceeveieierierireieeeteeteetee ettt e e eses s e ereas 466
51. Some common configuration settingscccoooiiiiicc, 467
51.1 Sending mail to @ SMart NOStcocooiiiiiiee e 467
51.2 Using Exim to handle mailing liStSccooieieviioiiieeeeeeeeeee e, 467
51.83 Syntax errors in Mailing lSTScc.ovoiiiiiiieeeeeee e 467
51.4 Re-expansion of Mailing SISccvoeeiiiiiieeeeeeeee e 468
51.5 Closed Mailing lISTScveuiiiieiieeeeeeeeeee et 468
51.6 Variable Envelope Return Paths (VERP)cooiiieieieeececeeeee s 469
51.7 Virtual dOMAINS ..ottt ettt 470
51.8 Multiple USEr MaIlDOXEScovievieiiiieeeeeeee ettt s ennens 471
51.9 Simplified vacation ProCeSSINGc.covviiiiieieieiicteeeeeteee et 472
51.10 Taking copies Of Mailc.ccioiiiiiiieeeeeee ettt 472
51.11 Intermittently connected NOSESccoeviiiieieiieceeee e 472
51.12 Exim on the upstream SEerver oSt ... 472
51.13 Exim on the intermittently connected client hostccooveiiiieiiniie, 473
52. Using Exim as a non-queueing clientc.ocoooieiiiiiicecieeeeeeee e 474
B3, LOGTIlES ..ottt raenns 476
53.1 Where the [0gs are WIttEINccvooviiieiieeceeeeeeeee ettt 476
53.2 Logging to local files that are periodically “cycled”cccooiiiiievininieeeceeeen, 477
53.3 Datestamped 10 filE€Sooviiioiieieceeee e 477
53.4 LOGQiNG 10 SYSIOQ . evoiiiiciieieieeeee ettt ettt besreereennens 478
B53.5 LOG lINE fIAGS ...veoeieeieiecteeee ettt ettt b e s reereennens 479
53.6 LogQging MESSAJE rECEPLIONooviviciieiieiecieetet ettt ea b sbeereennens 480
53.7 LOQQING AEIIVEIIES ...ttt ettt ettt a bbb e sbeereennens 481
53.8 Discarded dEIIVEIIESccoviiieieieeeee ettt 481
53.9 Deferred deIIVEIIES ..ottt 481
53.10 DElVEIY fAIUIEScvivieieeeeeceeeee ettt ettt b et sa b sbeereennens 482
53.11 FKE AEIVEIIES ..ottt 482
53.12 COMPIBLION ..ottt et se et s e aeenea 482
53.13 Summary of Fields in LOg LINESccooieieiiiiceceeeeeeeeeeeee e 482
53.14 Other 10g ENIHESocvovvieieeieeeeeieeee ettt ettt eaeas 483
53.15 Reducing or increasing what is 10ggedccoovioieieeiieieeeeeeeeeeeeeee s 483
B53.16 MESSAQE 100 ...oveeeieiicieceieete ettt ettt ettt a et et te b reeteennens 492
B4, EXimM UBIIHIESocooeie ettt 493
54.1 Finding out what Exim processes are doing (exiwhat)ccccoceevveviiiecieniececienn, 493
54.2 Selective queue listing (EXIQQIEP) ...cvceeveieieierieteeeeeeeteeee ettt 494
54.3 Summarizing the queue (EXIQSUMMY)c.covoiiuiiieieieieeeee et 495
54.4 Extracting specific information from the log (eXIigrep)ccccevevieeeieviiieieieceeeeens 495

Xii

54.5 Selecting messages by various criteria (€XipiCK)ccocvevveieiiiiiccieieeeeeeee, 496

54.6 Cycling 10g files (EXICYCIOQ) ...cvooveieeierieieeeeeeeeeeetee e 496
54.7 Mail statistics (EXIMSIALS) ...ooviiviiiiiceee e 497
54.8 Checking access policy (exim_CheCKaCCESS)cccivivveieieiiciceeeeeeeeee s 497
54.9 Making DBM files (exim_dbmbuild)ccceviiiiiiiiieceeeee e, 498
54.10 Finding individual retry times (EXINEXt)cccvvieieieiieiceeeeeeeee e 499
54.11 Hints database MaintenancCe ..o 499
54,12 eXiM_AUMPADooviiiiiece ettt ettt ettt et a bbb raennens 499
5413 eXiM_HAYAD oooeieieeeieee et r e reennens 500
L o oy AT Do | o TP 501
54.15 Mailbox maintenance (€XiM_IOCK)cccocvieieriiriieiieieieeeeeet e 501
55. The EXiM MONITOLcoooiiii ettt 503
55.1 RUNNING the MONITOTocviiiiiieeeeeeee ettt s ennens 503
55.2 The SIPCNAIS ..ottt ettt sbesbeereennens 503
55.3 Main aCtion DULIONSc.couiieiiiiieee et 504
55.4 The 10g QiSPIAYoooveiiirieiieiiie ettt ettt b e b ss b sbeereennens 504
55.5 The QUEUE AISPIAYccveeeieiiiicieeeeteeteeeeeee ettt ettt a bbb sreereennens 505
B55.6 THE QUEUE MENU ..evoviiiiiiceiiiecteeeteete ettt ettt et b e te s b beessessesbeeseennans 505
56. Security considerationsccooooiiiiiicce e 508
56.1 Building a more “hardened” EXIM ...ttt 508
56.2 ROO PrIVIIEGE ..ottt ettt ettt et a bt ss b e sbeereennens 508
56.3 Running EXim WithOUL PriVIIEQEcveeiiiiiiiceecceeee e 510
56.4 Delivering 10 [0CAl fil@Sccvioviieieiiieeeeeeeee ettt st 511
56.5 Running 10Cal COMMANASc.eoviiiiiieieiieeteeee ettt ettt ee b b v ennens 511
56.6 Trustin configuration dataccooeeiiiiiciceee s 511
56.7 1PV4 SOUICE FOULING ..ooovieeiiiiiiciieeteeee ettt ettt ettt sa b beessesbesbeereennens 512
56.8 The VRFY, EXPN, and ETRN commands in SMTPooooeeeoeeeeeeeeeeeeeeeeeeeeeeee 512
56.9 PrIVIIEGEA USEIS ..oeooniiiiceieeeteeeeeee ettt ettt ettt b ettt b e beessesbesbeereennens 512
56.10 SPOOIFIlES ...ttt ettt ettt 512
56.11 USE OF @rgV[0] ..eeeeveiiiiieeieiecie ettt ettt ra b te s esbesbeereennens 513
56.12 Use Of %f fOrmattingcc.oovioiiiiieeee e 513
56.13 Embedded EXimM Path ...ttt 513
56.14 Dynamic Module AIFECIONYccoovioieiiiiiceeeeeeeeee ettt 513
56.15 USE OF SPHNIF() eeevveriiiieeieiie ettt b e sbeeveennens 513
56.16 Use of debug_printf() and 10g_WHEE() ...cceeeeeiiiiieieieeeeeeeeeeeeeeee e 513
56.17 Use of strcat() and StrCPY() .ooveeveerieeeieieceeeeeeeeeeee ettt 513
57. FOrmat of SPOOIfil@Sccoooiiie s 514
57.1 FOrmat of the -H fileo.eoee e 514
57.2 FOrmat of the -D fil@c.eeeeee e 518
58. DKIM, SPF, SRS and DMARCccooo ottt 519
58.1 DKIM (DomainKeys Identified Mail)ccooeeviiiieieiiiceeeeeceeeeeeee e 519
58.2 Signing oUtgOING MESSAYEScvoveuieviiiieeieeeeteete ettt b et eaeas 519
58.3 Verifying DKIM signatures in incoming mailccccoevioieieiiiicieieeceeeeieeeeeeens 522
58.4 SPF (Sender Policy Framework)cocvoioioiiiiiieieieeeeeeeeee e 525
58.5 SRS (Sender Rewriting SCheme) ..o 527
58.6 DIMARC ...ttt ettt a e s seae e ns 528
BO. PrOXIES ...ttt ettt ettt ae bt et neeaen 533
59.1 INDOUNG PrOXIES ..oovvieiiiiceieteie ettt ettt ettt b b e te b b beessesbesteeseennens 533

59.2 OUDOUND PrOXIESoviuvieieeiirieiieieee ettt ettt ettt et b e se v sa s nseaeeneas 534

B5O.3 LOGOING 1ottt ettt ettt ettt ettt et e te et b et e e te et e beete e st e b e beersenbesbeereennans 535
60. InternationaliSation ... 536
60.1 MTA OPEIALIONS ...oeiiiiteceeeet ettt et ettt b e e te b b reessesbesbeereennens 536
60.2 MDA OPEIALIONS ...eviiiiiciicete ettt ettt et b b te b e b e e teessesbesbeereennens 537
61, EVENTS ..ottt 538
62. Adding new drivers or IOOKUP tYPESccovioiiiiiiiceeeeeeee e 541
OPLIONS INAGX ..ottt ettt et b bt sseteeae s ss e e eaeerens 542
Variables INAEX ...ttt 549
CONCEPL INAGX ...ttt ettt et e te e b e b e e ssetesaesse st eseeseerens 551

Xty

1. Introduction

Exim is a mail transfer agent (MTA) for hosts that are running Unix or Unix-like operating systems. It
was designed on the assumption that it would be run on hosts that are permanently connected to the
Internet. However, it can be used on intermittently connected hosts with suitable configuration
adjustments.

Configuration files currently exist for the following operating systems: AIX, BSD/OS (aka BSDI),
Darwin (Mac OS X), DGUX, Dragonfly, FreeBSD, GNU/Hurd, GNU/Linux, HI-OSF (Hitachi), HI-
UX, HP-UX, IRIX, MIPS RISCOS, NetBSD, OpenBSD, OpenUNIX, QNX, SCO, SCO SVR4.2 (aka
UNIX-SV), Solaris (aka SunOS5), SunOS4, Tru64-Unix (formerly Digital UNIX, formerly DEC-
OSF1), Ultrix, and UnixWare. Some of these operating systems are no longer current and cannot
easily be tested, so the configuration files may no longer work in practice.

There are also configuration files for compiling Exim in the Cygwin environment that can be installed
on systems running Windows. However, this document does not contain any information about run-
ning Exim in the Cygwin environment.

The terms and conditions for the use and distribution of Exim are contained in the file NOTICE. Exim
is distributed under the terms of the GNU General Public Licence, a copy of which may be found in
the file LICENCE.

The use, supply, or promotion of Exim for the purpose of sending bulk, unsolicited electronic mail is
incompatible with the basic aims of Exim, which revolve around the free provision of a service that
enhances the quality of personal communications. The author of Exim regards indiscriminate mass-
mailing as an antisocial, irresponsible abuse of the Internet.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, I could never have contemplated starting to write a new MTA. Many of
the ideas and user interfaces were originally taken from Smail 3, though the actual code of Exim is
entirely new, and has developed far beyond the initial concept.

Many people, both in Cambridge and around the world, have contributed to the development and the
testing of Exim, and to porting it to various operating systems. I am grateful to them all. The
distribution now contains a file called ACKNOWLEDGMENTS, in which I have started recording the
names of contributors.

1.1 Exim documentation

This edition of the Exim specification applies to version 4.96-RC1 of Exim. Substantive changes from
the 4.95 edition are marked in some renditions of this document; this paragraph is so marked if the
rendition is capable of showing a change indicator.

This document is very much a reference manual; it is not a tutorial. The reader is expected to have
some familiarity with the SMTP mail transfer protocol and with general Unix system administration.
Although there are some discussions and examples in places, the information is mostly organized in a
way that makes it easy to look up, rather than in a natural order for sequential reading. Furthermore,
this manual aims to cover every aspect of Exim in detail, including a number of rarely-used, special-
purpose features that are unlikely to be of very wide interest.

An “easier” discussion of Exim which provides more in-depth explanatory, introductory, and tutorial
material can be found in a book entitled The Exim SMTP Mail Server (second edition, 2007), pub-
lished by UIT Cambridge (https://www.uit.co.uk/exim-book/).

The book also contains a chapter that gives a general introduction to SMTP and Internet mail.
Inevitably, however, the book is unlikely to be fully up-to-date with the latest release of Exim. (Note
that the earlier book about Exim, published by O’Reilly, covers Exim 3, and many things have
changed in Exim 4.)

If you are using a Debian distribution of Exim, you will find information about Debian-specific
features in the file /usr/share/doc/exim4-base/README.Debian. The command man update-exim.conf
is another source of Debian-specific information.

1 Introduction (1)

As Exim develops, there may be features in newer versions that have not yet made it into this
document, which is updated only when the most significant digit of the fractional part of the version
number changes. Specifications of new features that are not yet in this manual are placed in the file
doc/NewStuff in the Exim distribution.

Some features may be classified as “experimental”. These may change incompatibly while they are
developing, or even be withdrawn. For this reason, they are not documented in this manual.
Information about experimental features can be found in the file doc/experimental.txt.

All changes to Exim (whether new features, bug fixes, or other kinds of change) are noted briefly in
the file called doc/ChangeLog.

This specification itself is available as an ASCII file in doc/spec.txt so that it can easily be searched
with a text editor. Other files in the doc directory are:

OptionLists.txt list of all options in alphabetical order
dbm.discuss.txt discussion about DBM libraries

exim.8 a man page of Exim’s command line options
experimental.txt documentation of experimental features
filtertxt specification of the filter language
Exim3.upgrade upgrade notes from release 2 to release 3
Exim4.upgrade upgrade notes from release 3 to release 4
openssl.txt installing a current OpenSSL release

The main specification and the specification of the filtering language are also available in other
formats (HTML, PostScript, PDF, and Texinfo). Sectionbelow tells you how to get hold of these.

1.2 FTP site and websites

The primary site for Exim source distributions is the exim.org FTP site, available over HTTPS, HTTP
and FTP. These services, and the exim.org website, are hosted at the University of Cambridge.

As well as Exim distribution tar files, the Exim website contains a number of differently formatted
versions of the documentation. A recent addition to the online information is the Exim wiki
(https://wiki.exim.org), which contains what used to be a separate FAQ, as well as various other
examples, tips, and know-how that have been contributed by Exim users. The wiki site should always
redirect to the correct place, which is currently provided by GitHub, and is open to editing by anyone
with a GitHub account.

An Exim Bugzilla exists at https://bugs.exim.org. You can use this to report bugs, and also to add
items to the wish list. Please search first to check that you are not duplicating a previous entry. Please
do not ask for configuration help in the bug-tracker.

1.3 Mailing lists

The following Exim mailing lists exist:

exim-announce @ exim.org Moderated, low volume announcements list
exim-users @exim.org General discussion list

exim-dev @ exim.org Discussion of bugs, enhancements, etc.
exim-cvs @exim.org Automated commit messages from the VCS

You can subscribe to these lists, change your existing subscriptions, and view or search the archives
via the mailing lists link on the Exim home page. If you are using a Debian distribution of Exim, you
may wish to subscribe to the Debian-specific mailing list pkg-exim4-users @lists.alioth.debian.org via
this web page:

https://alioth-lists.debian.net/cgi-bin/mailman/listinfo/pkg-exim4-users

Please ask Debian-specific questions on that list and not on the general Exim lists.

2 Introduction (1)

1.4 Bug reports

Reports of obvious bugs can be emailed to bugs@exim.org or reported via the Bugzilla
(https://bugs.exim.org). However, if you are unsure whether some behaviour is a bug or not, the best
thing to do is to post a message to the exim-dev mailing list and have it discussed.

1.5 Where to find the Exim distribution
The master distribution site for the Exim distribution is
https://downloads.exim.org/
The service is available over HTTPS, HTTP and FTP. We encourage people to migrate to HTTPS.

The content served at https://downloads.exim.org/ is identical to the content served at
https://ftp.exim.org/pub/exim and ftp://ftp.exim.org/pub/exim.

If accessing via a hostname containing ftp, then the file references that follow are relative to the exim
directories at these sites. If accessing via the hostname downloads then the subdirectories described
here are top-level directories.

There are now quite a number of independent mirror sites around the world. Those that I know about
are listed in the file called Mirrors.

Within the top exim directory there are subdirectories called exim3 (for previous Exim 3 distri-
butions), exim4 (for the latest Exim 4 distributions), and Testing for testing versions. In the exim4
subdirectory, the current release can always be found in files called

exim-n.nn.tar.xz
exim-n.nn.tar.gz
exim-n.nn.tar.bz2

where n.nn is the highest such version number in the directory. The three files contain identical data;
the only difference is the type of compression. The .xz file is usually the smallest, while the .gz file is
the most portable to old systems.

The distributions will be PGP signed by an individual key of the Release Coordinator. This key will
have a uid containing an email address in the exim.org domain and will have signatures from other
people, including other Exim maintainers. We expect that the key will be in the "strong set" of PGP
keys. There should be a trust path to that key from the Exim Maintainer’s PGP keys, a version of
which can be found in the release directory in the file Exim-Maintainers-Keyring.asc. All keys used
will be available in public keyserver pools, such as pool.sks-keyservers.net.

At the time of the last update, releases were being made by Jeremy Harris and signed with key
OxBCE58C8CE41F32DF. Other recent keys used for signing are those of Heiko Schlittermann,
0x26101B62F69376CE, and of Phil Pennock, 0x4D1E900E14C1CCO4.

The signatures for the tar bundles are in:

exim-n.nn.tar.xz7.asc
exim-n.nn.tar.gz.asc
exim-n.nn.tar.bz2.asc

For each released version, the log of changes is made available in a separate file in the directory
ChangeLogs so that it is possible to find out what has changed without having to download the entire
distribution.

The main distribution contains ASCII versions of this specification and other documentation; other
formats of the documents are available in separate files inside the exim4 directory of the FTP site:

exim-html-n.nn.tar.gz
exim-pdf-n.nn.tar.gz
exim-postscript-n.nn.tar.gz
exim-texinfo-n.nn.tar.gz

3 Introduction (1)

These tar files contain only the doc directory, not the complete distribution, and are also available in
.bz2 and .xz forms.

1.6 Limitations

* Exim is designed for use as an Internet MTA, and therefore handles addresses in RFC 2822 domain
format only. It cannot handle UUCP “bang paths”, though simple two-component bang paths can
be converted by a straightforward rewriting configuration. This restriction does not prevent Exim
from being interfaced to UUCP as a transport mechanism, provided that domain addresses are
used.

* Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically qualified with a configured domain value. Configuration
options specify from which remote systems unqualified addresses are acceptable. These are then
qualified on arrival.

* The only external transport mechanisms that are currently implemented are SMTP and LMTP over
a TCP/IP network (including support for IPv6). However, a pipe transport is available, and there
are facilities for writing messages to files and pipes, optionally in batched SMTP format; these
facilities can be used to send messages to other transport mechanisms such as UUCP, provided they
can handle domain-style addresses. Batched SMTP input is also catered for.

* Exim is not designed for storing mail for dial-in hosts. When the volumes of such mail are large, it
is better to get the messages “delivered” into files (that is, off Exim’s queue) and subsequently
passed on to the dial-in hosts by other means.

* Although Exim does have basic facilities for scanning incoming messages, these are not compre-
hensive enough to do full virus or spam scanning. Such operations are best carried out using
additional specialized software packages. If you compile Exim with the content-scanning exten-
sion, straightforward interfaces to a number of common scanners are provided.

1.7 Runtime configuration

Exim’s runtime configuration is held in a single text file that is divided into a number of sections. The
entries in this file consist of keywords and values, in the style of Smail 3 configuration files. A default
configuration file which is suitable for simple online installations is provided in the distribution, and
is described in chapterbelow.

1.8 Calling interface

Like many MTAs, Exim has adopted the Sendmail command line interface so that it can be a straight
replacement for /usr/lib/sendmail or /usr/sbin/sendmail when sending mail, but you do not need to
know anything about Sendmail in order to run Exim. For actions other than sending messages,
Sendmail-compatible options also exist, but those that produce output (for example, -bp, which lists
the messages in the queue) do so in Exim’s own format. There are also some additional options that
are compatible with Smail 3, and some further options that are new to Exim. Chapterdocuments all
Exim’s command line options. This information is automatically made into the man page that forms
part of the Exim distribution.

Control of messages in the queue can be done via certain privileged command line options. There is
also an optional monitor program called eximon, which displays current information in an X window,
and which contains a menu interface to Exim’s command line administration options.

1.9 Terminology

The body of a message is the actual data that the sender wants to transmit. It is the last part of a
message and is separated from the header (see below) by a blank line.

When a message cannot be delivered, it is normally returned to the sender in a delivery failure
message or a “non-delivery report” (NDR). The term bounce is commonly used for this action, and
the error reports are often called bounce messages. This is a convenient shorthand for “delivery failure

4 Introduction (1)

error report”. Such messages have an empty sender address in the message’s envelope (see below) to
ensure that they cannot themselves give rise to further bounce messages.

The term default appears frequently in this manual. It is used to qualify a value which is used in the
absence of any setting in the configuration. It may also qualify an action which is taken unless a
configuration setting specifies otherwise.

The term defer is used when the delivery of a message to a specific destination cannot immediately
take place for some reason (a remote host may be down, or a user’s local mailbox may be full). Such
deliveries are deferred until a later time.

The word domain is sometimes used to mean all but the first component of a host’s name. It is not
used in that sense here, where it normally refers to the part of an email address following the @ sign.

A message in transit has an associated envelope, as well as a header and a body. The envelope
contains a sender address (to which bounce messages should be delivered), and any number of
recipient addresses. References to the sender or the recipients of a message usually mean the
addresses in the envelope. An MTA uses these addresses for delivery, and for returning bounce
messages, not the addresses that appear in the header lines.

The header of a message is the first part of a message’s text, consisting of a number of lines, each of
which has a name such as From:, To:, Subject:, etc. Long header lines can be split over several text
lines by indenting the continuations. The header is separated from the body by a blank line.

The term local part, which is taken from RFC 2822, is used to refer to the part of an email address
that precedes the @ sign. The part that follows the @ sign is called the domain or mail domain.

The terms local delivery and remote delivery are used to distinguish delivery to a file or a pipe on the
local host from delivery by SMTP over TCP/IP to another host. As far as Exim is concerned, all hosts
other than the host it is running on are remote.

Return path is another name that is used for the sender address in a message’s envelope.

The term queue is used to refer to the set of messages awaiting delivery because this term is in
widespread use in the context of MTAs. However, in Exim’s case, the reality is more like a pool than
a queue, because there is normally no ordering of waiting messages.

The term queue runner is used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAs and also relates to the
command rungq, but in Exim the waiting messages are normally processed in an unpredictable order.

The term spool directory is used for a directory in which Exim keeps the messages in its queue — that
is, those that it is in the process of delivering. This should not be confused with the directory in which
local mailboxes are stored, which is called a “spool directory” by some people. In the Exim documen-
tation, “spool” is always used in the first sense.

5 Introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

» Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE2 library, copyright © University of Cambridge. The source to PCRE2 is
not longer shipped with Exim, so you will need to use the version of PCRE2 shipped with your
system, or obtain and install the full version of the library from
https://github.com/PhilipHazel/pcre2/releases.

* Support for the cdb (Constant DataBase) lookup method is provided by code contributed by Nigel
Metheringham of (at the time he contributed it) Planet Online Ltd. The implementation is com-
pletely contained within the code of Exim. It does not link against an external cdb library. The code
contains the following statements:

Copyright © 1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version. This code implements
Dan Bernstein’s Constant DataBase (cdb) spec. Information, the spec and sample code
for cdb can be obtained from https://cr.yp.to/cdb.html. This implementation borrows
some code from Dan Bernstein’s implementation (which has no license restrictions
applied to it).

* Client support for Microsoft’s Secure Password Authentication is provided by code contributed by
Marc Prud’hommeaux. Server support was contributed by Tom Kistner. This includes code taken
from the Samba project, which is released under the Gnu GPL.

* Support for calling the Cyrus pwcheck and saslauthd daemons is provided by code taken from the
Cyrus-SASL library and adapted by Alexander S. Sabourenkov. The permission notice appears
below, in accordance with the conditions expressed therein.

Copyright © 2001 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

(3) The name “Carnegie Mellon University” must not be used to endorse or promote
products derived from this software without prior written permission. For per-
mission or any other legal details, please contact

Office of Technology Transfer
Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

(412) 268-4387, fax: (412) 268-7395
tech-transfer @ andrew.cmu.edu

(4) Redistributions of any form whatsoever must retain the following
acknowledgment:

“This product includes software developed by Computing Services at Carnegie
Mellon University (https://www.cmu.edu/computing/.”

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES

6 Incorporated code (2)

OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE
MELLON UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

* The Exim Monitor program, which is an X-Window application, includes modified versions of the
Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears below, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and
the Massachusetts Institute of Technology, Cambridge, Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear
in supporting documentation, and that the names of Digital or MIT not be used in
advertising or publicity pertaining to distribution of the software without specific, writ-
ten prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

* The DMARC implementation uses the OpenDMARC library which is Copyrighted by The Trusted
Domain Project. Portions of Exim source which use OpenDMARC derived code are indicated in
the respective source files. The full OpenDMARC license is provided in the LICENSE.opendmarc
file contained in the distributed source code.

* Many people have contributed code fragments, some large, some small, that were not covered by

any specific license requirements. It is assumed that the contributors are happy to see their code
incorporated into Exim under the GPL.

7 Incorporated code (2)

3. How Exim receives and delivers mail

3.1 Overall philosophy

Exim is designed to work efficiently on systems that are permanently connected to the Internet and
are handling a general mix of mail. In such circumstances, most messages can be delivered immedi-
ately. Consequently, Exim does not maintain independent queues of messages for specific domains or
hosts, though it does try to send several messages in a single SMTP connection after a host has been
down, and it also maintains per-host retry information.

3.2 Policy control

Policy controls are now an important feature of MTAs that are connected to the Internet. Perhaps their
most important job is to stop MTAs from being abused as “open relays” by misguided individuals
who send out vast amounts of unsolicited junk and want to disguise its source. Exim provides flexible
facilities for specifying policy controls on incoming mail:

* Exim 4 (unlike previous versions of Exim) implements policy controls on incoming mail by means
of Access Control Lists (ACLs). Each list is a series of statements that may either grant or deny
access. ACLs can be used at several places in the SMTP dialogue while receiving a message from a
remote host. However, the most common places are after each RCPT command, and at the very
end of the message. The sysadmin can specify conditions for accepting or_rejecting individual
recipients or the entire message, respectively, at these two points (see chapter . Denial of access
results in an SMTP error code.

* An ACL is also available for locally generated, non-SMTP messages. In this case, the only avail-
able actions are to accept or deny the entire message.

* When Exim is compiled with the content-scanning extension, facilities are provided in the ACL
mechanism for passing the message to external virus and/or spam scanning software. The result of
such a scan is passed back to the ACL, which can then use it to decide what to do with the
message.

* When a message has been received, either from a remote host or from the local host, but before the
final acknowledgment has been sent, a locally supplied C function called local scan() can be run to
inspect the message and decide whether to accept it or not (see chapter IE[) If the message is
accepted, the list of recipients can be modified by the function.

» Using the local_scan() mechanism is another way of calling external scanner software. The SA-
Exim add-on package works this way. It does not require Exim to be compiled with the content-
scanning extension.

* After a message has been accepted, a further checking mechanism is available in the form of the
system filter (see chapter . This runs at the start of every delivery process.

3.3 User filters

In a conventional Exim configuration, users are able to run private filters by setting up appropriate
Jforward files in their home directories. See chapter (about the redirect router) for the configuration
needed to support this, and the separate document entitled Exim’s interfaces to mail filtering for user
details. Two different kinds of filtering are available:

» Sieve filters are written in the standard filtering language that is defined by RFC 3028.

» Exim filters are written in a syntax that is unique to Exim, but which is more powerful than Sieve,
which it pre-dates.

User filters are run as part of the routing process, described below.

8 Receiving and delivering mail (3)

3.4 Message identification

Every message handled by Exim is given a message id which is sixteen characters long. It is divided
into three parts, separated by hyphens, for example 16vVDhn-0001bo-D3. Each part is a sequence
of letters and digits, normally encoding numbers in base 62. However, in the Darwin operating system
(Mac OS X) and when Exim is compiled to run under Cygwin, base 36 (avoiding the use of lower
case letters) is used instead, because the message id is used to construct filenames, and the names of
files in those systems are not always case-sensitive.

The detail of the contents of the message id have changed as Exim has evolved. Earlier versions relied
on the operating system not re-using a process id (pid) within one second. On modern operating
systems, this assumption can no longer be made, so the algorithm had to be changed. To retain
backward compatibility, the format of the message id was retained, which is why the following rules
are somewhat eccentric:

» The first six characters of the message id are the time at which the message started to be received,
to a granularity of one second. That is, this field contains the number of seconds since the start of
the epoch (the normal Unix way of representing the date and time of day).

» After the first hyphen, the next six characters are the id of the process that received the message.
» There are two different possibilities for the final two characters:

(1) If localhost_number is not set, this value is the fractional part of the time of reception,
normally in units of 1/2000 of a second, but for systems that must use base 36 instead of base
62 (because of case-insensitive file systems), the units are 1/1000 of a second.

(2) If localhost_number is set, it is multiplied by 200 (100) and added to the fractional part of
the time, which in this case is in units of 1/200 (1/100) of a second.

After a message has been received, Exim waits for the clock to tick at the appropriate resolution
before proceeding, so that if another message is received by the same process, or by another process
with the same (re-used) pid, it is guaranteed that the time will be different. In most cases, the clock
will already have ticked while the message was being received.

3.5 Receiving mail

The only way Exim can receive mail from another host is using SMTP over TCP/IP, in which case the
sender and recipient addresses are transferred using SMTP commands. However, from a locally
running process (such as a user’s MUA), there are several possibilities:

* If the process runs Exim with the -bm option, the message is read non-interactively (usually via a
pipe), with the recipients taken from the command line, or from the body of the message if -t is
also used.

 If the process runs Exim with the -bS option, the message is also read non-interactively, but in this
case the recipients are listed at the start of the message in a series of SMTP RCPT commands,
terminated by a DATA command. This is called “batch SMTP” format, but it isn’t really SMTP.
The SMTP commands are just another way of passing envelope addresses in a non-interactive
submission.

» If the process runs Exim with the -bs option, the message is read interactively, using the SMTP
protocol. A two-way pipe is normally used for passing data between the local process and the Exim
process. This is “real” SMTP and is handled in the same way as SMTP over TCP/IP. For example,
the ACLs for SMTP commands are used for this form of submission.

* A local process may also make a TCP/IP call to the host’s loopback address (127.0.0.1) or any
other of its IP addresses. When receiving messages, Exim does not treat the loopback address
specially. It treats all such connections in the same way as connections from other hosts.

In the three cases that do not involve TCP/IP, the sender address is constructed from the login name of
the user that called Exim and a default qualification domain (which can be set by the qualify_domain
configuration option). For local or batch SMTP, a sender address that is passed using the SMTP
MAIL command is ignored. However, the system administrator may allow certain users (“trusted

9 Receiving and delivering mail (3)

users”) to specify a different sender addresses unconditionally, or all users to specify certain forms of
different sender address. The -f option or the SMTP MAIL command is used to specify these different
addresses. See section for details of trusted users, and the untrusted_set_sender option for a way
of allowing untrusted users to change sender addresses.

Messages received by either of the non-interactive mechanisms are subject to checking by the non-
SMTP ACL if one is defined. Messages received using SMTP (either over TCP/IP or interacting with
a local process) can be checked by a number of ACLs that operate at different times during the SMTP
session. Either individual recipients or the entire message can be rejected if local policy requirements
are not met. The local_scan() function (see Chapter@ is run for all incoming messages.

Exim can be configured not to start a delivery process when a message is received; this can be
unconditional, or depend on the number of incoming SMTP connections or the system load. In these
situations, new messages wait on the queue until a queue runner process picks them up. However, in
standard configurations under normal conditions, delivery is started as soon as a message is received.

3.6 Handling an incoming message

When Exim accepts a message, it writes two files in its spool directory. The first contains the envelope
information, the current status of the message, and the header lines, and the second contains the body
of the message. The names of the two spool files consist of the message id, followed by —H for the file
containing the envelope and header, and —D for the data file.

By default, all these message files are held in a single directory called input inside the general Exim
spool directory. Some operating systems do not perform very well if the number of files in a directory
gets large; to improve performance in such cases, the split_spool_directory option can be used. This
causes Exim to split up the input files into 62 sub-directories whose names are single letters or digits.
When this is done, the queue is processed one sub-directory at a time instead of all at once, which can
improve overall performance even when there are not enough files in each directory to affect file
system performance.

The envelope information consists of the address of the message’s sender and the addresses of the
recipients. This information is entirely separate from any addresses contained in the header lines. The
status of the message includes a list of recipients who have already received the message. The format
of the first spool file is described in chapter]EI

Address rewriting that is specified in the rewrite section of the configuration (see chapter is done
once and for all on incoming addresses, both in the header lines and the envelope, at the time the
message is accepted. If during the course of delivery additional addresses are generated (for example,
via aliasing), these new addresses are rewritten as soon as they are generated. At the time a message is
actually delivered (transported) further rewriting can take place; because this is a transport option, it
can be different for different forms of delivery. It is also possible to specify the addition or removal of
certain header lines at the time the message is delivered (see chapters and.

3.7 Life of a message

A message remains in the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originally created it. In cases
when delivery cannot proceed — for example when a message can neither be delivered to its recipients
nor returned to its sender, the message is marked “frozen” on the spool, and no more deliveries are
attempted.

An administrator can “thaw” such messages when the problem has been corrected, and can also
freeze individual messages by hand if necessary. In addition, an administrator can force a delivery
error, causing a bounce message to be sent.

There are options called ignore_bounce_errors_after and timeout_frozen_after, which discard
frozen messages after a certain time. The first applies only to frozen bounces, the second to all frozen
messages.

While Exim is working on a message, it writes information about each delivery attempt to its main
log file. This includes successful, unsuccessful, and delayed deliveries for each recipient (see chapter

10 Receiving and delivering mail (3)

53). The log lines are also written to a separate message log file for each message. These logs are
solely for the benefit of the administrator and are normally deleted along with the spool files when
processing of a message is complete. The use of individual message logs can be disabled by setting
no_message_logs; this might give an improvement in performance on very busy systems.

All the information Exim itself needs to set up a delivery is kept in the first spool file, along with the
header lines. When a successful delivery occurs, the address is immediately written at the end of a
journal file, whose name is the message id followed by —J. At the end of a delivery run, if there are
some addresses left to be tried again later, the first spool file (the —H file) is updated to indicate which
these are, and the journal file is then deleted. Updating the spool file is done by writing a new file and
renaming it, to minimize the possibility of data loss.

Should the system or Exim crash after a successful delivery but before the spool file has been
updated, the journal is left lying around. The next time Exim attempts to deliver the message, it reads
the journal file and updates the spool file before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.8 Processing an address for delivery

The main delivery processing elements of Exim are called routers and transports, and collectively
these are known as drivers. Code for a number of them is provided in the source distribution, and
compile-time options specify which ones are included in the binary. Runtime options specify which
ones are actually used for delivering messages.

Each driver that is specified in the runtime configuration is an instance of that particular driver type.
Multiple instances are allowed; for example, you can set up several different smitp transports, each
with different option values that might specify different ports or different timeouts. Each instance has
its own identifying name. In what follows we will normally use the instance name when discussing
one particular instance (that is, one specific configuration of the driver), and the generic driver name
when discussing the driver’s features in general.

A router is a driver that operates on an address, either determining how its delivery should happen, by
assigning it to a specific transport, or converting the address into one or more new addresses (for
example, via an alias file). A router may also explicitly choose to fail an address, causing it to be
bounced.

A transport is a driver that transmits a copy of the message from Exim’s spool to some destination.
There are two kinds of transport: for a local transport, the destination is a file or a pipe on the local
host, whereas for a remote transport the destination is some other host. A message is passed to a
specific transport as a result of successful routing. If a message has several recipients, it may be
passed to a number of different transports.

An address is processed by passing it to each configured router instance in turn, subject to certain
preconditions, until a router accepts the address or specifies that it should be bounced. We will
describe this process in more detail shortly. First, as a simple example, we consider how each recipi-
ent address in a message is processed in a small configuration of three routers.

To make this a more concrete example, it is described in terms of some actual routers, but remember,
this is only an example. You can configure Exim’s routers in many different ways, and there may be
any number of routers in a configuration.

The first router that is specified in a configuration is often one that handles addresses in domains that
are not recognized specifically by the local host. Typically these are addresses for arbitrary domains
on the Internet. A precondition is set up which looks for the special domains known to the host (for
example, its own domain name), and the router is run for addresses that do not match. Typically, this
is a router that looks up domains in the DNS in order to find the hosts to which this address routes. If
it succeeds, the address is assigned to a suitable SMTP transport; if it does not succeed, the router is
configured to fail the address.

The second router is reached only when the domain is recognized as one that “belongs” to the local
host. This router does redirection — also known as aliasing and forwarding. When it generates one or
more new addresses from the original, each of them is routed independently from the start. Otherwise,

11 Receiving and delivering mail (3)

the router may cause an address to fail, or it may simply decline to handle the address, in which case
the address is passed to the next router.

The final router in many configurations is one that checks to see if the address belongs to a local
mailbox. The precondition may involve a check to see if the local part is the name of a login account,
or it may look up the local part in a file or a database. If its preconditions are not met, or if the router
declines, we have reached the end of the routers. When this happens, the address is bounced.

3.9 Processing an address for verification

As well as being used to decide how to deliver to an address, Exim’s routers are also used for address
verification. Verification can be requested as one of the checks to be performed in an ACL for
incoming messages, on both sender and recipient addresses, and it can be tested using the -bv and
-bvs command line options.

When an address is being verified, the routers are run in “verify mode”. This does not affect the way
the routers work, but it is a state that can be detected. By this means, a router can be skipped or made
to behave differently when verifying. A common example is a configuration in which the first router
sends all messages to a message-scanning program unless they have been previously scanned. Thus,
the first router accepts all addresses without any checking, making it useless for verifying. Normally,
the no_verify option would be set for such a router, causing it to be skipped in verify mode.

3.10 Running an individual router

As explained in the example above, a number of preconditions are checked before running a router. If
any are not met, the router is skipped, and the address is passed to the next router. When all the
preconditions on a router are met, the router is run. What happens next depends on the outcome,
which is one of the following:

* accept: The router accepts the address, and either assigns it to a transport or generates one or more
“child” addresses. Processing the original address ceases unless the unseen option is set on the
router. This option can be used to set up multiple deliveries with different routing (for example, for
keeping archive copies of messages). When unseen is set, the address is passed to the next router.
Normally, however, an accept return marks the end of routing.

Any child addresses generated by the router are processed independently, starting with the first
router by default. It is possible to change this by setting the redirect_router option to specify
which router to start at for child addresses. Unlike pass_router (see below) the router specified by
redirect_router may be anywhere in the router configuration.

* pass: The router recognizes the address, but cannot handle it itself. It requests that the address be
passed to another router. By default, the address is passed to the next router, but this can be
changed by setting the pass_router option. However, (unlike redirect_router) the named router
must be below the current router (to avoid loops).

* decline: The router declines to accept the address because it does not recognize it at all. By default,
the address is passed to the next router, but this can be prevented by setting the no_more option.
When no_more is set, all the remaining routers are skipped. In effect, no_more converts decline
into fail.

* fail: The router determines that the address should fail, and queues it for the generation of a bounce
message. There is no further processing of the original address unless unseen is set on the router.

* defer: The router cannot handle the address at the present time. (A database may be offline, or a
DNS lookup may have timed out.) No further processing of the address happens in this delivery
attempt. It is tried again next time the message is considered for delivery.

» error: There is some error in the router (for example, a syntax error in its configuration). The action
is as for defer.

If an address reaches the end of the routers without having been accepted by any of them, it is
bounced as unrouteable. The default error message in this situation is “unrouteable address”, but you

12 Receiving and delivering mail (3)

can set your own message by making use of the cannot_route_message option. This can be set for
any router; the value from the last router that “saw’ the address is used.

Sometimes while routing you want to fail a delivery when some conditions are met but others are not,
instead of passing the address on for further routing. You can do this by having a second router that
explicitly fails the delivery when the relevant conditions are met. The redirect router has a “fail”
facility for this purpose.

3.11 Duplicate addresses

Once routing is complete, Exim scans the addresses that are assigned to local and remote transports
and discards any duplicates that it finds. During this check, local parts are treated case-sensitively.
This happens only when actually delivering a message; when testing routers with -bt, all the routed
addresses are shown.

3.12 Router preconditions

The preconditions that are tested for each router are listed below, in the order in which they are tested.
The individual configuration options are described in more detail in chapter

* The local_part_prefix and local_part_suffix options can specify that the local parts handled by
the router may or must have certain prefixes and/or suffixes. If a mandatory affix (prefix or suffix)
is not present, the router is skipped. These conditions are tested first. When an affix is present, it
is removed from the local part before further processing, including the evaluation of any other
conditions.

* Routers can be designated for use only when not verifying an address, that is, only when routing it
for delivery (or testing its delivery routing). If the verify option is set false, the router is skipped
when Exim is verifying an address. Setting the verify option actually sets two options, verify_
sender and verify_recipient, which independently control the use of the router for sender and
recipient verification. You can set these options directly if you want a router to be used for only one
type of verification. Note that cutthrough delivery is classed as a recipient verification for this

purpose.

» If the address_test option is set false, the router is skipped when Exim is run with the -bt option to
test an address routing. This can be helpful when the first router sends all new messages to a
scanner of some sort; it makes it possible to use -bt to test subsequent delivery routing without
having to simulate the effect of the scanner.

* Routers can be designated for use only when verifying an address, as opposed to routing it for
delivery. The verify_only option controls this. Again, cutthrough delivery counts as a verification.

* Individual routers can be explicitly skipped when running the routers to check an address given in
the SMTP EXPN command (see the expn option).

 If the domains option is set, the domain of the address must be in the set of domains that it defines.
A match verifies the variable $domain (which carries tainted data) and assigns an untainted value
to the $domain_data variable. Such an untainted value is often needed in the transport. For
specifics of the matching operation and the resulting untainted value, refer to section

When an untainted value is wanted, use this option rather than the generic condition option.

« If the local_parts option is set, the local part of the address must be in the set of local parts that it
defines. A match verifies the variable $local_part (which carries tainted data) and assigns an
untainted value to the $local_part_data variable. Such an untainted value is often needed in the
transiort. For specifics of the matching operation and the resulting untainted value, refer to section

10.22

When an untainted value is wanted, use this option rather than the generic condition option.

If local_part_prefix or local_part_suffix is in use, the prefix or suffix is removed from the local
part before this check. If you want to do precondition tests on local parts that include affixes, you

13 Receiving and delivering mail (3)

can do so by using a condition option (see below) that uses the variables $local_part, $local_part_
prefix, $local_part_prefix_v, $local_part_suffix and $local_part_suffix_v as necessary.

» If the check_local_user option is set, the local part must be the name of an account on the local
host. If this check succeeds, the uid and gid of the local user are placed in $local_user_uid and
Slocal_user_gid and the user’s home directory is placed in $home; these values can be used in the
remaining preconditions.

 If the router_home_directory option is set, it is expanded at this point, because it overrides the
value of $home. If this expansion were left till later, the value of $home as set by check_local_user
would be used in subsequent tests. Having two different values of $home in the same router could
lead to confusion.

» If the senders option is set, the envelope sender address must be in the set of addresses that it
defines.

 If the require_files option is set, the existence or non-existence of specified files is tested.

» If the condition option is set, it is evaluated and tested. This option uses an expanded string to
allow you to set up your own custom preconditions. Expanded strings are described in chapter

Note that while using this option for address matching technically works, it does not set any
de-tainted values. Such values are often needed, either for router-specific options or for transport
options. Using the domains and local_parts options is usually the most convenient way to obtain
them.

Note that require_files comes near the end of the list, so you cannot use it to check for the existence
of a file in which to lookup up a domain, local part, or sender. However, as these options are all
expanded, you can use the exists expansion condition to make such tests within each condition. The
require_files option is intended for checking files that the router may be going to use internally, or
which are needed by a specific transport (for example, .procmailrc).

3.13 Delivery in detail
When a message is to be delivered, the sequence of events is as follows:

» If a system-wide filter file is specified, the message is passed to it. The filter may add recipients to
the message, replace the recipients, discard the message, cause a new message to be generated, or
cause the message delivery to fail. The format of the system filter file is the same as for Exim user
filter files, described in the separate document entitled Exim’s interfaces to mail filtering. (Note:
Sieve cannot be used for system filter files.)

Some additional features are available in system filters — see chapter @#7|for details. Note that a
message is passed to the system filter only once per delivery attempt, however many recipients it
has. However, if there are several delivery attempts because one or more addresses could not be
immediately delivered, the system filter is run each time. The filter condition first_delivery can be
used to detect the first run of the system filter.

* Each recipient address is offered to each configured router, in turn, subject to its preconditions,
until one is able to handle it. If no router can handle the address, that is, if they all decline, the
address is failed. Because routers can be targeted at particular domains, several locally handled
domains can be processed entirely independently of each other.

* A router that accepts an address may assign it to a local or a remote transport. However, the
transport is not run at this time. Instead, the address is placed on a list for the particular transport,
which will be run later. Alternatively, the router may generate one or more new addresses (typically
from alias, forward, or filter files). New addresses are fed back into this process from the top, but in
order to avoid loops, a router ignores any address which has an identically-named ancestor that was
processed by itself.

* When all the routing has been done, addresses that have been successfully handled are passed to
their assigned transports. When local transports are doing real local deliveries, they handle only
one address at a time, but if a local transport is being used as a pseudo-remote transport (for
example, to collect batched SMTP messages for transmission by some other means) multiple

14 Receiving and delivering mail (3)

addresses can be handled. Remote transports can always handle more than one address at a time,
but can be configured not to do so, or to restrict multiple addresses to the same domain.

* Each local delivery to a file or a pipe runs in a separate process under a non-privileged uid, and
these deliveries are run one at a time. Remote deliveries also run in separate processes, normally
under a uid that is private to Exim (“the Exim user”), but in this case, several remote deliveries can
be run in parallel. The maximum number of simultaneous remote deliveries for any one message is
set by the remote_max_parallel option. The order in which deliveries are done is not defined,
except that all local deliveries happen before any remote deliveries.

* When it encounters a local delivery during a queue run, Exim checks its retry database to see if
there has been a previous temporary delivery failure for the address before running the local
transport. If there was a previous failure, Exim does not attempt a new delivery until the retry time
for the address is reached. However, this happens only for delivery attempts that are part of a queue
run. Local deliveries are always attempted when delivery immediately follows message reception,
even if retry times are set for them. This makes for better behaviour if one particular message is
causing problems (for example, causing quota overflow, or provoking an error in a filter file).

* Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
temporary failures and no host has reached its retry time, no delivery is attempted, whether in a
queue run or not. See chapter for details of retry strategies.

» If there were any permanent errors, a bounce message is returned to an appropriate address (the
sender in the common case), with details of the error for each failing address. Exim can be
configured to send copies of bounce messages to other addresses.

» If one or more addresses suffered a temporary failure, the message is left on the queue, to be tried
again later. Delivery of these addresses is said to be deferred.

* When all the recipient addresses have either been delivered or bounced, handling of the message is
complete. The spool files and message log are deleted, though the message log can optionally be
preserved if required.

3.14 Retry mechanism

Exim’s mechanism for retrying messages that fail to get delivered at the first attempt is the queue
runner process. You must either run an Exim daemon that uses the -q option with a time interval to
start queue runners at regular intervals or use some other means (such as cron) to start them. If you do
not arrange for queue runners to be run, messages that fail temporarily at the first attempt will remain
in your queue forever. A queue runner process works its way through the queue, one message at a
time, trying each delivery that has passed its retry time. You can run several queue runners at once.

Exim uses a set of configured rules to determine when next to retry the failing address (see chapter
. These rules also specify when Exim should give up trying to deliver to the address, at which
point it generates a bounce message. If no retry rules are set for a particular host, address, and error
combination, no retries are attempted, and temporary errors are treated as permanent.

3.15 Temporary delivery failure

There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most
common. Temporary failures may be detected during routing as well as during the transport stage of
delivery. Local deliveries may be delayed if NFS files are unavailable, or if a mailbox is on a file
system where the user is over quota. Exim can be configured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

If a host is unreachable for a period of time, a number of messages may be waiting for it by the time it
recovers, and sending them in a single SMTP connection is clearly beneficial. Whenever a delivery to
a remote host is deferred, Exim makes a note in its hints database, and whenever a successful SMTP
delivery has happened, it looks to see if any other messages are waiting for the same host. If any are

15 Receiving and delivering mail (3)

found, they are sent over the same SMTP connection, subject to a configuration limit as to the
maximum number in any one connection.

3.16 Permanent delivery failure

When a message cannot be delivered to some or all of its intended recipients, a bounce message is
generated. Temporary delivery failures turn into permanent errors when their timeout expires. All the
addresses that fail in a given delivery attempt are listed in a single message. If the original message
has many recipients, it is possible for some addresses to fail in one delivery attempt and others to fail
subsequently, giving rise to more than one bounce message. The wording of bounce messages can be
customized by the administrator. See chapterfor details.

Bounce messages contain an X-Failed-Recipients: header line that lists the failed addresses, for the
benefit of programs that try to analyse such messages automatically.

A bounce message is normally sent to the sender of the original message, as obtained from the
message’s envelope. For incoming SMTP messages, this is the address given in the MAIL command.
However, when an address is expanded via a forward or alias file, an alternative address can be
specified for delivery failures of the generated addresses. For a mailing list expansion (see section
it is common to direct bounce messages to the manager of the list.

3.17 Failures to deliver bounce messages

If a bounce message (either locally generated or received from a remote host) itself suffers a perma-
nent delivery failure, the message is left in the queue, but it is frozen, awaiting the attention of an
administrator. There are options that can be used to make Exim discard such failed messages, or to
keep them for only a short time (see timeout_frozen_after and ignore_bounce_errors_after).

16 Receiving and delivering mail (3)

4. Building and installing Exim

4.1 Unpacking

Exim is distributed as a gzipped or bzipped tar file which, when unpacked, creates a directory with the
name of the current release (for example, exim-4.96-RC1) into which the following files are placed:

ACKNOWLEDGMENTS contains some acknowledgments

CHANGES contains a reference to where changes are documented
LICENCE the GNU General Public Licence

Makefile top-level make file

NOTICE conditions for the use of Exim

README list of files, directories and simple build instructions

Other files whose names begin with README may also be present. The following subdirectories are
created:

Local an empty directory for local configuration files
(0N OS-specific files

doc documentation files

exim_monitor source files for the Exim monitor

scripts scripts used in the build process

src remaining source files

util independent utilities

The main utility programs are contained in the src directory and are built with the Exim binary. The
util directory contains a few optional scripts that may be useful to some sites.

4.2 Multiple machine architectures and operating systems

The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source files. Compilation does not take place
in the src directory. Instead, a build directory is created for each architecture and operating system.
Symbolic links to the sources are installed in this directory, which is where the actual building takes
place. In most cases, Exim can discover the machine architecture and operating system for itself, but
the defaults can be overridden if necessary. A C99-capable compiler will be required for the build.

4.3 PCRE2 library

Exim no longer has an embedded regular-expression library as the vast majority of modern systems
include PCRE2 as a system library, although you may need to install the PCRE2 package or the
PCRE?2 development package for your operating system. If your system has a normal PCRE2 instal-
lation the Exim build process will need no further configuration. If the library or the headers are in an
unusual location you will need to either set the PCRE2_LIBS and INCLUDE directives appropriately,
or set PCRE2_CONFIG=yes to use the installed pcre-config command. If your operating system has
no PCRE2 support then you will need to obtain and build the current PCRE2 from
https://github.com/PhilipHazel/pcre2/releases. More information on PCRE2 is available at
https://www.pcre.org/.

4.4 DBM libraries

Even if you do not use any DBM files in your configuration, Exim still needs a DBM library in order
to operate, because it uses indexed files for its hints databases. Unfortunately, there are a number of
DBM libraries in existence, and different operating systems often have different ones installed.

If you are using Solaris, IRIX, one of the modern BSD systems, or a modern Linux distribution, the
DBM configuration should happen automatically, and you may be able to ignore this section.
Otherwise, you may have to learn more than you would like about DBM libraries from what follows.

Licensed versions of Unix normally contain a library of DBM functions operating via the ndbm
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they

17 Building and installing Exim (4)

contain as standard. In particular, some early versions of Linux have no default DBM library, and
different distributors have chosen to bundle different libraries with their packaged versions. However,
the more recent releases seem to have standardized on the Berkeley DB library.

Different DBM libraries have different conventions for naming the files they use. When a program
opens a file called dbmfile, there are several possibilities:

(1) A traditional ndbm implementation, such as that supplied as part of Solaris, operates on two files
called dbmfile.dir and dbmfile.pag.

(2) The GNU library, gdbm, operates on a single file. If used via its ndbm compatibility interface it
makes two different hard links to it with names dbmfile.dir and dbmfile.pag, but if used via its
native interface, the filename is used unmodified.

(3) The Berkeley DB package, if called via its ndbm compatibility interface, operates on a single file
called dbmfile.db, but otherwise looks to the programmer exactly the same as the traditional
ndbm implementation.

(4) If the Berkeley package is used in its native mode, it operates on a single file called dbmfile; the
programmer’s interface is somewhat different to the traditional ndbm interface.

(5) To complicate things further, there are several very different versions of the Berkeley DB pack-
age. Version 1.85 was stable for a very long time, releases 2.x and 3.x were current for a while,

but the latest versions when Exim last revamped support were numbered 5.x. Maintenance of
some of the earlier releases has ceased, and Exim no longer supports versions before 3.x.

All versions of Berkeley DB could be obtained from http://www.sleepycat.com/, which is now
a redirect to their new owner’s page with far newer versions listed. It is probably wise to plan to
move your storage configurations away from Berkeley DB format, as today there are smaller and
simpler alternatives more suited to Exim’s usage model.

(6) Yet another DBM library, called tdb, is available from
https://sourceforge.net/projects/tdb/files/. It has its own interface, and also operates on a
single file.

Exim and its utilities can be compiled to use any of these interfaces. In order to use any version of the
Berkeley DB package in native mode, you must set USE_DB in an appropriate configuration file
(typically Local/Makefile). For example:

USE_DB=yes

Similarly, for gdbm you set USE_GDBM, and for tdb you set USE_TDB. An error is diagnosed if
you set more than one of these.

You can set USE_NDBM if needed to override an operating system default.

At the lowest level, the build-time configuration sets none of these options, thereby assuming an
interface of type (1). However, some operating system configuration files (for example, those for the
BSD operating systems and Linux) assume type (4) by setting USE_DB as their default, and the
configuration files for Cygwin set USE_GDBM. Anything you set in Local/Makefile, however, over-
rides these system defaults.

As well as setting USE_DB, USE_GDBM, or USE_TDB, it may also be necessary to set DBMLIB,
to cause inclusion of the appropriate library, as in one of these lines:

DBMLIB = -1db
DBMLIB = —-1tdb
DBMLIB = -1lgdbm —-lgdbm_compat

The last of those was for a Linux having GDBM provide emulated NDBM facilities.

Settings like that will work if the DBM library is installed in the standard place. Sometimes it is not,
and the library’s header file may also not be in the default path. You may need to set INCLUDE to
specify where the header file is, and to specify the path to the library more fully in DBMLIB, as in
this example:

18 Building and installing Exim (4)

INCLUDE=-I/usr/local/include/db-4.1
DBMLIB=/usr/local/lib/db-4.1/1libdb.a

There is further detailed discussion about the various DBM libraries in the file doc/dbm.discuss.txt in
the Exim distribution.

4.5 Pre-building configuration

Before building Exim, a local configuration file that specifies options independent of any operating
system has to be created with the name Local/Makefile. A template for this file is supplied as the file
sre/EDITME, and it contains full descriptions of all the option settings therein. These descriptions are
therefore not repeated here. If you are building Exim for the first time, the simplest thing to do is to
copy src/EDITME to Local/Makefile, then read it and edit it appropriately.

There are three settings that you must supply, because Exim will not build without them. They are the
location of the runtime configuration file (CONFIGURE_FILE), the directory in which Exim binaries
will be installed (BIN_DIRECTORY), and the identity of the Exim user (EXIM_USER and maybe
EXIM_GROUP as well). The value of CONFIGURE_FILE can in fact be a colon-separated list of
filenames; Exim uses the first of them that exists.

There are a few other parameters that can be specified either at build time or at runtime, to enable the
same binary to be used on a number of different machines. However, if the locations of Exim’s spool
directory and log file directory (if not within the spool directory) are fixed, it is recommended that
you specify them in Local/Makefile instead of at runtime, so that errors detected early in Exim’s
execution (such as a malformed configuration file) can be logged.

Exim’s interfaces for calling virus and spam scanning software directly from access control lists are
not compiled by default. If you want to include these facilities, you need to set

WITH_CONTENT_SCAN=yes
in your Local/Makefile. For details of the facilities themselves, see chapter

If you are going to build the Exim monitor, a similar configuration process is required. The file
exim_monitor/EDITME must be edited appropriately for your installation and saved under the name
Local/eximon.conf. If you are happy with the default settings described in exim_monitor/EDITME,
Local/eximon.conf can be empty, but it must exist.

This is all the configuration that is needed in straightforward cases for known operating systems.
However, the building process is set up so that it is easy to override options that are set by default
or by operating-system-specific configuration files, for example, to change the C compiler, which
defaults to gee. See sectionbelow for details of how to do this.

4.6 Support for iconv()

The contents of header lines in messages may be encoded according to the rules described RFC 2047.
This makes it possible to transmit characters that are not in the ASCII character set, and to label them
as being in a particular character set. When Exim is inspecting header lines by means of the $h_
mechanism, it decodes them, and translates them into a specified character set (default is set at build
time). The translation is possible only if the operating system supports the iconv() function.

However, some of the operating systems that supply iconv() do not support very many conversions.
The GNU libiconv library (available from https://www.gnu.org/software/libiconv/) can be installed
on such systems to remedy this deficiency, as well as on systems that do not supply iconv() at all.
After installing libiconv, you should add

HAVE_ICONV=yes
to your Local/Makefile and rebuild Exim.

19 Building and installing Exim (4)

4.7 Including TLS/SSL encryption support

Exim is usually built to support encrypted SMTP connections, using the STARTTLS command as per
RFC 2487. It can also support clients that expect to start a TLS session immediately on connection to
a non-standard port (see the tls_on_connect_ports runtime option and the -tls-on-connect command
line option).

If you want to build Exim with TLS support, you must first install either the OpenSSL or GnuTLS
library. There is no cryptographic code in Exim itself for implementing SSL.

If you do not want TLS support you should set
DISABLE_TLS=yes

in Local/Makefile.

If OpenSSL is installed, you should set

USE_OPENSL=yes
TLS_LIBS=-1ssl —-lcrypto

in Local/Makefile. You may also need to specify the locations of the OpenSSL library and include
files. For example:

USE_OPENSSL=yes
TLS_LIBS=-L/usr/local/openssl/lib -1lssl -lcrypto
TLS_INCLUDE=-I/usr/local/openssl/include/

If you have pkg-config available, then instead you can just use:

USE_OPENSSL=yes
USE_OPENSSL_PC=openssl

If GnuTLS is installed, you should set

USE_GNUTLS=yes
TLS_LIBS=-lgnutls —-ltasnl -lgcrypt

in Local/Makefile, and again you may need to specify the locations of the library and include files. For
example:

USE_GNUTLS=yes
TLS_LIBS=-L/usr/gnu/lib -lgnutls -ltasnl -lgcrypt
TLS_INCLUDE=-I/usr/gnu/include

If you have pkg-config available, then instead you can just use:

USE_GNUTLS=yes
USE_GNUTLS_PC=gnutls

You do not need to set TLS_INCLUDE if the relevant directory is already specified in INCLUDE.
Details of how to configure Exim to make use of TLS are given in chapter @I

4.8 Use of tcpwrappers

Exim can be linked with the tcpwrappers library in order to check incoming SMTP calls using the
tcpwrappers control files. This may be a convenient alternative to Exim’s own checking facilities for
installations that are already making use of tcpwrappers for other purposes. To do this, you should set
USE_TCP_WRAPPERS in Local/Makefile, arrange for the file tcpd.h to be available at compile time,
and also ensure that the library libwrap.a is available at link time, typically by including -lwrap in
EXTRALIBS_EXIM. For example, if tcpwrappers is installed in /usr/local, you might have

USE_TCP_WRAPPERS=yes
CFLAGS=-0 -I/usr/local/include
EXTRALIBS_EXIM=-L/usr/local/lib —-lwrap

in Local/Makefile. The daemon name to use in the tcpwrappers control files is “exim”. For example,
the line

20 Building and installing Exim (4)

exim : LOCAL 192.168.1. .friendly.domain.example

in your /etc/hosts.allow file allows connections from the local host, from the subnet 192.168.1.0/24,
and from all hosts in friendly.domain.example. All other connections are denied. The daemon name
used by fcpwrappers can be changed at build time by setting TCP_WRAPPERS_DAEMON_NAME
in Local/Makefile, or by setting tcp_wrappers_daemon_name in the configure file. Consult the
tcpwrappers documentation for further details.

4.9 Including support for IPv6

Exim contains code for use on systems that have IPv6 support. Setting HAVE_IPV6=YES in
Local/Makefile causes the IPv6 code to be included; it may also be necessary to set IPV6_INCLUDE
and IPV6_LIBS on systems where the IPv6 support is not fully integrated into the normal include and
library files.

Two different types of DNS record for handling IPv6 addresses have been defined. AAAA records
(analogous to A records for [Pv4) are in use, and are currently seen as the mainstream. Another record
type called A6 was proposed as better than AAAA because it had more flexibility. However, it was
felt to be over-complex, and its status was reduced to “experimental”. Exim used to have a compile
option for including A6 record support but this has now been withdrawn.

4.10 Dynamically loaded lookup module support

On some platforms, Exim supports not compiling all lookup types directly into the main binary,
instead putting some into external modules which can be loaded on demand. This permits packagers
to build Exim with support for lookups with extensive library dependencies without requiring all
users to install all of those dependencies. Most, but not all, lookup types can be built this way.

Set LOOKUP_MODULE_DIR to the directory into which the modules will be installed; Exim will only
load modules from that directory, as a security measure. You will need to set CFLAGS_DYNAMIC if
not already defined for your OS; see OS/Makefile-Linux for an example. Some other requirements for
adjusting EXTRALIBS may also be necessary, see sre/EDITME for details.

Then, for each module to be loaded dynamically, define the relevant LOOKUP_ <lookup_type> flags to
have the value "2" instead of "yes". For example, this will build in Isearch but load sqlite and mysql
support on demand:

LOOKUP_LSEARCH=yes
LOOKUP_SQLITE=2
LOOKUP_MYSQL=2

4.11 The building process

Once Local/Makefile (and Local/eximon.conf, if required) have been created, run make at the top
level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 8, the directory build-SunOS5-5.8-sparc
is created. Symbolic links to relevant source files are installed in the build directory.

If this is the first time make has been run, it calls a script that builds a make file inside the build
directory, using the configuration files from the Local directory. The new make file is then passed to
another instance of make. This does the real work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if configured), a number of utility programs,
and finally Exim itself. The command make makefile can be used to force a rebuild of the make
file in the build directory, should this ever be necessary.

If you have problems building Exim, check for any comments there may be in the README file
concerning your operating system, and also take a look at the FAQ, where some common problems
are covered.

21 Building and installing Exim (4)

4.12 Output from “make”

The output produced by the make process for compile lines is often very unreadable, because these
lines can be very long. For this reason, the normal output is suppressed by default, and instead output
similar to that which appears when compiling the 2.6 Linux kernel is generated: just a short line for
each module that is being compiled or linked. However, it is still possible to get the full output, by
calling make like this:

FULLECHO="'"' make -e

The value of FULLECHO defaults to “@”, the flag character that suppresses command reflection in
make. When you ask for the full output, it is given in addition to the short output.

4.13 Overriding build-time options for Exim

The main make file that is created at the beginning of the building process consists of the concat-
enation of a number of files which set configuration values, followed by a fixed set of make instruc-
tions. If a value is set more than once, the last setting overrides any previous ones. This provides a
convenient way of overriding defaults. The files that are concatenated are, in order:

OS/Makefile-Default
OS/Makefile-<ostype>
Local/Makefile
Local/Makefile-<ostype>
Local/Makefile-<archtype>
Local/Makefile-<ostype>-<archtype>
OS/Makefile-Base

where <ostype> is the operating system type and <archtype> is the architecture type. Local/Makefile
is required to exist, and the building process fails if it is absent. The other three Local files are
optional, and are often not needed.

The values used for <ostype> and <archtype> are obtained from scripts called scripts/os-type and
scripts/arch-type respectively. If either of the environment variables EXIM_OSTYPE or EXIM_
ARCHTYPE is set, their values are used, thereby providing a means of forcing particular settings.
Otherwise, the scripts try to get values from the uname command. If this fails, the shell variables
OSTYPE and ARCHTYPE are inspected. A number of ad hoc transformations are then applied, to
produce the standard names that Exim expects. You can run these scripts directly from the shell in
order to find out what values are being used on your system.

OS/Makefile-Default contains comments about the variables that are set therein. Some (but not all) are
mentioned below. If there is something that needs changing, review the contents of this file and the
contents of the make file for your operating system (OS/Makefile-<ostype>) to see what the default
values are.

If you need to change any of the values that are set in OS/Makefile-Default or in OS/Makefile-
<ostype>, or to add any new definitions, you do not need to change the original files. Instead, you
should make the changes by putting the new values in an appropriate Local file. For example, when
building Exim in many releases of the Tru64-Unix (formerly Digital UNIX, formerly DEC-OSF1)
operating system, it is necessary to specify that the C compiler is called cc rather than gcc. Also, the
compiler must be called with the option -std1, to make it recognize some of the features of Standard
C that Exim uses. (Most other compilers recognize Standard C by default.) To do this, you should
create a file called Local/Makefile-OSF I containing the lines

CC=cc
CFLAGS=-stdl

If you are compiling for just one operating system, it may be easier to put these lines directly into
Local/Makefile.

Keeping all your local configuration settings separate from the distributed files makes it easy to
transfer them to new versions of Exim simply by copying the contents of the Local directory.

22 Building and installing Exim (4)

Exim contains support for doing LDAP, NIS, NIS+, and other kinds of file lookup, but not all systems
have these components installed, so the default is not to include the relevant code in the binary. All
the different kinds of file and database lookup that Exim supports are implemented as separate code
modules which are included only if the relevant compile-time options are set. In the case of LDAP,
NIS, and NIS+, the settings for Local/Makefile are:

LOOKUP_LDAP=yes
LOOKUP_NIS=yes
LOOKUP_NISPLUS=yes

and similar settings apply to the other lookup types. They are all listed in src/EDITME. In many cases
the relevant include files and interface libraries need to be installed before compiling Exim. However,
there are some optional lookup types (such as cdb) for which the code is entirely contained within
Exim, and no external include files or libraries are required. When a lookup type is not included in the
binary, attempts to configure Exim to use it cause runtime configuration errors.

Many systems now use a tool called pkg-config to encapsulate information about how to compile
against a library; Exim has some initial support for being able to use pkg-config for lookups and
authenticators. For any given makefile variable which starts LOOKUP_ or AUTH_, you can add a new
variable with the _PC suffix in the name and assign as the value the name of the package to be
queried. The results of querying via the pkg-config command will be added to the appropriate
Makefile variables with += directives, so your version of make will need to support that syntax. For
instance:

LOOKUP_SQLITE=yes
LOOKUP_SQLITE_PC=sqglite3
AUTH_GSASL=yes

AUTH_GSASL_PC=libgsasl
AUTH_HEIMDAL_GSSAPI=yes
AUTH_HEIMDAL_GSSAPI_PC=heimdal-gssapi

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXIM PERL=perl.o
must be defined in Local/Makefile. Details of this facility are given in chapter

The location of the X11 libraries is something that varies a lot between operating systems, and there
may be different versions of X11 to cope with. Exim itself makes no use of X11, but if you are
compiling the Exim monitor, the X11 libraries must be available. The following three variables are set
in OS/Makefile-Default:

X1l=/usr/X11R6
XINCLUDE=-IS$(X11l)/include
XLFLAGS=-L$ (X11) /1lib

These are overridden in some of the operating-system configuration files. For example, in
OS/Makefile-SunOS5 there is

X1l=/usr/openwin
XINCLUDE=-I$(X11l) /include
XLFLAGS=-L$ (X11) /1lib -R$(X11)/1ib

If you need to override the default setting for your operating system, place a definition of all three of
these variables into your Local/Makefile- < ostype > file.

If you need to add any extra libraries to the link steps, these can be put in a variable called
EXTRALIBS, which appears in all the link commands, but by default is not defined. In contrast,
EXTRALIBS_EXIM is used only on the command for linking the main Exim binary, and not for any
associated utilities.

There is also DBMLIB, which appears in the link commands for binaries that use DBM functions
(see also section . Finally, there is EXTRALIBS_EXIMON, which appears only in the link step
for the Exim monitor binary, and which can be used, for example, to include additional X11 libraries.

23 Building and installing Exim (4)

The make file copes with rebuilding Exim correctly if any of the configuration files are edited.
However, if an optional configuration file is deleted, it is necessary to touch the associated non-
optional file (that is, Local/Makefile or Local/eximon.conf) before rebuilding.

4.14 OS-specific header files

The OS directory contains a number of files with names of the form os.h-<ostype>. These are
system-specific C header files that should not normally need to be changed. There is a list of macro
settings that are recognized in the file OS/0s.configuring, which should be consulted if you are porting
Exim to a new operating system.

4.15 Overriding build-time options for the monitor

A similar process is used for overriding things when building the Exim monitor, where the files that
are involved are

OS/eximon.conf-Default
OS/eximon.conf-<ostype>
Local/eximon.conf
Local/eximon.conf-<ostype>
Local/eximon.conf-<archtype>
Local/eximon.conf-<ostype>-<archtype>

As with Exim itself, the final three files need not exist, and in this case the OS/eximon.conf-<ostype>
file is also optional. The default values in OS/eximon.conf-Default can be overridden dynamically by
setting environment variables of the same name, preceded by EXIMON_. For example, setting
EXIMON_LOG_DEPTH in the environment overrides the value of LOG_DEPTH at runtime.

4.16 Installing Exim binaries and scripts

The command make install runs the exim_install script with no arguments. The script copies
binaries and utility scripts into the directory whose name is specified by the BIN_DIRECTORY
setting in Local/Makefile. The install script copies files only if they are newer than the files they are
going to replace. The Exim binary is required to be owned by root and have the setuid bit set, for
normal configurations. Therefore, you must run make install as root so that it can set up the
Exim binary in this way. However, in some special situations (for example, if a host is doing no local
deliveries) it may be possible to run Exim without making the binary setuid root (see chapter for
details).

Exim’s runtime configuration file is named by the CONFIGURE_FILE setting in Local/Makefile. 1If
this names a single file, and the file does not exist, the default configuration file src/configure.default
is copied there by the installation script. If a runtime configuration file already exists, it is left alone. If
CONFIGURE_FILE is a colon-separated list, naming several alternative files, no default is installed.

One change is made to the default configuration file when it is installed: the default configuration
contains a router that references a system aliases file. The path to this file is set to the value specified
by SYSTEM_ALIASES_FILE in Local/Makefile (/etc/aliases by default). If the system aliases file
does not exist, the installation script creates it, and outputs a comment to the user.

The created file contains no aliases, but it does contain comments about the aliases a site should
normally have. Mail aliases have traditionally been kept in /etc/aliases. However, some operating
systems are now using /etc/mail/aliases. You should check if yours is one of these, and change Exim’s
configuration if necessary.

The default configuration uses the local host’s name as the only local domain, and is set up to do local
deliveries into the shared directory /var/mail, running as the local user. System aliases and .forward
files in users’ home directories are supported, but no NIS or NIS+ support is configured. Domains
other than the name of the local host are routed using the DNS, with delivery over SMTP.

It is possible to install Exim for special purposes (such as building a binary distribution) in a private
part of the file system. You can do this by a command such as

24 Building and installing Exim (4)

make DESTDIR=/some/directory/ install

This has the effect of pre-pending the specified directory to all the file paths, except the name of the
system aliases file that appears in the default configuration. (If a default alias file is created, its name
is modified.) For backwards compatibility, ROOT is used if DESTDIR is not set, but this usage is
deprecated.

Running make install does not copy the Exim 4 conversion script convert4dr4. You will probably run
this only once if you are upgrading from Exim 3. None of the documentation files in the doc directory
are copied, except for the info files when you have set INFO_DIRECTORY, as described in section
below.

For the utility programs, old versions are renamed by adding the suffix .O to their names. The Exim
binary itself, however, is handled differently. It is installed under a name that includes the version
number and the compile number, for example, exim-4.96-RCI-1. The script then arranges for a
symbolic link called exim to point to the binary. If you are updating a previous version of Exim, the
script takes care to ensure that the name exim is never absent from the directory (as seen by other
processes).

If you want to see what the make install will do before running it for real, you can pass the -n option
to the installation script by this command:

make INSTALL_ARG=-n install

The contents of the variable INSTALL_ARG are passed to the installation script. You do not need to
be root to run this test. Alternatively, you can run the installation script directly, but this must be
from within the build directory. For example, from the top-level Exim directory you could use this
command:

(cd build-Sun0S5-5.5.1-sparc; ../scripts/exim_install -n)
There are two other options that can be supplied to the installation script.

* -no_chown bypasses the call to change the owner of the installed binary to root, and the call to
make it a setuid binary.

» -no_symlink bypasses the setting up of the symbolic link exim to the installed binary.

INSTALL_ARG can be used to pass these options to the script. For example:
make INSTALL_ARG=-no_symlink install

The installation script can also be given arguments specifying which files are to be copied. For
example, to install just the Exim binary, and nothing else, without creating the symbolic link, you
could use:

make INSTALL_ARG='-no_symlink exim' install

4.17 Installing info documentation

Not all systems use the GNU info system for documentation, and for this reason, the Texinfo source
of Exim’s documentation is not included in the main distribution. Instead it is available separately
from the FTP site (see section .

If you have defined INFO_DIRECTORY in Local/Makefile and the Texinfo source of the documen-
tation is found in the source tree, running make install automatically builds the info files and
installs them.

4.18 Setting up the spool directory

When it starts up, Exim tries to create its spool directory if it does not exist. The Exim uid and gid are
used for the owner and group of the spool directory. Sub-directories are automatically created in the
spool directory as necessary.

25 Building and installing Exim (4)

4.19 Testing

Having installed Exim, you can check that the runtime configuration file is syntactically valid by
running the following command, which assumes that the Exim binary directory is within your PATH
environment variable:

exim —-bV

If there are any errors in the configuration file, Exim outputs error messages. Otherwise it outputs the
version number and build date, the DBM library that is being used, and information about which
drivers and other optional code modules are included in the binary. Some simple routing tests can be
done by using the address testing option. For example,

exim -bt <local username>
should verify that it recognizes a local mailbox, and
exim -bt <remote address>

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

exim -v postmaster@your.domain.example
From: user@your.domain.example

To: postmaster@your.domain.example
Subject: Testing Exim

This is a test message.
~“D

The -v option causes Exim to output some verification of what it is doing. In this case you should see
copies of three log lines, one for the message’s arrival, one for its delivery, and one containing
“Completed”.

If you encounter problems, look at Exim’s log files (mainlog and paniclog) to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the -d option. If a message is stuck on Exim’s spool, you can force a delivery with
debugging turned on by a command of the form

exim —-d -M <exim-message-id>

You must be root or an “admin user” in order to do this. The -d option produces rather a lot of output,
but you can cut this down to specific areas. For example, if you use -d-all+route only the debugging
information relevant to routing is included. (See the -d option in chapterfor more details.)

One specific problem that has shown up on some sites is the inability to do local deliveries into a
shared mailbox directory, because it does not have the “sticky bit” set on it. By default, Exim tries to
create a lock file before writing to a mailbox file, and if it cannot create the lock file, the delivery is
deferred. You can get round this either by setting the “sticky bit” on the directory, or by setting a
specific group for local deliveries and allowing that group to create files in the directory (see the
comments above the local_delivery transport in the default configuration file). Another approach is to
configure Exim not to use lock files, but just to rely on fcntl() locking instead. However, you should
do this only if all user agents also use fcntl() locking. For further discussion of locking issues, see
chapter

One thing that cannot be tested on a system that is already running an MTA is the receipt of incoming
SMTP mail on the standard SMTP port. However, the -0X option can be used to run an Exim daemon
that listens on some other port, or inetd can be used to do this. The -bh option and the
exim_checkaccess utility can be used to check out policy controls on incoming SMTP mail.

Testing a new version on a system that is already running Exim can most easily be done by building a
binary with a different CONFIGURE_FILE setting. From within the runtime configuration, all other
file and directory names that Exim uses can be altered, in order to keep it entirely clear of the
production version.

26 Building and installing Exim (4)

4.20 Replacing another MTA with Exim

Building and installing Exim for the first time does not of itself put it in general use. The name by
which the system’s MTA is called by mail user agents is either /usr/sbin/sendmail, or
/ust/lib/sendmail (depending on the operating system), and it is necessary to make this name point to
the exim binary in order to get the user agents to pass messages to Exim. This is normally done by
renaming any existing file and making /usr/sbin/sendmail or /us/lib/sendmail a symbolic link to the
exim binary. It is a good idea to remove any setuid privilege and executable status from the old MTA.
It is then necessary to stop and restart the mailer daemon, if one is running.

Some operating systems have introduced alternative ways of switching MTAs. For example, if you are
running FreeBSD, you need to edit the file /etc/mail/mailer.conf instead of setting up a symbolic link
as just described. A typical example of the contents of this file for running Exim is as follows:

sendmail /usr/exim/bin/exim
send-mail /usr/exim/bin/exim
mailg /usr/exim/bin/exim -bp
newaliases /usr/bin/true

Once you have set up the symbolic link, or edited /etc/mail/mailer.conf, your Exim installation is
“live”. Check it by sending a message from your favourite user agent.

You should consider what to tell your users about the change of MTA. Exim may have different
capabilities to what was previously running, and there are various operational differences such as the
text of messages produced by command line options and in bounce messages. If you allow your users
to make use of Exim’s filtering capabilities, you should make the document entitled Exim’s interface
to mail filtering available to them.

4.21 Running the daemon
The most common command line for launching the Exim daemon looks like
exim -bd —-gbm
This starts a daemon which
* listens for incoming smtp connections, launching handler processes for each new one

* starts a queue-runner process every five minutes, to inspect queued messages and run delivery
attempts on any that have arrived at their retry time

Should a queue run take longer than the time between queue-runner starts, they will run in parallel.
Numbers of jobs of the various types are subject to policy controls defined in the configuration.

4.22 Upgrading Exim

If you are already running Exim on your host, building and installing a new version automatically
makes it available to MUAS, or any other programs that call the MTA directly. However, if you are
running an Exim daemon, you do need to send it a HUP signal, to make it re-execute itself, and
thereby pick up the new binary. You do not need to stop processing mail in order to install a new
version of Exim. The install script does not modify an existing runtime configuration file.

4.23 Stopping the Exim daemon on Solaris
The standard command for stopping the mailer daemon on Solaris is
/etc/init.d/sendmail stop

If /usr/lib/sendmail has been turned into a symbolic link, this script fails to stop Exim because it uses
the command ps -e and greps the output for the text “sendmail”; this is not present because the actual
program name (that is, “exim”) is given by the ps command with these options. A solution is to
replace the line that finds the process id with something like

pid="cat /var/spool/exim/exim-daemon.pid’

27 Building and installing Exim (4)

to obtain the daemon’s pid directly from the file that Exim saves it in.

Note, however, that stopping the daemon does not “stop Exim”. Messages can still be received from
local processes, and if automatic delivery is configured (the normal case), deliveries will still occur.

28 Building and installing Exim (4)

5. The Exim command line

Exim’s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are also some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name

If Exim is called under the name mailg, it behaves as if the option -bp were present before any other
options. The -bp option requests a listing of the contents of the mail queue on the standard output.
This feature is for compatibility with some systems that contain a command of that name in one of the
standard libraries, symbolically linked to /us#/sbin/sendmail or /us/lib/sendmail.

If Exim is called under the name rsmtp it behaves as if the option -bS were present before any other
options, for compatibility with Smail. The -bS option is used for reading in a number of messages in
batched SMTP format.

If Exim is called under the name rmail it behaves as if the -i and -oee options were present before any
other options, for compatibility with Smail. The name rmail is used as an interface by some UUCP
systems.

If Exim is called under the name rung it behaves as if the option -q were present before any other
options, for compatibility with Smail. The -q option causes a single queue runner process to be
started.

If Exim is called under the name newaliases it behaves as if the option -bi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail’s alias
file. Exim does not have the concept of a single alias file, but can be configured to run a given
command if called with the -bi option.

5.2 Trusted and admin users

Some Exim options are available only to trusted users and others are available only to admin users. In
the description below, the phrases “Exim user” and “Exim group” mean the user and group defined
by EXIM_USER and EXIM_GROUP in Local/Makefile or set by the exim_user and exim_group
options. These do not necessarily have to use the name “exim”.

» The trusted users are root, the Exim user, any user listed in the trusted_users configuration option,
and any user whose current group or any supplementary group is one of those listed in the trusted_
groups configuration option. Note that the Exim group is not automatically trusted.

Trusted users are always permitted to use the -f option or a leading “From ” line to specify the
envelope sender of a message that is passed to Exim through the local interface (see the -bm and -f
options below). See the untrusted_set_sender option for a way of permitting non-trusted users to
set envelope senders.

For a trusted user, there is never any check on the contents of the From: header line, and a Sender:
line is never added. Furthermore, any existing Sender: line in incoming local (non-TCP/IP) mess-
ages is not removed.

Trusted users may also specify a host name, host address, interface address, protocol name, ident
value, and authentication data when submitting a message locally. Thus, they are able to insert
messages into Exim’s queue locally that have the characteristics of messages received from a
remote host. Untrusted users may in some circumstances use -f, but can never set the other values
that are available to trusted users.

* The admin users are root, the Exim user, and any user that is a member of the Exim group or of any
group listed in the admin_groups configuration option. The current group does not have to be one
of these groups.

29 The Exim command line (5)

Admin users are permitted to list the queue, and to carry out certain operations on messages, for
example, to force delivery failures. It is also necessary to be an admin user in order to see the full
information provided by the Exim monitor, and full debugging output.

By default, the use of the -M, -q, -R, and -S options to cause Exim to attempt delivery of messages
on its queue is restricted to admin users. However, this restriction can be relaxed by setting the
prod_requires_admin option false (that is, specifying no_prod_requires_admin).

Similarly, the use of the -bp option to list all the messages in the queue is restricted to admin users
unless queue_list_requires_admin is set false.

Warning: If you configure your system so that admin users are able to edit Exim’s configuration file,
you are giving those users an easy way of getting root. There is further discussion of this issue at the
start of chapter

5.3 Command line options

Exim’s command line options are described in alphabetical order below. If none of the options that
specifies a specific action (such as starting the daemon or a queue runner, or testing an address, or
receiving a message in a specific format, or listing the queue) are present, and there is at least one
argument on the command line, -bm (accept a local message on the standard input, with the argu-
ments specifying the recipients) is assumed. Otherwise, Exim outputs a brief message about itself and
exits.

This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they begin
with hyphens.

--help
This option causes Exim to output a few sentences stating what it is. The same output is generated
if the Exim binary is called with no options and no arguments.

--version
This option is an alias for -bV and causes version information to be displayed.

-Ac
-Am
These options are used by Sendmail for selecting configuration files and are ignored by Exim.

-B<type>
This is a Sendmail option for selecting 7 or 8 bit processing. Exim is 8-bit clean; it ignores this
option.

-bd
This option runs Exim as a daemon, awaiting incoming SMTP connections. Usually the -bd option
is combined with the -q<time> option, to specify that the daemon should also initiate periodic
queue runs.

The -bd option can be used only by an admin user. If either of the -d (debugging) or -v (verifying)
options are set, the daemon does not disconnect from the controlling terminal. When running this
way, it can be stopped by pressing ctrl-C.

By default, Exim listens for incoming connections to the standard SMTP port on all the host’s
running interfaces. However, it is possible to listen on other ports, on multiple ports, and only on
specific interfaces. Chapter contains a description of the options that control this.

When a listening daemon is started without the use of -0X (that is, without overriding the normal
configuration), it writes its process id to a file called exim-daemon.pid in Exim’s spool directory.
This location can be overridden by setting PID_FILE_PATH in Local/Makefile. The file is written
while Exim is still running as root.

30 The Exim command line (5)

When -0X is used on the command line to start a listening daemon, the process id is not written to
the normal pid file path. However, -oP can be used to specify a path on the command line if a pid
file is required.

The SIGHUP signal can be used to cause the daemon to re-execute itself. This should be done
whenever Exim’s configuration file, or any file that is incorporated into it by means of the .include
facility, is changed, and also whenever a new version of Exim is installed. It is not necessary to do
this when other files that are referenced from the configuration (for example, alias files) are
changed, because these are reread each time they are used.

-bdf
This option has the same effect as -bd except that it never disconnects from the controlling
terminal, even when no debugging is specified.

-be
Run Exim in expansion testing mode. Exim discards its root privilege, to prevent ordinary users
from using this mode to read otherwise inaccessible files. If no arguments are given, Exim runs
interactively, prompting for lines of data. Otherwise, it processes each argument in turn.

If Exim was built with USE_READLINE=yes in Local/Makefile, it tries to load the libreadline
library dynamically whenever the -be option is used without command line arguments. If success-
ful, it uses the readline() function, which provides extensive line-editing facilities, for reading the
test data. A line history is supported.

Long expansion expressions can be split over several lines by using backslash continuations. As in
Exim’s runtime configuration, white space at the start of continuation lines is ignored. Each
argument or data line is passed through the string expansion mechanism, and the result is output.
Variable values from the configuration file (for example, $qualify_domain) are available, but no
message-specific values (such as $message_exim_id) are set, because no message is being pro-
cessed (but see -bem and -Mset).

Note: If you use this mechanism to test lookups, and you change the data files or databases you are
using, you must exit and restart Exim before trying the same lookup again. Otherwise, because
each Exim process caches the results of lookups, you will just get the same result as before.

Macro processing is done on lines before string-expansion: new macros can be defined and macros
will be expanded. Because macros in the config file are often used for secrets, those are only
available to admin users.

-bem <filename>
This option operates like -be except that it must be followed by the name of a file. For example:

exim -bem /tmp/testmessage

The file is read as a message (as if receiving a locally-submitted non-SMTP message) before any
of the test expansions are done. Thus, message-specific variables such as $message_size and
Sheader_from: are available. However, no Received: header is added to the message. If the -t
option is set, recipients are read from the headers in the normal way, and are shown in the
Srecipients variable. Note that recipients cannot be given on the command line, because further
arguments are taken as strings to expand (just like -be).

-bF <filename>
This option is the same as -bf except that it assumes that the filter being tested is a system filter.
The additional commands that are available only in system filters are recognized.

-bf <filename>
This option runs Exim in user filter testing mode; the file is the filter file to be tested, and a test
message must be supplied on the standard input. If there are no message-dependent tests in the
filter, an empty file can be supplied.

If you want to test a system filter file, use -bF instead of -bf. You can use both -bF and -bf on the
same command, in order to test a system filter and a user filter in the same run. For example:

exim -bF /system/filter -bf /user/filter </test/message

31 The Exim command line (5)

This is helpful when the system filter adds header lines or sets filter variables that are used by the
user filter.

If the test filter file does not begin with one of the special lines

Exim filter
Sieve filter

it is taken to be a normal .forward file, and is tested for validity under that interpretation. See
sections to |22.6 for a description of the possible contents of non-filter redirection lists.

The result of an Exim command that uses -bf, provided no errors are detected, is a list of the
actions that Exim would try to take if presented with the message for real. More details of filter
testing are given in the separate document entitled Exim’s interfaces to mail filtering.

When testing a filter file, the envelope sender can be set by the -f option, or by a “From ” line at
the start of the test message. Various parameters that would normally be taken from the envelope
recipient address of the message can be set by means of additional command line options (see the
next four options).

-bfd <domain>
This sets the domain of the recipient address when a filter file is being tested by means of the -bf
option. The default is the value of $qualify_domain.

-bfl <local part>
This sets the local part of the recipient address when a filter file is being tested by means of the -bf
option. The default is the username of the process that calls Exim. A local part should be specified
with any prefix or suffix stripped, because that is how it appears to the filter when a message is
actually being delivered.

-bfp <prefix>
This sets the prefix of the local part of the recipient address when a filter file is being tested by
means of the -bf option. The default is an empty prefix.

-bfs <suffix>
This sets the suffix of the local part of the recipient address when a filter file is being tested by
means of the -bf option. The default is an empty suffix.

-bh <[P address>
This option runs a fake SMTP session as if from the given IP address, using the standard input and
output. The IP address may include a port number at the end, after a full stop. For example:

exim -bh 10.9.8.7.1234
exim -bh fe80::a00:20ff:fe86:a061.5678

When an IPv6 address is given, it is converted into canonical form. In the case of the second
example above, the value of $sender_host_address after conversion to the canonical form is
fe80:0000:0000:0a00:20ff:£fe86:2061.5678.

Comments as to what is going on are written to the standard error file. These include lines
beginning with “LOG” for anything that would have been logged. This facility is provided for
testing configuration options for incoming messages, to make sure they implement the required
policy. For example, you can test your relay controls using -bh.

Warning 1: You can test features of the configuration that rely on ident (RFC 1413) information
by using the -oMt option. However, Exim cannot actually perform an ident callout when testing
using -bh because there is no incoming SMTP connection.

Warning 2: Address verification callouts (see section » are also skipped when testing using
-bh. If you want these callouts to occur, use -bhc instead.

Messages supplied during the testing session are discarded, and nothing is written to any of the
real log files. There may be pauses when DNS (and other) lookups are taking place, and of course
these may time out. The -oMi option can be used to specify a specific IP interface and port if this
is important, and -oMaa and -oMai can be used to set parameters as if the SMTP session were
authenticated.

32 The Exim command line (5)

The exim_checkaccess utility is a “packaged” version of -bh whose output just states whether a
given recipient address from a given host is acceptable or not. See section [54 81

Features such as authentication and encryption, where the client input is not plain text, cannot
easily be tested with -bh. Instead, you should use a specialized SMTP test program such as swaks
(https://www.jetmore.org/john/code/swaks/).

-bhe <IP address>
This option operates in the same way as -bh, except that address verification callouts are per-
formed if required. This includes consulting and updating the callout cache database.

-bi
Sendmail interprets the -bi option as a request to rebuild its alias file. Exim does not have the
concept of a single alias file, and so it cannot mimic this behaviour. However, calls to
/ust/lib/sendmail with the -bi option tend to appear in various scripts such as NIS make files, so
the option must be recognized.

If -bi is encountered, the command specified by the bi_command configuration option is run,
under the uid and gid of the caller of Exim. If the -0A option is used, its value is passed to the
command as an argument. The command set by bi_command may not contain arguments. The
command can use the exim_dbmbuild utility, or some other means, to rebuild alias files if this is
required. If the bi_command option is not set, calling Exim with -bi is a no-op.

-bI:help
We shall provide various options starting —bI: for querying Exim for information. The output of
many of these will be intended for machine consumption. This one is not. The -bI:help option
asks Exim for a synopsis of supported options beginning —bI :. Use of any of these options shall
cause Exim to exit after producing the requested output.

-bI:dscp
This option causes Exim to emit an alphabetically sorted list of all recognised DSCP names.

-bI:sieve
This option causes Exim to emit an alphabetically sorted list of all supported Sieve protocol
extensions on stdout, one per line. This is anticipated to be useful for ManageSieve (RFC 5804)
implementations, in providing that protocol’s STEVE capability response line. As the precise list
may depend upon compile-time build options, which this option will adapt to, this is the only way
to guarantee a correct response.

-bm
This option runs an Exim receiving process that accepts an incoming, locally-generated message
on the standard input. The recipients are given as the command arguments (except when -t is also
present — see below). Each argument can be a comma-separated list of RFC 2822 addresses. This
is the default option for selecting the overall action of an Exim call; it is assumed if no other
conflicting option is present.

If any addresses in the message are unqualified (have no domain), they are qualified by the values
of the qualify_domain or qualify_recipient options, as appropriate. The -bnq option (see below)
provides a way of suppressing this for special cases.

Policy checks on the contents of local messages can be enforced by means of the non-SMTP ACL.
See chapter for details.

The return code is zero if the message is successfully accepted. Otherwise, the action is controlled
by the -oex option setting — see below.

The format of the message must be as defined in RFC 2822, except that, for compatibility with
Sendmail and Smail, a line in one of the forms

From sender Fri Jan 5 12:55 GMT 1997
From sender Fri, 5 Jan 97 12:55:01

(with the weekday optional, and possibly with additional text after the date) is permitted to appear
at the start of the message. There appears to be no authoritative specification of the format of this

33 The Exim command line (5)

line. Exim recognizes it by matching against the regular expression defined by the uucp_from_
pattern option, which can be changed if necessary.

The specified sender is treated as if it were given as the argument to the -f option, but if a -f option
is also present, its argument is used in preference to the address taken from the message. The caller
of Exim must be a trusted user for the sender of a message to be set in this way.

-bmalware <filename>
This debugging option causes Exim to scan the given file or directory (depending on the used
scanner interface), using the malware scanning framework. The option of av_scanner influences
this option, so if av_scanner’s value is dependent upon an expansion then the expansion should
have defaults which apply to this invocation. ACLs are not invoked, so if av_scanner references
an ACL variable then that variable will never be populated and -bmalware will fail.

Exim will have changed working directory before resolving the filename, so using fully qualified
pathnames is advisable. Exim will be running as the Exim user when it tries to open the file, rather
than as the invoking user. This option requires admin privileges.

The -bmalware option will not be extended to be more generally useful, there are better tools
for file-scanning. This option exists to help administrators verify their Exim and AV scanner
configuration.

-bnq
By default, Exim automatically qualifies unqualified addresses (those without domains) that
appear in messages that are submitted locally (that is, not over TCP/IP). This qualification applies
both to addresses in envelopes, and addresses in header lines. Sender addresses are qualified using
qualify_domain, and recipient addresses using qualify_recipient (which defaults to the value of
qualify_domain).

Sometimes, qualification is not wanted. For example, if -bS (batch SMTP) is being used to re-
submit messages that originally came from remote hosts after content scanning, you probably do
not want to qualify unqualified addresses in header lines. (Such lines will be present only if you
have not enabled a header syntax check in the appropriate ACL.)

The -bnq option suppresses all qualification of unqualified addresses in messages that originate on
the local host. When this is used, unqualified addresses in the envelope provoke errors (causing
message rejection) and unqualified addresses in header lines are left alone.

-bP
If this option is given with no arguments, it causes the values of all Exim’s main configuration
options to be written to the standard output. The values of one or more specific options can be
requested by giving their names as arguments, for example:

exim -bP qualify_domain hold_domains

However, any option setting that is preceded by the word ‘“hide” in the configuration file is not
shown in full, except to an admin user. For other users, the output is as in this example:

mysgl_servers = <value not displayable>

If config is given as an argument, the config is output, as it was parsed, any include file resolved,
any comment removed.

If config_file is given as an argument, the name of the runtime configuration file is output.
(configure_file works too, for backward compatibility.) If a list of configuration files was supplied,
the value that is output here is the name of the file that was actually used.

If the -n flag is given, then for most modes of -bP operation the name will not be output.

If log_file_path or pid_file_path are given, the names of the directories where log files and
daemon pid files are written are output, respectively. If these values are unset, log files are written
in a sub-directory of the spool directory called log, and the pid file is written directly into the spool
directory.

If -bP is followed by a name preceded by +, for example,

34 The Exim command line (5)

exim —-bP +local_domains

it searches for a matching named list of any type (domain, host, address, or local part) and outputs
what it finds.

If one of the words router, transport, or authenticator is given, followed by the name of an
appropriate driver instance, the option settings for that driver are output. For example:

exim -bP transport local_delivery

The generic driver options are output first, followed by the driver’s private options. A list of the
names of drivers of a particular type can be obtained by using one of the words router_list,
transport_list, or authenticator_list, and a complete list of all drivers with their option settings
can be obtained by using routers, transports, or authenticators.

If environment is given as an argument, the set of environment variables is output, line by line.
Using the -n flag suppresses the value of the variables.

If invoked by an admin user, then macro, macro_list and macros are available, similarly to the
drivers. Because macros are sometimes used for storing passwords, this option is restricted. The
output format is one item per line. For the "-bP macro <name>" form, if no such macro is found
the exit status will be nonzero.

-bp
This option requests a listing of the contents of the mail queue on the standard output. If the -bp
option is followed by a list of message ids, just those messages are listed. By default, this option
can be used only by an admin user. However, the queue_list_requires_admin option can be set
false to allow any user to see the queue.

Each message in the queue is displayed as in the following example:

25m 2.9K 0t5C6£f-0000c8-00 <alice@wonderland.fict.example>
red.king@looking—glass.fict.example
<other addresses>

The first line contains the length of time the message has been in the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identifier for the message, and the
message sender, as contained in the envelope. For bounce messages, the sender address is empty,
and appears as “<>”. If the message was submitted locally by an untrusted user who overrode the
default sender address, the user’s login name is shown in parentheses before the sender address.

If the message is frozen (attempts to deliver it are suspended) then the text “*** frozen *** is
displayed at the end of this line.

The recipients of the message (taken from the envelope, not the headers) are displayed on subse-
quent lines. Those addresses to which the message has already been delivered are marked with the
letter D. If an original address gets expanded into several addresses via an alias or forward file, the
original is displayed with a D only when deliveries for all of its child addresses are complete.

-bpa
This option operates like -bp, but in addition it shows delivered addresses that were generated
from the original top level address(es) in each message by alias or forwarding operations. These
addresses are flagged with “+D” instead of just “D”.

-bpc
This option counts the number of messages in the queue, and writes the total to the standard
output. It is restricted to admin users, unless queue_list_requires_admin is set false.

-bpr
This option operates like -bp, but the output is not sorted into chronological order of message

arrival. This can speed it up when there are lots of messages in the queue, and is particularly useful
if the output is going to be post-processed in a way that doesn’t need the sorting.

-bpra
This option is a combination of -bpr and -bpa.

35 The Exim command line (5)

-bpru
This option is a combination of -bpr and -bpu.

-bpu
This option operates like -bp but shows only undelivered top-level addresses for each message
displayed. Addresses generated by aliasing or forwarding are not shown, unless the message was
deferred after processing by a router with the one_time option set.

-brt
This option is for testing retry rules, and it must be followed by up to three arguments. It causes
Exim to look for a retry rule that matches the values and to write it to the standard output. For
example:

exim -brt bach.comp.mus.example
Retry rule: *.comp.mus.example F,2h,15m; F,4d,30m;

See chapter for a description of Exim’s retry rules. The first argument, which is required, can be
a complete address in the form local_part@domain, or it can be just a domain name. If the second
argument contains a dot, it is interpreted as an optional second domain name; if no retry rule is
found for the first argument, the second is tried. This ties in with Exim’s behaviour when looking
for retry rules for remote hosts — if no rule is found that matches the host, one that matches the
mail domain is sought. Finally, an argument that is the name of a specific delivery error, as used in
setting up retry rules, can be given. For example:

exim -brt haydn.comp.mus.example quota_3d
Retry rule: *Q@haydn.comp.mus.example quota_3d F,1h,15m

-brw
This option is for testing address rewriting rules, and it must be followed by a single argument,
consisting of either a local part without a domain, or a complete address with a fully qualified
domain. Exim outputs how this address would be rewritten for each possible place it might appear.
See chapter for further details.

-bS
This option is used for batched SMTP input, which is an alternative interface for non-interactive
local message submission. A number of messages can be submitted in a single run. However,
despite its name, this is not really SMTP input. Exim reads each message’s envelope from SMTP
commands on the standard input, but generates no responses. If the caller is trusted, or untrusted_
set_sender is set, the senders in the SMTP MAIL commands are believed; otherwise the sender is
always the caller of Exim.

The message itself is read from the standard input, in SMTP format (leading dots doubled),
terminated by a line containing just a single dot. An error is provoked if the terminating dot is
missing. A further message may then follow.

As for other local message submissions, the contents of incoming batch SMTP messages can be
checked using the non-SMTP ACL (see chapter . Unqualified addresses are automatically
qualified using qualify_domain and qualify_recipient, as appropriate, unless the -bnq option is
used.

Some other SMTP commands are recognized in the input. HELO and EHLO act as RSET; VRFY,
EXPN, ETRN, and HELP act as NOOP; QUIT quits, ignoring the rest of the standard input.

If any error is encountered, reports are written to the standard output and error streams, and Exim
gives up immediately. The return code is O if no error was detected; it is 1 if one or more messages
were accepted before the error was detected; otherwise it is 2.

More details of input using batched SMTP are given in section

This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. SMTP policy controls, as
defined in ACLs (see chapter are applied. Some user agents use this interface as a way of
passing locally-generated messages to the MTA.

36 The Exim command line (5)

In this usage, if the caller of Exim is trusted, or untrusted_set_sender is set, the senders of
messages are taken from the SMTP MAIL commands. Otherwise the content of these commands
is ignored and the sender is set up as the calling user. Unqualified addresses are automatically
qualified using qualify_domain and qualify_recipient, as appropriate, unless the -bnq option is
used.

The -bs option is also used to run Exim from inetd, as an alternative to using a listening daemon.
Exim can distinguish the two cases by checking whether the standard input is a TCP/IP socket.
When Exim is called from inetd, the source of the mail is assumed to be remote, and the comments
above concerning senders and qualification do not apply. In this situation, Exim behaves in exactly
the same way as it does when receiving a message via the listening daemon.

This option runs Exim in address testing mode, in which each argument is taken as a recipient
address to be tested for deliverability. The results are written to the standard output. If a test fails,
and the caller is not an admin user, no details of the failure are output, because these might contain
sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be tested.

Unlike the -be test option, you cannot arrange for Exim to use the readline() function, because it is
running as root and there are security issues.

Each address is handled as if it were the recipient address of a message (compare the -bv option).
It is passed to the routers and the result is written to the standard output. However, any router that
has no_address_test set is bypassed. This can make -bt easier to use for genuine routing tests if
your first router passes everything to a scanner program.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code O is given only when all addresses
succeed.

Note: When actually delivering a message, Exim removes duplicate recipient addresses after
routing is complete, so that only one delivery takes place. This does not happen when testing with
-bt; the full results of routing are always shown.

Warning: -bt can only do relatively simple testing. If any of the routers in the configuration makes
any tests on the sender address of a message, you can use the -f option to set an appropriate sender
when running -bt tests. Without it, the sender is assumed to be the calling user at the default
qualifying domain. However, if you have set up (for example) routers whose behaviour depends on
the contents of an incoming message, you cannot test those conditions using -bt. The -N option
provides a possible way of doing such tests.

-bV
This option causes Exim to write the current version number, compilation number, and compi-
lation date of the exim binary to the standard output. It also lists the DBM library that is being
used, the optional modules (such as specific lookup types), the drivers that are included in the
binary, and the name of the runtime configuration file that is in use.

As part of its operation, -bV causes Exim to read and syntax check its configuration file. However,
this is a static check only. It cannot check values that are to be expanded. For example, although a
misspelt ACL verb is detected, an error in the verb’s arguments is not. You cannot rely on -bV
alone to discover (for example) all the typos in the configuration; some realistic testing is needed.
The -bh and -N options provide more dynamic testing facilities.

-bv
This option runs Exim in address verification mode, in which each argument is taken as a recipient
address to be verified by the routers. (This does not involve any verification callouts). During
normal operation, verification happens mostly as a consequence processing a verify condition in
an ACL (see chapter . If you want to test an entire ACL, possibly including callouts, see the
-bh and -bhc options.

37 The Exim command line (5)

If verification fails, and the caller is not an admin user, no details of the failure are output, because
these might contain sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be verified.

Unlike the -be test option, you cannot arrange for Exim to use the readline() function, because it is
running as exim and there are security issues.

Verification differs from address testing (the -bt option) in that routers that have no_verify set are
skipped, and if the address is accepted by a router that has fail_verify set, verification fails. The
address is verified as a recipient if -bv is used; to test verification for a sender address, -bvs should
be used.

If the -v option is not set, the output consists of a single line for each address, stating whether it
was verified or not, and giving a reason in the latter case. Without -v, generating more than one
address by redirection causes verification to end successfully, without considering the generated
addresses. However, if just one address is generated, processing continues, and the generated
address must verify successfully for the overall verification to succeed.

When -v is set, more details are given of how the address has been handled, and in the case of
address redirection, all the generated addresses are also considered. Verification may succeed for
some and fail for others.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code 0 is given only when all addresses
succeed.

If any of the routers in the configuration makes any tests on the sender address of a message, you
should use the -f option to set an appropriate sender when running -bv tests. Without it, the sender
is assumed to be the calling user at the default qualifying domain.

-bvs
This option acts like -bv, but verifies the address as a sender rather than a recipient address. This
affects any rewriting and qualification that might happen.

-bw
This option runs Exim as a daemon, awaiting incoming SMTP connections, similarly to the -bd
option. All port specifications on the command-line and in the configuration file are ignored.
Queue-running may not be specified.

In this mode, Exim expects to be passed a socket as fd 0 (stdin) which is listening for connections.
This permits the system to start up and have inetd (or equivalent) listen on the SMTP ports,
starting an Exim daemon for each port only when the first connection is received.

If the option is given as -bw<time> then the time is a timeout, after which the daemon will exit,
which should cause inetd to listen once more.

-C <filelist>
This option causes Exim to find the runtime configuration file from the given list instead of from
the list specified by the CONFIGURE_FILE compile-time setting. Usually, the list will consist of
just a single filename, but it can be a colon-separated list of names. In this case, the first file that
exists is used. Failure to open an existing file stops Exim from proceeding any further along the
list, and an error is generated.

When this option is used by a caller other than root, and the list is different from the compiled-in
list, Exim gives up its root privilege immediately, and runs with the real and effective uid and gid
set to those of the caller. However, if a TRUSTED CONFIG_LIST file is defined in
Local/Makefile, that file contains a list of full pathnames, one per line, for configuration files which
are trusted. Root privilege is retained for any configuration file so listed, as long as the caller is the
Exim user (or the user specified in the CONFIGURE_OWNER option, if any), and as long as the
configuration file is not writeable by inappropriate users or groups.

Leaving TRUSTED_CONFIG_LIST unset precludes the possibility of testing a configuration
using -C right through message reception and delivery, even if the caller is root. The reception

38 The Exim command line (5)

works, but by that time, Exim is running as the Exim user, so when it re-executes to regain
privilege for the delivery, the use of -C causes privilege to be lost. However, root can test reception
and delivery using two separate commands (one to put a message in the queue, using -odq, and
another to do the delivery, using -M).

If ALT_CONFIG_PREFIX is defined in Local/Makefile, it specifies a prefix string with which any
file named in a -C command line option must start. In addition, the filename must not contain the
sequence / . . /. However, if the value of the -C option is identical to the value of CONFIGURE_
FILE in Local/Makefile, Exim ignores -C and proceeds as usual. There is no default setting for
ALT_CONFIG_PREFIX; when it is unset, any filename can be used with -C.

ALT_CONFIG_PREFIX can be used to confine alternative configuration files to a directory to
which only root has access. This prevents someone who has broken into the Exim account from
running a privileged Exim with an arbitrary configuration file.

The -C facility is useful for ensuring that configuration files are syntactically correct, but cannot be
used for test deliveries, unless the caller is privileged, or unless it is an exotic configuration that
does not require privilege. No check is made on the owner or group of the files specified by this
option.

-D<macro>=<value>
This option can be used to override macro definitions in the configuration file (see section .
However, like -C, if it is used by an unprivileged caller, it causes Exim to give up its root privilege.
If DISABLE_D_OPTION is defined in Local/Makefile, the use of -D is completely disabled, and
its use causes an immediate error exit.

If WHITELIST_D_MACROS is defined in Local/Makefile then it should be a colon-separated list
of macros which are considered safe and, if -D only supplies macros from this list, and the values
are acceptable, then Exim will not give up root privilege if the caller is root, the Exim run-time
user, or the CONFIGURE_OWNER, if set. This is a transition mechanism and is expected to be
removed in the future. Acceptable values for the macros satisfy the regexp: ~ [A-Za-z0-9_/ .-

1*$

The entire option (including equals sign if present) must all be within one command line item. -D
can be used to set the value of a macro to the empty string, in which case the equals sign is
optional. These two commands are synonymous:

exim —-DABC
exim —-DABC=

To include spaces in a macro definition item, quotes must be used. If you use quotes, spaces are
permitted around the macro name and the equals sign. For example:

exim '-D ABC = something'

-D may be repeated up to 10 times on a command line. Only macro names up to 22 letters long can
be set.

-d<debug options>
This option causes debugging information to be written to the standard error stream. It is restricted
to admin users because debugging output may show database queries that contain password infor-
mation. Also, the details of users’ filter files should be protected. If a non-admin user uses -d,
Exim writes an error message to the standard error stream and exits with a non-zero return code.

When -d is used, -v is assumed. If -d is given on its own, a lot of standard debugging data is
output. This can be reduced, or increased to include some more rarely needed information, by
directly following -d with a string made up of names preceded by plus or minus characters. These
add or remove sets of debugging data, respectively. For example, -d+filter adds filter debugging,
whereas -d-all+filter selects only filter debugging. Note that no spaces are allowed in the debug
setting. The available debugging categories are:

ACL
interpretation
aatithnticators

39 The Exim command line (5)

gdahiralr
delivery
logic

DINS
lookups
(see

also
resolver)
DINSbI
black

list

(aka

RBL)

code
aegements
for

execy()
calls
dexpibed
debugging
for

string
expansions
fifikter
handling
himtgs_lookup
data
lookups
aHost_lookup
types

of
name-to-IP
address
handling
iddant
lookup
lintserface
of

local
interfaces
nietishing
things

in

lists
sisaein
load
checks
chmcal_scan
be

used

by
local_scan()
(see
chapter

40

The Exim command line (5)

ghoicap
lookup
code

and

all
lookups
muamoyy
handling
rmodi8r:
avoid
UTE-8
line-drawing
npadifier:
add

pid

to

debug
output
lines
spitoegss_info
info

for

the
process
log
qgeaae_run
runs
gramrnle
message
reception
logic
tuesolver
on

the

DNS
resolver’s
debugging
output
reatyy
handling
addrese
rewriting"
address
routing
ntodéfseamp
add
timestamp
to

debug
output
lines

TS

logic
titaRRpPOIL

41

The Exim command line (5)

chadhges
of
uid/gid
and
looking
up
uid/gid
astdrifys
verification
logic
ahllost
all

of

the
above
(see
below),
and
also

-V

The all option excludes memory when used as +all, but includes it for —all. The reason for
this is that +all is something that people tend to use when generating debug output for Exim
maintainers. If +memory is included, an awful lot of output that is very rarely of interest is
generated, so it now has to be explicitly requested. However, —a11l does turn everything off.

The resolver option produces output only if the DNS resolver was compiled with DEBUG
enabled. This is not the case in some operating systems. Also, unfortunately, debugging output
from the DNS resolver is written to stdout rather than stderr.

The default (-d with no argument) omits expand, filter, interface, load, memory, pid,
resolver, and timestamp. However, the pid selector is forced when debugging is turned on
for a daemon, which then passes it on to any re-executed Exims. Exim also automatically adds the
pid to debug lines when several remote deliveries are run in parallel.

The timestamp selector causes the current time to be inserted at the start of all debug output
lines. This can be useful when trying to track down delays in processing.

The nout £8 selector disables the use of UTF-8 line-drawing characters to group related infor-
mation. When disabled. ascii-art is used instead. Using the +all option does not set this modifier,

If the debug_print option is set in any driver, it produces output whenever any debugging is
selected, or if -v is used.

-dd<debug options>

This option behaves exactly like -d except when used on a command that starts a daemon process.
In that case, debugging is turned off for the subprocesses that the daemon creates. Thus, it is useful
for monitoring the behaviour of the daemon without creating as much output as full debugging
does.

-dropcr

-E

This is an obsolete option that is now a no-op. It used to affect the way Exim handled CR and LF
characters in incoming messages. What happens now is described in section E8.2

This option specifies that an incoming message is a locally-generated delivery failure report. It is
used internally by Exim when handling delivery failures and is not intended for external use. Its
only effect is to stop Exim generating certain messages to the postmaster, as otherwise message
cascades could occur in some situations. As part of the same option, a message id may follow the
characters -E. If it does, the log entry for the receipt of the new message contains the id, following
“R=", as a cross-reference.

42 The Exim command line (5)

-ex
There are a number of Sendmail options starting with -oe which seem to be called by various
programs without the leading o in the option. For example, the vacation program uses -eq. Exim
treats all options of the form -ex as synonymous with the corresponding -oex options.

-F <string>
This option sets the sender’s full name for use when a locally-generated message is being
accepted. In the absence of this option, the user’s gecos entry from the password data is used. As
users are generally permitted to alter their gecos entries, no security considerations are involved.
White space between -F and the <string> is optional.

-f <address>
This option sets the address of the envelope sender of a locally-generated message (also known as
the return path). The option can normally be used only by a trusted user, but untrusted_set_
sender can be set to allow untrusted users to use it.

Processes running as root or the Exim user are always trusted. Other trusted users are defined by
the trusted_users or trusted_groups options. In the absence of -f, or if the caller is not trusted,
the sender of a local message is set to the caller’s login name at the default qualify domain.

There is one exception to the restriction on the use of -f: an empty sender can be specified by any
user, trusted or not, to create a message that can never provoke a bounce. An empty sender can be
specified either as an empty string, or as a pair of angle brackets with nothing between them, as in
these examples of shell commands:

exim —-f '<>' user@Rdomain
exim —-f "" user@domain

In addition, the use of -f is not restricted when testing a filter file with -bf or when testing or
verifying addresses using the -bt or -bv options.

Allowing untrusted users to change the sender address does not of itself make it possible to send
anonymous mail. Exim still checks that the From: header refers to the local user, and if it does not,
it adds a Sender: header, though this can be overridden by setting no_local_from_check.

White space between -f and the <address> is optional (that is, they can be given as two arguments
or one combined argument). The sender of a locally-generated message can also be set (when
permitted) by an initial “From ” line in the message — see the description of -bm above — but if -f
is also present, it overrides “From ”.

-G
This option is equivalent to an ACL applying:

control = suppress_local_fixups

for every message received. Note that Sendmail will complain about such bad formatting, where
Exim silently just does not fix it up. This may change in future.

As this affects audit information, the caller must be a trusted user to use this option.

-h <number>
This option is accepted for compatibility with Sendmail, but has no effect. (In Sendmail it over-
rides the “hop count” obtained by counting Received: headers.)

-i
This option, which has the same effect as -oi, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. Solaris 2.4 (SunOS 5.4) Sendmail has a similar -i
processing option https://docs.oracle.com/cd/E19457-01/801-6680-1M/801-6680-1M.pdf, p.
1M-529), and therefore a -0i command line option, which both are used by its mailx command.

-L <tag>
This option is equivalent to setting syslog_processname in the config file and setting log_file_
path to syslog. Its use is restricted to administrators. The configuration file has to be read and
parsed, to determine access rights, before this is set and takes effect, so early configuration file
errors will not honour this flag.

43 The Exim command line (5)

The tag should not be longer than 32 characters.

-M <message id> <message id> ...
This option requests Exim to run a delivery attempt on each message in turn. If any of the
messages are frozen, they are automatically thawed before the delivery attempt. The settings of
queue_domains, queue_smtp_domains, and hold_domains are ignored.

Retry hints for any of the addresses are overridden — Exim tries to deliver even if the normal retry
time has not yet been reached. This option requires the caller to be an admin user. However, there
is an option called prod_requires_admin which can be set false to relax this restriction (and also
the same requirement for the -q, -R, and -S options).

The deliveries happen synchronously, that is, the original Exim process does not terminate until all
the delivery attempts have finished. No output is produced unless there is a serious error. If you
want to see what is happening, use the -v option as well, or inspect Exim’s main log.

-Mar <message id> <address> <address> ...
This option requests Exim to add the addresses to the list of recipients of the message (“ar” for
“add recipients”). The first argument must be a message id, and the remaining ones must be email
addresses. However, if the message is active (in the middle of a delivery attempt), it is not altered.
This option can be used only by an admin user.

-MC <transport> <hostname> <host IP> <sequence number> <message id>
This option is not intended for use by external callers. It is used internally by Exim to invoke
another instance of itself to deliver a waiting message using an existing SMTP connection, which
is passed as the standard input. Details are given in chapte This must be the final option, and
the caller must be root or the Exim user in order to use it.

-MCA
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that the connection to the remote host has been authenticated.

-MCD
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that the remote host supports the ESMTP DSN extension.

-MCd
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -d option to pass on an information string on the purpose of the process.

-MCG <queue name>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that an alternate queue is used, named by the following argument.

-MCK
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that a remote host supports the ESMTP CHUNKING extension.

-MCL
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that the server to which Exim is connected advertised limits on
numbers of mails, recipients or recipient domains. The limits are given by the following three
arguments.

-MCP
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that the server to which Exim is connected supports pipelining.

-MCp
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that the connection t a remote server is via a SOCKS proxy, using
addresses and ports given by the following four arguments.

44 The Exim command line (5)

-MCQ <process id> <pipe fd>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option when the original delivery was started by a queue runner. It passes on the
process id of the queue runner, together with the file descriptor number of an open pipe. Closure of
the pipe signals the final completion of the sequence of processes that are passing messages
through the same SMTP connection.

-MCq <recipient address> <size>
This option is not intended for use by external callers. It is used internally by Exim to implement
quota checking for local users.

-MCS
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the ESMTP SIZE option should be used on
messages delivered down the existing connection.

-MCT
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the host to which Exim is connected supports
TLS encryption.

-MCr <SNI>

-MCs <SNI>
These options are not intended for use by external callers. It is used internally by Exim in conjunc-
tion with the -MCt option, and passes on the fact that a TLS Server Name Indication was sent as

part of the channel establishment. The argument gives the SNI string. The "r" variant indicates a
DANE-verified connection.

-MCt <IP address> <port> <cipher>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the connection is being proxied by a parent
process for handling TLS encryption. The arguments give the local address and port being proxied,
and the TLS cipher.

-Mc <message id> <message id> ...

This option requests Exim to run a delivery attempt on each message, in turn, but unlike the -M
option, it does check for retry hints, and respects any that are found. This option is not very useful
to external callers. It is provided mainly for internal use by Exim when it needs to re-invoke itself
in order to regain root privilege for a delivery (see chapter . However, -Mc can be useful when
testing, in order to run a delivery that respects retry times and other options such as hold_domains
that are overridden when -M is used. Such a delivery does not count as a queue run. If you want to
run a specific delivery as if in a queue run, you should use -q with a message id argument. A
distinction between queue run deliveries and other deliveries is made in one or two places.

-Mes <message id> <address>
This option requests Exim to change the sender address in the message to the given address, which
must be a fully qualified address or “<>” (“es” for “edit sender”’). There must be exactly two
arguments. The first argument must be a message id, and the second one an email address.
However, if the message is active (in the middle of a delivery attempt), its status is not altered.
This option can be used only by an admin user.

-Mf <message id> <message id> ...
This option requests Exim to mark each listed message as “frozen”. This prevents any delivery
attempts taking place until the message is “thawed”, either manually or as a result of the auto_
thaw configuration option. However, if any of the messages are active (in the middle of a delivery
attempt), their status is not altered. This option can be used only by an admin user.

-Mg <message id> <message id> ...
This option requests Exim to give up trying to deliver the listed messages, including any that are
frozen. However, if any of the messages are active, their status is not altered. For non-bounce
messages, a delivery error message is sent to the sender, containing the text “cancelled by adminis-
trator”. Bounce messages are just discarded. This option can be used only by an admin user.

45 The Exim command line (5)

-MG <queue name> <message id> <message id> ...
This option requests that each listed message be moved from its current queue to the given named
queue. The destination queue name argument is required, but can be an empty string to define the
default queue. If the messages are not currently located in the default queue, a -qG<name> option
will be required to define the source queue.

-Mmad <message id> <message id> ...
This option requests Exim to mark all the recipient addresses in the messages as already delivered
(“mad” for “mark all delivered”). However, if any message is active (in the middle of a delivery
attempt), its status is not altered. This option can be used only by an admin user.

-Mmd <message id> <address> <address> ...
This option requests Exim to mark the given addresses as already delivered (“md” for “mark
delivered”). The first argument must be a message id, and the remaining ones must be email
addresses. These are matched to recipient addresses in the message in a case-sensitive manner. If
the message is active (in the middle of a delivery attempt), its status is not altered. This option can
be used only by an admin user.

-Mrm <message id> <message id> ...
This option requests Exim to remove the given messages from the queue. No bounce messages are
sent; each message is simply forgotten. However, if any of the messages are active, their status is
not altered. This option can be used only by an admin user or by the user who originally caused
the message to be placed in the queue.

-Mset <message id>
This option is useful only in conjunction with -be (that is, when testing string expansions). Exim
loads the given message from its spool before doing the test expansions, thus setting message-
specific variables such as $message_size and the header variables. The $recipients variable is made
available. This feature is provided to make it easier to test expansions that make use of these
variables. However, this option can be used only by an admin user. See also -bem.

-Mt <message id> <message id> ...
This option requests Exim to “thaw” any of the listed messages that are “frozen”, so that delivery
attempts can resume. However, if any of the messages are active, their status is not altered. This
option can be used only by an admin user.

-Mvb <message id>
This option causes the contents of the message body (-D) spool file to be written to the standard
output. This option can be used only by an admin user.

-Mve <message id>
This option causes a copy of the complete message (header lines plus body) to be written to the
standard output in RFC 2822 format. This option can be used only by an admin user.

-Mvh <message id>
This option causes the contents of the message headers (-H) spool file to be written to the standard
output. This option can be used only by an admin user.

-Mvl <message id>
This option causes the contents of the message log spool file to be written to the standard output.
This option can be used only by an admin user.

-m
This is a synonym for -om that is accepted by Sendmail (https://docs.oracle.com/cd/E19457-
01/801-6680-1M/801-6680-1M.pdf p. 1M-258), so Exim treats it that way too.

-N
This is a debugging option that inhibits delivery of a message at the transport level. It implies -v.
Exim goes through many of the motions of delivery — it just doesn’t actually transport the mess-
age, but instead behaves as if it had successfully done so. However, it does not make any updates

’

to the retry database, and the log entries for deliveries are flagged with “*>” rather than “=>".

Because -N discards any message to which it applies, only root or the Exim user are allowed to use
it with -bd, -q, -R or -M. In other words, an ordinary user can use it only when supplying an

46 The Exim command line (5)

incoming message to which it will apply. Although transportation never fails when -N is set, an
address may be deferred because of a configuration problem on a transport, or a routing problem.
Once -N has been used for a delivery attempt, it sticks to the message, and applies to any subse-
quent delivery attempts that may happen for that message.

-n
This option is interpreted by Sendmail to mean “no aliasing”. For normal modes of operation, it is
ignored by Exim. When combined with -bP it makes the output more terse (suppresses option
names, environment values and config pretty printing).

-0 <data>
This option is interpreted by Sendmail to mean set option. Itisignored by Exim.

-0A <file name>
This option is used by Sendmail in conjunction with -bi to specify an alternative alias filename.
Exim handles -bi differently; see the description above.

-0B <n>
This is a debugging option which limits the maximum number of messages that can be delivered
down one SMTP connection, overriding the value set in any smip transport. If <n> is omitted, the
limit is set to 1.

-odb
This option applies to all modes in which Exim accepts incoming messages, including the listen-
ing daemon. It requests “background” delivery of such messages, which means that the accepting
process automatically starts a delivery process for each message received, but does not wait for the
delivery processes to finish.

When all the messages have been received, the reception process exits, leaving the delivery pro-
cesses to finish in their own time. The standard output and error streams are closed at the start of
each delivery process. This is the default action if none of the -od options are present.

If one of the queueing options in the configuration file (queue_only or queue_only_file, for
example) is in effect, -odb overrides it if queue_only_override is set true, which is the default
setting. If queue_only_override is set false, -odb has no eftect.

-odf
This option requests “foreground” (synchronous) delivery when Exim has accepted a locally-
generated message. (For the daemon it is exactly the same as -odb.) A delivery process is auto-
matically started to deliver the message, and Exim waits for it to complete before proceeding.

The original Exim reception process does not finish until the delivery process for the final message
has ended. The standard error stream is left open during deliveries.

However, like -odb, this option has no effect if queue_only_override is false and one of the
queueing options in the configuration file is in effect.

If there is a temporary delivery error during foreground delivery, the message is left in the queue
for later delivery, and the original reception process exits. See chapterfor a way of setting up a
restricted configuration that never queues messages.

-odi
This option is synonymous with -odf. It is provided for compatibility with Sendmail.

-odq
This option applies to all modes in which Exim accepts incoming messages, including the listen-
ing daemon. It specifies that the accepting process should not automatically start a delivery process
for each message received. Messages are placed in the queue, and remain there until a subsequent
queue runner process encounters them. There are several configuration options (such as queue_
only) that can be used to queue incoming messages under certain conditions. This option overrides
all of them and also -odgs. It always forces queueing.

47 The Exim command line (5)

-odgs
This option is a hybrid between -odb/-odi and -odq. However, like -odb and -odi, this option has
no effect if queue_only_override is false and one of the queueing options in the configuration file
is in effect.

When -odqs does operate, a delivery process is started for each incoming message, in the back-
ground by default, but in the foreground if -odi is also present. The recipient addresses are routed,
and local deliveries are done in the normal way. However, if any SMTP deliveries are required,
they are not done at this time, so the message remains in the queue until a subsequent queue runner
process encounters it. Because routing was done, Exim knows which messages are waiting for
which hosts, and so a number of messages for the same host can be sent in a single SMTP
connection. The queue_smtp_domains configuration option has the same effect for specific
domains. See also the -qq option.

-oee
If an error is detected while a non-SMTP message is being received (for example, a malformed
address), the error is reported to the sender in a mail message.

Provided this error message is successfully sent, the Exim receiving process exits with a return
code of zero. If not, the return code is 2 if the problem is that the original message has no
recipients, or 1 for any other error. This is the default -oex option if Exim is called as rmail.

-oem
This is the same as -oee, except that Exim always exits with a non-zero return code, whether or not
the error message was successfully sent. This is the default -oex option, unless Exim is called as
rmail.

-oep
If an error is detected while a non-SMTP message is being received, the error is reported by
writing a message to the standard error file (stderr). The return code is 1 for all errors.

-oeq
This option is supported for compatibility with Sendmail, but has the same effect as -oep.

-0ew
This option is supported for compatibility with Sendmail, but has the same effect as -oem.

-oi
This option, which has the same effect as -i, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. Otherwise, a single dot does terminate, though Exim
does no special processing for other lines that start with a dot. This option is set by default if Exim
is called as rmail. See also -ti.

-oitrue
This option is treated as synonymous with -oi.

-oMa <host address>
A number of options starting with -o0M can be used to set values associated with remote hosts on
locally-submitted messages (that is, messages not received over TCP/IP). These options can be
used by any caller in conjunction with the -bh, -be, -bf, -bF, -bt, or -bv testing options. In other
circumstances, they are ignored unless the caller is trusted.

The -oMa option sets the sender host address. This may include a port number at the end, after a
full stop (period). For example:

exim -bs -oMa 10.9.8.7.1234

An alternative syntax is to enclose the IP address in square brackets, followed by a colon and the
port number:

exim -bs -oMa [10.9.8.7]:1234

The IP address is placed in the $sender_host_address variable, and the port, if present, in $sender_
host_port. If both -oMa and -bh are present on the command line, the sender host IP address is
taken from whichever one is last.

48 The Exim command line (5)

-oMaa <name>
See -oMa above for general remarks about the -oM options. The -oMaa option sets the value of
$sender_host_authenticated (the authenticator name). See chapter for a discussion of SMTP
authentication. This option can be used with -bh and -bs to set up an authenticated SMTP session
without actually using the SMTP AUTH command.

-oMai <string>
See -oMa above for general remarks about the -oM options. The -oMai option sets the value of
Sauthenticated_id (the id that was authenticated). This overrides the default value (the caller’s
login id, except with -bh, where there is no default) for messages from local sources. See chapter
for a discussion of authenticated ids.

-oMas <address>
See -oMa above for general remarks about the -oM options. The -oMas option sets the
authenticated sender value in $authenticated_sender. It overrides the sender address that is created
from the caller’s login id for messages from local sources, except when -bh is used, when there is
no default. For both -bh and -bs. an authenticated sender that is specified on a MAIL command
overrides this value. See chapter for a discussion of authenticated senders.

-oMi <interface address>
See -oMa above for general remarks about the -oM options. The -oMi option sets the IP interface
address value. A port number may be included, using the same syntax as for -oMa. The interface
address is placed in $received_ip_address and the port number, if present, in $received_port.

-oMm <message reference>
See -oMa above for general remarks about the -oM options. The -oMm option sets the message
reference, e.g. message-id, and is logged during delivery. This is useful when some kind of audit
trail is required to tie messages together. The format of the message reference is checked and will
abort if the format is invalid. The option will only be accepted if exim is running in trusted mode,
not as any regular user.

The best example of a message reference is when Exim sends a bounce message. The message
reference is the message-id of the original message for which Exim is sending the bounce.

-oMr <protocol name>
See -oMa above for general remarks about the -oM options. The -oMr option sets the received
protocol value that is stored in $received_protocol. However, it does not apply (and is ignored)
when -bh or -bs is used. For -bh, the protocol is forced to_one of the standard SMTP protocol
names (see the description of $received_protocol in section . For -bs, the protocol is always
“local-" followed by one of those same names. For -bS (batched SMTP) however, the protocol can
be set by -oMr. Repeated use of this option is not supported.

-0Ms <host name>
See -oMa above for general remarks about the -oM options. The -0Ms option sets the sender host
name in $sender_host_name. When this option is present, Exim does not attempt to look up a host
name from an IP address; it uses the name it is given.

-oMt <ident string>
See -oMa above for general remarks about the -oM options. The -0Mt option sets the sender ident
value in $sender_ident. The default setting for local callers is the login id of the calling process,
except when -bh is used, when there is no default.

-om
In Sendmail, this option means “me too”, indicating that the sender of a message should receive a
copy of the message if the sender appears in an alias expansion. Exim always does this, so the
option does nothing.

-00
This option is ignored. In Sendmail it specifies “old style headers”, whatever that means.

-oP <path>
This option is useful only in conjunction with -bd or -q with a time value. The option specifies the
file to which the process id of the daemon is written. When -0X is used with -bd, or when -q with

49 The Exim command line (5)

a time is used without -bd, this is the only way of causing Exim to write a pid file, because in
those cases, the normal pid file is not used.

-oPX
This option is not intended for general use. The daemon uses it when terminating due to a
SIGTEM, possibly in combination with -oP <path>. It causes the pid file to be removed.

-or <time>
This option sets a timeout value for incoming non-SMTP messages. If it is not set, Exim will wait
forever for the standard input. The value can also be set by the receive_timeout option. The
format used for specifying times is described in section

-0s <time>
This option sets a timeout value for incoming SMTP messages. The timeout applies to each SMTP
command and block of data. The value can also be set by the smtp_receive_timeout option; it
defaults to 5 minutes. The format used for specifying times is described in section [6.16

-ov
This option has exactly the same effect as -v.

-0X <number or string>
This option is relevant only when the -bd (start listening daemon) option is also given. It controls
which ports and interfaces the daemon uses. Details of the syntax, and how it interacts with
configuration file options, are given in chapter When -0X is used to start a daemon, no pid file
is written unless -oP is also present to specify a pid filename.

-0Y
This option controls the creation of an inter-process communications endpoint by the Exim
daemon. It is only relevant when the -bd (start listening daemon) option is also given. Normally
the daemon creates this socket, unless a -0X and no -oP option is also present. If this option is
given then the socket will not be created. This could be required if the system is running multiple
daemons.

The socket is currently used for
* fast ramp-up of queue runner processes
» obtaining a current queue size

-pd
This option applies when an embedded Perl interpreter is linked with Exim (see chapter [12)). It
overrides the setting of the perl_at_start option, forcing the starting of the interpreter to be
delayed until it is needed.

-ps
This option applies when an embedded Perl interpreter is linked with Exim (see chapter [12)). It
overrides the setting of the perl_at_start option, forcing the starting of the interpreter to occur as
soon as Exim is started.

-p<rval>:<sval>
For compatibility with Sendmail, this option is equivalent to

—oMr <rval> —oMs <sval>

It sets the incoming protocol and host name (for trusted callers). The host name and its colon can
be omitted when only the protocol is to be set. Note the Exim already has two private options, -pd
and -ps, that refer to embedded Perl. It is therefore impossible to set a protocol value of d or s
using this option (but that does not seem a real limitation). Repeated use of this option is not
supported.

-q
This option is normally restricted to admin users. However, there is a configuration option called
prod_requires_admin which can be set false to relax this restriction (and also the same require-
ment for the -M, -R, and -S options).

50 The Exim command line (5)

If other commandline options do not specify an action, the -q option starts one queue runner
process. This scans the queue of waiting messages, and runs a delivery process for each one in
turn. It waits for each delivery process to finish before starting the next one. A delivery process
may not actually do any deliveries if the retry times for the addresses have not been reached. Use
-qf (see below) if you want to override this.

If the delivery process spawns other processes to deliver other messages down passed SMTP
connections, the queue runner waits for these to finish before proceeding.

When all the queued messages have been considered, the original queue runner process terminates.
In other words, a single pass is made over the waiting mail, one message at a time. Use -q with a
time (see below) if you want this to be repeated periodically.

Exim processes the waiting messages in an unpredictable order. It isn’t very random, but it is
likely to be different each time, which is all that matters. If one particular message screws up a
remote MTA, other messages to the same MTA have a chance of getting through if they get tried
first.

It is possible to cause the messages to be processed in lexical message id order, which is essen-
tially the order in which they arrived, by setting the queue_run_in_order option, but this is not
recommended for normal use.

-q<qflags>
The -q option may be followed by one or more flag letters that change its behaviour. They are all
optional, but if more than one is present, they must appear in the correct order. Each flag is
described in a separate item below.

-qq...
An option starting with -qq requests a two-stage queue run. In the first stage, the queue is scanned

as if the queue_smtp_domains option matched every domain. Addresses are routed, local deliver-
ies happen, but no remote transports are run.

Performance will be best if the queue_run_in_order option is false. If that is so and the queue_
fast_ramp option is true then in the first phase of the run, once a threshold number of messages
are routed for a given host, a delivery process is forked in parallel with the rest of the scan.

The hints database that remembers which messages are waiting for specific hosts is updated, as if
delivery to those hosts had been deferred. After this is complete, a second, normal queue scan
happens, with routing and delivery taking place as normal. Messages that are routed to the same
host should mostly be delivered down a single SMTP connection because of the hints that were set
up during the first queue scan. This option may be useful for hosts that are connected to the
Internet intermittently.

-q[qli...
If the i flag is present, the queue runner runs delivery processes only for those messages that

haven’t previously been tried. (i stands for “initial delivery”.) This can be helpful if you are putting
messages in the queue using -odq and want a queue runner just to process the new messages.

-q[ql[i]f...
If one f flag is present, a delivery attempt is forced for each non-frozen message, whereas without f
only those non-frozen addresses that have passed their retry times are tried.

-q[ql[ilff..
If ff is present, a delivery attempt is forced for every message, whether frozen or not.

-q[q]G]ETEN
The [(the letter “ell”) flag specifies that only local deliveries are to be done. If a message requires
any remote deliveries, it remains in the queue for later delivery.

-q[qIEIHTEINI[G <name>[/<time>]]]
If the G flag and a name is present, the queue runner operates on the queue with the given name
rather than the default queue. The name should not contain a / character. For a periodic queue run
(see below) append to the name a slash and a time value.

51 The Exim command line (5)

If other commandline options specify an action, a -gG<name> option will specify a queue to
operate on. For example:

exim -bp —-gGquarantine
mailg —gGquarantine
exim —-gGoffpeak —-Rf @special.domain.example

-q<gflags> <start id> <end id>
When scanning the queue, Exim can be made to skip over messages whose ids are lexically less
than a given value by following the -q option with a starting message id. For example:

exim —-g 0t5C6£-0000c8-00

Messages that arrived earlier than 0t 5C6£-0000c8-00 are not inspected. If a second message
id is given, messages whose ids are lexically greater than it are also skipped. If the same id is given
twice, for example,

exim —-g 0t5C6£-0000c8-00 0t5C6£-0000c8-00

just one delivery process is started, for that message. This differs from -M in that retry data is
respected, and it also differs from -Mc in that it counts as a delivery from a queue run. Note that
the selection mechanism does not affect the order in which the messages are scanned. There are
also other ways of selecting specific sets of messages for delivery in a queue run — see -R and -S.

-q<gflags><time>
When a time value is present, the -q option causes Exim to run as a daemon, starting a queue
runner process at intervals specified by the given time value (whose format is described in section
@ This form of the -q option is commonly combined with the -bd option, in which case a
single daemon process handles both functions. A common way of starting up a combined daemon
at system boot time is to use a command such as

/usr/exim/bin/exim -bd -g30m

Such a daemon listens for incoming SMTP calls, and also starts a queue runner process every 30
minutes.

When a daemon is started by -q with a time value, but without -bd, no pid file is written unless one
is explicitly requested by the -oP option.

-qR<rsflags> <string>
This option is synonymous with -R. It is provided for Sendmail compatibility.

-qS<rsflags> <string>
This option is synonymous with -S.

-R<rsflags> <string>
The <rsflags> may be empty, in which case the white space before the string is optional, unless the
string is f, ff, r, rf, or rff, which are the possible values for <rsflags>. White space is required if
<rsflags> is not empty.

This option is similar to -q with no time value, that is, it causes Exim to perform a single queue
run, except that, when scanning the messages on the queue, Exim processes only those that have at
least one undelivered recipient address containing the given string, which is checked in a case-
independent way. If the <rsflags> start with r, <string> is interpreted as a regular expression;
otherwise it is a literal string.

If you want to do periodic queue runs for messages with specific recipients, you can combine -R
with -q and a time value. For example:

exim —-g25m -R @special.domain.example

This example does a queue run for messages with recipients in the given domain every 25 minutes.
Any additional flags that are specified with -q are applied to each queue run.

Once a message is selected for delivery by this mechanism, all its addresses are processed. For the
first selected message, Exim overrides any retry information and forces a delivery attempt for each
undelivered address. This means that if delivery of any address in the first message is successful,

52 The Exim command line (5)

any existing retry information is deleted, and so delivery attempts for that address in subsequently
selected messages (which are processed without forcing) will run. However, if delivery of any
address does not succeed, the retry information is updated, and in subsequently selected messages,
the failing address will be skipped.

If the <rsflags> contain f or ff, the delivery forcing applies to all selected messages, not just the
first; frozen messages are included when ff is present.

The -R option makes it straightforward to initiate delivery of all messages to a given domain after
a host has been down for some time. When the SMTP command ETRN is accepted by its ACL
(see chapter , its default effect is to run Exim with the -R option, but it can be configured to run
an arbitrary command instead.

This is a documented (for Sendmail) obsolete alternative name for -f.

-S<rsflags> <string>

This option acts like -R except that it checks the string against each message’s sender instead of
against the recipients. If -R is also set, both conditions must be met for a message to be selected. If
either of the options has f or ffin its flags, the associated action is taken.

-Tqt <times>

-ti

This is an option that is exclusively for use by the Exim testing suite. It is not recognized when
Exim is run normally. It allows for the setting up of explicit “queue times” so that various
warning/retry features can be tested.

When Exim is receiving a locally-generated, non-SMTP message on its standard input, the -t
option causes the recipients of the message to be obtained from the 7o:, Cc:, and Bcc: header lines
in the message instead of from the command arguments. The addresses are extracted before any
rewriting takes place and the Bcc: header line, if present, is then removed.

If the command has any arguments, they specify addresses to which the message is not to be
delivered. That is, the argument addresses are removed from the recipients list obtained from the
headers. This is compatible with Smail 3 and in accordance with the documented behaviour of
several versions of Sendmail, as described in man pages on a number of operating systems (e.g.
Solaris 8, IRIX 6.5, HP-UX 11). However, some versions of Sendmail add argument addresses to
those obtained from the headers, and the O’Reilly Sendmail book documents it that way. Exim can
be made to add argument addresses instead of subtracting them by setting the option extract_
addresses_remove_arguments false.

If there are any Resent- header lines in the message, Exim extracts recipients from all Resent-To:,
Resent-Cc:, and Resent-Bcc: header lines instead of from 7o:, Cc:, and Bcc:. This is for compati-
bility with Sendmail and other MTAs. (Prior to release 4.20, Exim gave an error if -t was used in
conjunction with Resent- header lines.)

RFC 2822 talks about different sets of Resent- header lines (for when a message is resent several
times). The RFC also specifies that they should be added at the front of the message, and separated
by Received: lines. It is not at all clear how -t should operate in the present of multiple sets, nor
indeed exactly what constitutes a “set”. In practice, it seems that MUAs do not follow the RFC.
The Resent- lines are often added at the end of the header, and if a message is resent more than
once, it is common for the original set of Resent- headers to be renamed as X-Resent- when a new
set is added. This removes any possible ambiguity.

This option is exactly equivalent to -t -i. It is provided for compatibility with Sendmail.

-tls-on-connect

This option is available when Exim is compiled with TLS support. It forces all incoming SMTP
connections to behave as if the incoming port is listed in the tls_on_connect_ports option. See
section and chapterfor further details.

53 The Exim command line (5)

-U
Sendmail uses this option for “initial message submission”, and its documentation states that in
future releases, it may complain about syntactically invalid messages rather than fixing them when
this flag is not set. Exim ignores this option.

-v
This option causes Exim to write information to the standard error stream, describing what it is
doing. In particular, it shows the log lines for receiving and delivering a message, and if an SMTP
connection is made, the SMTP dialogue is shown. Some of the log lines shown may not actually
be written to the log if the setting of log_selector discards them. Any relevant selectors are shown
with each log line. If none are shown, the logging is unconditional.

-X
AIX uses -x for a private purpose (“mail from a local mail program has National Language
Support extended characters in the body of the mail item”). It sets -x when calling the MTA from
its mail command. Exim ignores this option.

-X <logfile>
This option is interpreted by Sendmail to cause debug information to be sent to the named file. It is
ignored by Exim.

-z <log-line>
This option writes its argument to Exim’s logfile. Use is restricted to administrators; the intent is
for operational notes. Quotes should be used to maintain a multi-word item as a single argument,
under most shells.

54 The Exim command line (5)

6. The Exim runtime configuration file

Exim uses a single runtime configuration file that is read whenever an Exim binary is executed. Note
that in normal operation, this happens frequently, because Exim is designed to operate in a distributed
manner, without central control.

If a syntax error is detected while reading the configuration file, Exim writes a message on the
standard error, and exits with a non-zero return code. The message is also written to the panic log.
Note: Only simple syntax errors can be detected at this time. The values of any expanded options are
not checked until the expansion happens, even when the expansion does not actually alter the string.

The name of the configuration file is compiled into the binary for security reasons, and is specified
by the CONFIGURE_FILE compilation option. In most configurations, this specifies a single file.
However, it is permitted to give a colon-separated list of filenames, in which case Exim uses the first
existing file in the list.

The runtime configuration file must be owned by root or by the user that is specified at compile time
by the CONFIGURE_OWNER option (if set). The configuration file must not be world-writeable,
or group-writeable unless its group is the root group or the one specified at compile time by the
CONFIGURE_GROUP option.

Warning: In a conventional configuration, where the Exim binary is setuid to root, anybody who is
able to edit the runtime configuration file has an easy way to run commands as root. If you specify a
user or group in the CONFIGURE_OWNER or CONFIGURE_GROUP options, then that user and/or
any users who are members of that group will trivially be able to obtain root privileges.

Up to Exim version 4.72, the runtime configuration file was also permitted to be writeable by the
Exim user and/or group. That has been changed in Exim 4.73 since it offered a simple privilege
escalation for any attacker who managed to compromise the Exim user account.

A default configuration file, which will work correctly in simple situations, is provided in the file
src/configure.default. If CONFIGURE_FILE defines just one filename, the installation process copies
the default configuration to a new file of that name if it did not previously exist. If CONFIGURE_
FILE is a list, no default is automatically installed. Chapter El is a “walk-through” discussion of the
default configuration.

6.1 Using a different configuration file

A one-off alternate configuration can be specified by the -C command line option, which may specify
a single file or a list of files. However, when -C is used, Exim gives up its root privilege, unless called
by root (or unless the argument for -C is identical to the built-in value from CONFIGURE_FILE), or
is listed in the TRUSTED_CONFIG_LIST file and the caller is the Exim user or the user specified in
the CONFIGURE_OWNER setting. -C is useful mainly for checking the syntax of configuration files
before installing them. No owner or group checks are done on a configuration file specified by -C, if
root privilege has been dropped.

Even the Exim user is not trusted to specify an arbitrary configuration file with the -C option to be
used with root privileges, unless that file is listed in the TRUSTED_CONFIG_LIST file. This locks
out the possibility of testing a configuration using -C right through message reception and delivery,
even if the caller is root. The reception works, but by that time, Exim is running as the Exim user, so
when it re-execs to regain privilege for the delivery, the use of -C causes privilege to be lost. However,
root can test reception and delivery using two separate commands (one to put a message in the queue,
using -odq, and another to do the delivery, using -M).

If ALT_CONFIG_PREFIX is defined in Local/Makefile, it specifies a prefix string with which any file
named in a -C command line option must start. In addition, the filename must not contain the
sequence “/../”. There is no default setting for ALT_CONFIG_PREFIX; when it is unset, any
filename can be used with -C.

One-off changes to a configuration can be specified by the -D command line option, which defines
and overrides values for macros used inside the configuration file. However, like -C, the use of this
option by a non-privileged user causes Exim to discard its root privilege. If DISABLE_D_OPTION is

55 The runtime configuration file (6)

defined in Local/Makefile, the use of -D is completely disabled, and its use causes an immediate error
exit.

The WHITELIST_D_MACROS option in Local/Makefile permits the binary builder to declare certain
macro names trusted, such that root privilege will not necessarily be discarded. WHITELIST_D_
MACROS defines a colon-separated list of macros which are considered safe and, if -D only supplies
macros from this list, and the values are acceptable, then Exim will not give up root privilege if the
caller is root, the Exim run-time user, or the CONFIGURE_OWNER, if set. This is a transition
mechanism and is expected to be removed in the future. Acceptable values for the macros satisfy the
regexp: * [A-Za-z0-9_/.-1*$

Some sites may wish to use the same Exim binary on different machines that share a file system, but
to use different configuration files on each machine. If CONFIGURE_FILE_USE_NODE is defined
in Local/Makefile, Exim first looks for a file whose name is the configuration filename followed by a
dot and the machine’s node name, as obtained from the uname() function. If this file does not exist,
the standard name is tried. This processing occurs for each filename in the list given by
CONFIGURE_FILE or -C.

In some esoteric situations different versions of Exim may be run under different effective uids and
the CONFIGURE_FILE_USE_EUID is defined to help with this. See the comments in src/EDITME
for details.

6.2 Configuration file format

Exim’s configuration file is divided into a number of different parts. General option settings must
always appear at the start of the file. The other parts are all optional, and may appear in any order.
Each part other than the first is introduced by the word “begin” followed by at least one literal space,
and the name of the part. The optional parts are:

* ACL: Access control lists for controlling incoming SMTP mail (see chapter .

* authenticators: Configuration settings for the authenticator drivers. These are concerned with the
SMTP AUTH command (see chapter.

* routers: Configuration settings for the router drivers. Routers process addresses and determine how
the message is to be delivered (see chapters 22).

* transports: Configuration settings for the transport drivers. Transports define mechanisms for copy-
ing messages to destinations (see chapters [24H30).

» retry: Retry rules, for use when a message cannot be delivered immediately. If there is no retry
section, or if it is empty (that is, no retry rules are defined), Exim will not retry deliveries. In this
situation, temporary errors are treated the same as permanent errors. Retry rules are discussed in

chapter

» rewrite: Global address rewriting rules, for use when a message arrives and when new addresses
are generated during delivery. Rewriting is discussed in chapter

* local_scan: Private options for the local_scan() function. If you want to use this feature, you must
set

LOCAL_SCAN_HAS_OPTIONS=yes
in Local/Makefile before building Exim. Details of the local_scan() facility are given in chapter @
Leading and trailing white space in configuration lines is always ignored.

Blank lines in the file, and lines starting with a # character (ignoring leading white space) are treated
as comments and are ignored. Note: A # character other than at the beginning of a line is not treated
specially, and does not introduce a comment.

Any non-comment line can be continued by ending it with a backslash. Note that the general rule for
white space means that trailing white space after the backslash and leading white space at the start of
continuation lines is ignored. Comment lines beginning with # (but not empty lines) may appear in
the middle of a sequence of continuation lines.

56 The runtime configuration file (6)

A convenient way to create a configuration file is to start from the default, which is supplied in
src/configure.default, and add, delete, or change settings as required.

The ACLs, retry rules, and rewriting rules have their own syntax which is described in chapters
32| and respectively. The other parts of the configuration file have some syntactic items in
common, and these are described below, from section onwards. Before that, the inclusion,
macro, and conditional facilities are described.

6.3 File inclusions in the configuration file
You can include other files inside Exim’s runtime configuration file by using this syntax:

.include <filename>
.include_if_exists <filename>

on a line by itself. Double quotes round the filename are optional. If you use the first form, a
configuration error occurs if the file does not exist; the second form does nothing for non-existent
files. The first form allows a relative name. It is resolved relative to the directory of the including file.
For the second form an absolute filename is required.

Includes may be nested to any depth, but remember that Exim reads its configuration file often, so it is
a good idea to keep them to a minimum. If you change the contents of an included file, you must HUP
the daemon, because an included file is read only when the configuration itself is read.

The processing of inclusions happens early, at a physical line level, so, like comment lines, an
inclusion can be used in the middle of an option setting, for example:

hosts_lookup = a.b.c \
.include /some/file

Include processing happens after macro processing (see below). Its effect is to process the lines of the
included file as if they occurred inline where the inclusion appears.

6.4 Macros in the configuration file

If a line in the main part of the configuration (that is, before the first “begin” line) begins with an
upper case letter, it is taken as a macro definition, and must be of the form

<name> = <rest of line>

The name must consist of letters, digits, and underscores, and need not all be in upper case, though
that is recommended. The rest of the line, including any continuations, is the replacement text, and
has leading and trailing white space removed. Quotes are not removed. The replacement text can
never end with a backslash character, but this doesn’t seem to be a serious limitation.

Macros may also be defined between router, transport, authenticator, or ACL definitions. They may
not, however, be defined within an individual driver or ACL, or in the local_scan, retry, or rewrite
sections of the configuration.

6.5 Macro substitution

Once a macro is defined, all subsequent lines in the file (and any included files) are scanned for the
macro name; if there are several macros, the line is scanned for each, in turn, in the order in which the
macros are defined. The replacement text is not re-scanned for the current macro, though it is scanned
for subsequently defined macros. For this reason, a macro name may not contain the name of a
previously defined macro as a substring. You could, for example, define

ABCD_XYZ = <something>
ABCD = <something else>

but putting the definitions in the opposite order would provoke a configuration error. Macro expansion
is applied to individual physical lines from the file, before checking for line continuation or file
inclusion (see above). If a line consists solely of a macro name, and the expansion of the macro is

57 The runtime configuration file (6)

empty, the line is ignored. A macro at the start of a line may turn the line into a comment line or a
.include line.

6.6 Redefining macros

Once defined, the value of a macro can be redefined later in the configuration (or in an included file).
Redefinition is specified by using == instead of =. For example:

MAC = 1initial wvalue

MAC == updated value

Redefinition does not alter the order in which the macros are applied to the subsequent lines of the
configuration file. It is still the same order in which the macros were originally defined. All that
changes is the macro’s value. Redefinition makes it possible to accumulate values. For example:

MAC = initial wvalue

MAC == MAC and something added

This can be helpful in situations where the configuration file is built from a number of other files.

6.7 Overriding macro values

The values set for macros in the configuration file can be overridden by the -D command line option,
but Exim gives up its root privilege when -D is used, unless called by root or the Exim user. A
definition on the command line using the -D option causes all definitions and redefinitions within the
file to be ignored.

6.8 Example of macro usage

As an example of macro usage, consider a configuration where aliases are looked up in a MySQL
database. It helps to keep the file less cluttered if long strings such as SQL statements are defined
separately as macros, for example:

ALIAS_QUERY = select mailbox from user where \
login='${quote_mysqgl:$local_part}';

This can then be used in a redirect router setting like this:
data = ${lookup mysqgl{ALIAS_QUERY}}

In earlier versions of Exim macros were sometimes used for domain, host, or address lists. In Exim 4
these are handled better by named lists — see section

6.9 Builtin macros

Exim defines some macros depending on facilities available, which may differ due to build-time
definitions and from one release to another. All of these macros start with an underscore. They can be
used to conditionally include parts of a configuration (see below).

The following classes of macros are defined:

HAVE* build-time defines
_DRIVER_ROUTER_* router drivers
_DRIVER_TRANSPORT_* transport drivers
_DRIVER_AUTHENTICATOR_* authenticator drivers
LOG* log_selector values
_OPT_MAIN_* main config options
_OPT_ROUTERS_* generic router options
_OPT_TRANSPORTS_* generic transport options
_OPT_AUTHENTICATORS_* generic authenticator options
_OPT_ROUTER_*_* private router options

58 The runtime configuration file (6)

_OPT_TRANSPORT_*_* private transport options
_OPT_AUTHENTICATOR_*_* private authenticator options

Use an “exim -bP macros” command to get the list of macros.

6.10 Conditional skips in the configuration file

You can use the directives .ifdef, .ifndef, .elifdef, .elifndef, .else, and .endif to
dynamically include or exclude portions of the configuration file. The processing happens whenever
the file is read (that is, when an Exim binary starts to run).

The implementation is very simple. Instances of the first four directives must be followed by text that
includes the names of one or macros. The condition that is tested is whether or not any macro
substitution has taken place in the line. Thus:

.ifdef AAA
message_size_limit = 50M
.else

message_size_limit = 100M
.endif

sets a message size limit of 50M if the macro AAA is defined (or A or AZ), and 100M otherwise. If
there is more than one macro named on the line, the condition is true if any of them are defined. That
is, it is an “or” condition. To obtain an “and” condition, you need to use nested . ifdefs.

Although you can use a macro expansion to generate one of these directives, it is not very useful,
because the condition “there was a macro substitution in this line” will always be true.

Text following .else and .endif is ignored, and can be used as comment to clarify complicated
nestings.

6.11 Common option syntax

For the main set of options, driver options, and local_scan() options, each setting is on a line by itself,
and starts with a name consisting of lower-case letters and underscores. Many options require a data
value, and in these cases the name must be followed by an equals sign (with optional white space) and
then the value. For example:

qualify_domain = mydomain.example.com

Some option settings may contain sensitive data, for example, passwords for accessing databases. To
stop non-admin users from using the -bP command line option to read these values, you can precede
the option settings with the word “hide”. For example:

hide mysgl_servers = localhost/users/admin/secret-password
For non-admin users, such options are displayed like this:
mysgl_servers = <value not displayable>
If “hide” is used on a driver option, it hides the value of that option on all instances of the same driver.

The following sections describe the syntax used for the different data types that are found in option
settings.

6.12 Boolean options

Options whose type is given as boolean are on/off switches. There are two different ways of specify-
ing such options: with and without a data value. If the option name is specified on its own without
data, the switch is turned on; if it is preceded by “no_" or “not_" the switch is turned off. However,
boolean options may be followed by an equals sign and one of the words “true”, “false”, “yes”, or
“no”, as an alternative syntax. For example, the following two settings have exactly the same effect:

queue_only
queue_only = true

59 The runtime configuration file (6)

The following two lines also have the same (opposite) effect:

no_gqueue_only
queue_only = false

You can use whichever syntax you prefer.

6.13 Integer values

If an option’s type is given as “integer”, the value can be given in decimal, hexadecimal, or octal. If it
starts with a digit greater than zero, a decimal number is assumed. Otherwise, it is treated as an octal
number unless it starts with the characters “Ox”, in which case the remainder is interpreted as a
hexadecimal number.

If an integer value is followed by the letter K, it is multiplied by 1024; if it is followed by the letter M,
it is multiplied by 1024x1024; if by the letter G, 1024x1024x1024. When the values of integer option
settings are output, values which are an exact multiple of 1024 or 1024x1024 are sometimes, but not
always, printed using the letters K and M. The printing style is independent of the actual input format
that was used.

6.14 Octal integer values

If an option’s type is given as “octal integer”, its value is always interpreted as an octal number,
whether or not it starts with the digit zero. Such options are always output in octal.

6.15 Fixed point numbers

If an option’s type is given as “fixed-point”, its value must be a decimal integer, optionally followed
by a decimal point and up to three further digits.

6.16 Time intervals

A time interval is specified as a sequence of numbers, each followed by one of the following letters,
with no intervening white space:

S seconds
m minutes
h hours

d days

w weeks

For example, “3h50m” specifies 3 hours and 50 minutes. The values of time intervals are output in the
same format. Exim does not restrict the values; it is perfectly acceptable, for example, to specify
“90m” instead of “1h30m”.

6.17 String values

If an option’s type is specified as “string”, the value can be specified with or without double-quotes. If
it does not start with a double-quote, the value consists of the remainder of the line plus any continu-
ation lines, starting at the first character after any leading white space, with trailing white space
removed, and with no interpretation of the characters in the string. Because Exim removes comment
lines (those beginning with #) at an early stage, they can appear in the middle of a multi-line string.
The following two settings are therefore equivalent:

trusted_users = uucp:mail

trusted_users = uucp:\
This comment line is ignored
mail

If a string does start with a double-quote, it must end with a closing double-quote, and any backslash
characters other than those used for line continuation are interpreted as escape characters, as follows:

60 The runtime configuration file (6)

N\ single backslash

\n newline

\r carriage return

\t tab

\<octal digits> up to 3 octal digits specify one character
\x<hex digits> up to 2 hexadecimal digits specify one character

If a backslash is followed by some other character, including a double-quote character, that character
replaces the pair.

Quoting is necessary only if you want to make use of the backslash escapes to insert special charac-
ters, or if you need to specify a value with leading or trailing spaces. These cases are rare, so quoting
is almost never needed in current versions of Exim. In versions of Exim before 3.14, quoting was
required in order to continue lines, so you may come across older configuration files and examples
that apparently quote unnecessarily.

6.18 Expanded strings

Some strings in the configuration file are subjected to string expansion, by which means various parts
of the string may be changed according to the circumstances (see chapter . The input syntax for
such strings is as just described; in particular, the handling of backslashes in quoted strings is done as
part of the input process, before expansion takes place. However, backslash is also an escape charac-
ter for the expander, so any backslashes that are required for that reason must be doubled if they are
within a quoted configuration string.

6.19 User and group names

User and group names are specified as strings, using the syntax described above, but the strings are
interpreted specially. A user or group name must either consist entirely of digits, or be a name that
can be looked up using the getpwnam() or getgrnam() function, as appropriate.

6.20 List construction

The data for some configuration options is a list of items, with colon as the default separator. Many of
these options are shown with type “string list” in the descriptions later in this document. Others are
listed as “domain list”, “host list”, “address list”, or “local part list”. Syntactically, they are all the
same; however, those other than “string list” are subject to particular kinds of interpretation, as

described in chapter

In all these cases, the entire list is treated as a single string as far as the input syntax is concerned. The
trusted_users setting in section @ above is an example. If a colon is actually needed in an item in a
list, it must be entered as two colons. Leading and trailing white space on each item in a list is
ignored. This makes it possible to include items that start with a colon, and in particular, certain forms
of IPv6 address. For example, the list

local_interfaces = 127.0.0.1 : ::::1
contains two IP addresses, the IPv4 address 127.0.0.1 and the IPv6 address ::1.

Note: Although leading and trailing white space is ignored in individual list items, it is not ignored
when parsing the list. The spaces around the first colon in the example above are necessary. If they
were not there, the list would be interpreted as the two items 127.0.0.1:: and 1.

6.21 Changing list separators

Doubling colons in IPv6 addresses is an unwelcome chore, so a mechanism was introduced to allow
the separator character to be changed. If a list begins with a left angle bracket, followed by any
punctuation character, that character is used instead of colon as the list separator. For example, the list
above can be rewritten to use a semicolon separator like this:

local_interfaces = <; 127.0.0.1 ; ::1

61 The runtime configuration file (6)

This facility applies to all lists, with the exception of the list in log_file_path. It is recommended that
the use of non-colon separators be confined to circumstances where they really are needed.

It is also possible to use newline and other control characters (those with code values less than 32,
plus DEL) as separators in lists. Such separators must be provided literally at the time the list is
processed. For options that are string-expanded, you can write the separator using a normal escape
sequence. This will be processed by the expander before the string is interpreted as a list. For
example, if a newline-separated list of domains is generated by a lookup, you can process it directly
by a line such as this:

domains = <\n ${lookup mysqgl{..... }}

This avoids having to change the list separator in such data. You are unlikely to want to use a control
character as a separator in an option that is not expanded, because the value is literal text. However, it
can be done by giving the value in quotes. For example:

local _interfaces = "<\n 127.0.0.1 \n ::1"

Unlike printing character separators, which can be included in list items by doubling, it is not possible
to include a control character as data when it is set as the separator. Two such characters in succession
are interpreted as enclosing an empty list item.

6.22 Empty items in lists

An empty item at the end of a list is always ignored. In other words, trailing separator characters are
ignored. Thus, the list in

senders = user@domain

contains only a single item. If you want to include an empty string as one item in a list, it must not be
the last item. For example, this list contains three items, the second of which is empty:

senders = userl@domain : : user2@domain

Note: There must be white space between the two colons, as otherwise they are interpreted as
representing a single colon data character (and the list would then contain just one item). If you want
to specify a list that contains just one, empty item, you can do it as in this example:

senders =

In this case, the first item is empty, and the second is discarded because it is at the end of the list.

6.23 Format of driver configurations

There are separate parts in the configuration for defining routers, transports, and authenticators. In
each part, you are defining a number of driver instances, each with its own set of options. Each driver
instance is defined by a sequence of lines like this:

<instance name>:
<option>

<option>
In the following example, the instance name is localuser, and it is followed by three options settings:

localuser:
driver = accept
check_local_user
transport = local_delivery

For each driver instance, you specify which Exim code module it uses — by the setting of the driver
option — and (optionally) some configuration settings. For example, in the case of transports, if you
want a transport to deliver with SMTP you would use the smip driver; if you want to deliver to a local
file you would use the appendfile driver. Each of the drivers is described in detail in its own separate
chapter later in this manual.

62 The runtime configuration file (6)

You can have several routers, transports, or authenticators that are based on the same underlying
driver (each must have a different instance name).

The order in which routers are defined is important, because addresses are passed to individual routers
one by one, in order. The order in which transports are defined does not matter at all. The order in
which authenticators are defined is used only when Exim, as a client, is searching them to find one
that matches an authentication mechanism offered by the server.

Within a driver instance definition, there are two kinds of option: generic and private. The generic
options are those that apply to all drivers of the same type (that is, all routers, all transports or all
authenticators). The driver option is a generic option that must appear in every definition. The private
options are special for each driver, and none need appear, because they all have default values.

The options may appear in any order, except that the driver option must precede any private options,
since these depend on the particular driver. For this reason, it is recommended that driver always be
the first option.

Driver instance names, which are used for reference in log entries and elsewhere, can be any sequence
of letters, digits, and underscores (starting with a letter) and must be unique among drivers of the
same type. A router and a transport (for example) can each have the same name, but no two router
instances can have the same name. The name of a driver instance should not be confused with the
name of the underlying driver module. For example, the configuration lines:

remote_smtp:
driver = smtp

create an instance of the smip transport driver whose name is remote_smitp. The same driver code can
be used more than once, with different instance names and different option settings each time. A
second instance of the smitp transport, with different options, might be defined thus:

special_smtp:

driver = smtp
port = 1234
command_timeout = 10s

The names remote_smtp and special_smtp would be used to reference these transport instances from
routers, and these names would appear in log lines.

Comment lines may be present in the middle of driver specifications. The full list of option settings

for any particular driver instance, including all the defaulted values, can be extracted by making use
of the -bP command line option.

63 The runtime configuration file (6)

7. The default configuration file

The default configuration file supplied with Exim as src/configure.default is sufficient for a host with
simple mail requirements. As an introduction to the way Exim is configured, this chapter “walks
through” the default configuration, giving brief explanations of the settings. Detailed descriptions of
the options are given in subsequent chapters. The default configuration file itself contains extensive
comments about ways you might want to modify the initial settings. However, note that there are
many options that are not mentioned at all in the default configuration.

7.1 Macros
All macros should be defined before any options.
One macro is specified, but commented out, in the default configuration:
ROUTER_SMARTHOST=MAIL.HOSTNAME.FOR.CENTRAL.SERVER.EXAMPLE

If all off-site mail is expected to be delivered to a "smarthost", then set the hostname here and
uncomment the macro. This will affect which router is used later on. If this is left commented out,
then Exim will perform direct-to-MX deliveries using a dnslookup router.

In addition to macros defined here, Exim includes a number of built-in macros to enable configuration
to be guarded by a binary built with support for a given feature. See sectionfor more details.

7.2 Main configuration settings

The main (global) configuration option settings section must always come first in the file, after the
macros. The first thing you’ll see in the file, after some initial comments, is the line

primary_hostname =

This is a commented-out setting of the primary_hostname option. Exim needs to know the official,
fully qualified name of your host, and this is where you can specify it. However, in most cases you do
not need to set this option. When it is unset, Exim uses the uname() system function to obtain the host
name.

The first three non-comment configuration lines are as follows:

domainlist local_domains =@
domainlist relay_to_domains =
hostlist relay_from hosts = 127.0.0.1

These are not, in fact, option settings. They are definitions of two named domain lists and one named
host list. Exim allows you to give names to lists of domains, hosts, and email addresses, in order to
make it easier to manage the configuration file (see section |I 0.6).

The first line defines a domain list called local_domains; this is used later in the configuration to
identify domains that are to be delivered on the local host.

There is just one item in this list, the string “@”. This is a special form of entry which means “the
name of the local host”. Thus, if the local host is called a.host.example, mail to
any.user@a.host.example is expected to be delivered locally. Because the local host’s name is refer-
enced indirectly, the same configuration file can be used on different hosts.

The second line defines a domain list called relay_to_domains, but the list itself is empty. Later in the
configuration we will come to the part that controls mail relaying through the local host; it allows
relaying to any domains in this list. By default, therefore, no relaying on the basis of a mail domain is
permitted.

The third line defines a host list called relay_from_hosts. This list is used later in the configuration to
permit relaying from any host or IP address that matches the list. The default contains just the IP
address of the IPv4 loopback interface, which means that processes on the local host are able to
submit mail for relaying by sending it over TCP/IP to that interface. No other hosts are permitted to
submit messages for relaying.

64 The default configuration file (7)

Just to be sure there’s no misunderstanding: at this point in the configuration we aren’t actually setting
up any controls. We are just defining some domains and hosts that will be used in the controls that are
specified later.

The next two configuration lines are genuine option settings:

acl_smtp_rcpt acl_check_rcpt
acl_smtp_data = acl_check_data

These options specify Access Control Lists (ACLs) that are to be used during an incoming SMTP
session for every recipient of a message (every RCPT command), and after the contents of the
message have been received, respectively. The names of the lists are acl_check_rcpt and
acl_check_data, and we will come to their definitions below, in the ACL section of the configuration.
The RCPT ACL controls which recipients are accepted for an incoming message — if a configuration
does not provide an ACL to check recipients, no SMTP mail can be accepted. The DATA ACL allows
the contents of a message to be checked.

Two commented-out option settings are next:

av_scanner = clamd:/tmp/clamd
spamd_address = 127.0.0.1 783

These are example settings that can be used when Exim is compiled with the content-scanning
extension. The first specifies the interface to the virus scanner, and the second specifies the interface
to SpamAssassin. Further details are given in chapter 45|

Three more commented-out option settings follow:

tls_advertise_hosts = *
tls_certificate = /etc/ssl/exim.crt
tls_privatekey = /etc/ssl/exim.pem

These are example settings that can be used when Exim is compiled with support for TLS (aka SSL)
as described in section The first one specifies the list of clients that are allowed to use TLS when
connecting to this server; in this case, the wildcard means all clients. The other options specify where
Exim should find its TLS certificate and private key, which together prove the server’s identity to any
clients that connect. More details are given in chapter

Another two commented-out option settings follow:

daemon_smtp_ports = 25 : 465 : 587
tls_on_connect_ports = 465

These options provide better support for roaming users who wish to use this server for message
submission. They are not much use unless you have turned on TLS (as described in the previous
paragraph) and authentication (about which more in section . Mail submission from mail clients
(MUAs) should be separate from inbound mail to your domain (MX delivery) for various good
reasons (eg, ability to impose much saner TLS protocol and ciphersuite requirements without un-
intended consequences). RFC 6409 (previously 4409) specifies use of port 587 for SMTP
Submission, which uses STARTTLS, so this is the “submission” port. RFC 8314 specifies use of port
465 as the “submissions” protocol, which should be used in preference to 587. You should also
consider deploying SRV records to help clients find these ports. Older names for “submissions” are
“smtps” and “ssmtp”.

Two more commented-out options settings follow:

qualify_domain =
qualify_recipient =

The first of these specifies a domain that Exim uses when it constructs a complete email address from
a local login name. This is often needed when Exim receives a message from a local process. If you
do not set qualify_domain, the value of primary_hostname is used. If you set both of these options,
you can have different qualification domains for sender and recipient addresses. If you set only the
first one, its value is used in both cases.

65 The default configuration file (7)

The following line must be uncommented if you want Exim to recognize addresses of the form
user@[10.11.12.13] that is, with a “domain literal” (an IP address within square brackets) instead of a
named domain.

allow_domain_literals

The RFCs still require this form, but many people think that in the modern Internet it makes little
sense to permit mail to be sent to specific hosts by quoting their IP addresses. This ancient format has
been used by people who try to abuse hosts by using them for unwanted relaying. However, some
people believe there are circumstances (for example, messages addressed to postmaster) where
domain literals are still useful.

The next configuration line is a kind of trigger guard:
never_users = root

It specifies that no delivery must ever be run as the root user. The normal convention is to set up root
as an alias for the system administrator. This setting is a guard against slips in the configuration. The
list of users specified by never_users is not, however, the complete list; the build-time configuration
in Local/Makefile has an option called FIXED_NEVER_USERS specifying a list that cannot be
overridden. The contents of never_users are added to this list. By default FIXED_NEVER_USERS
also specifies root.

When a remote host connects to Exim in order to send mail, the only information Exim has about the
host’s identity is its IP address. The next configuration line,

host_lookup = *

specifies that Exim should do a reverse DNS lookup on all incoming connections, in order to get a
host name. This improves the quality of the logging information, but if you feel it is too expensive,
you can remove it entirely, or restrict the lookup to hosts on “nearby” networks. Note that it is not
always possible to find a host name from an IP address, because not all DNS reverse zones are
maintained, and sometimes DNS servers are unreachable.

The next two lines are concerned with ident callbacks, as defined by RFC 1413 (hence their names):

rfcl413_hosts = *
rfcl4l3_query_timeout = Os

These settings cause Exim to avoid ident callbacks for all incoming SMTP calls. Few hosts offer
RFC1413 service these days; calls have to be terminated by a timeout and this needlessly delays the
startup of an incoming SMTP connection. If you have hosts for which you trust RFC1413 and need
this information, you can change this.

This line enables an efficiency SMTP option. It is negotiated by clients and not expected to cause
problems but can be disabled if needed.

prdr_enable = true

When Exim receives messages over SMTP connections, it expects all addresses to be fully qualified
with a domain, as required by the SMTP definition. However, if you are running a server to which
simple clients submit messages, you may find that they send unqualified addresses. The two
commented-out options:

sender_unqualified_hosts =
recipient_unqualified_hosts =

show how you can specify hosts that are permitted to send unqualified sender and recipient addresses,
respectively.

The log_selector option is used to increase the detail of logging over the default:

log_selector = +smtp_protocol_error +smtp_syntax_error \
+tls_certificate_verified

The percent_hack_domains option is also commented out:

percent_hack_domains =

66 The default configuration file (7)

It provides a list of domains for which the “percent hack™ is to operate. This is an almost obsolete
form of explicit email routing. If you do not know anything about it, you can safely ignore this topic.

The next two settings in the main part of the default configuration are concerned with messages that
have been “frozen” on Exim’s queue. When a message is frozen, Exim no longer continues to try to
deliver it. Freezing occurs when a bounce message encounters a permanent failure because the sender
address of the original message that caused the bounce is invalid, so the bounce cannot be delivered.
This is probably the most common case, but there are also other conditions that cause freezing, and
frozen messages are not always bounce messages.

ignore_bounce_errors_after = 2d
timeout_frozen_after = 7d

The first of these options specifies that failing bounce messages are to be discarded after 2 days in the
queue. The second specifies that any frozen message (whether a bounce message or not) is to be
timed out (and discarded) after a week. In this configuration, the first setting ensures that no failing
bounce message ever lasts a week.

Exim queues it’s messages in a spool directory. If you expect to have large queues, you may consider
using this option. It splits the spool directory into subdirectories to avoid file system degradation from
many files in a single directory, resulting in better performance. Manual manipulation of queued
messages becomes more complex (though fortunately not often needed).

split_spool_directory = true

In an ideal world everybody follows the standards. For non-ASCII messages RFC 2047 is a standard,
allowing a maximum line length of 76 characters. Exim adheres that standard and won’t process
messages which violate this standard. (Even ${rfc2047:...} expansions will fail.) In particular, the
Exim maintainers have had multiple reports of problems from Russian administrators of issues until
they disable this check, because of some popular, yet buggy, mail composition software.

check_rfc2047_length = false

If you need to be strictly RFC compliant you may wish to disable the 8BITMIME advertisement. Use
this, if you exchange mails with systems that are not 8-bit clean.

accept_8bitmime = false

Libraries you use may depend on specific environment settings. This imposes a security risk (e.g.
PATH). There are two lists: keep_environment for the variables to import as they are, and add_
environment for variables we want to set to a fixed value. Note that TZ is handled separately, by the
timezone runtime option and by the TIMEZONE_DEFAULT buildtime option.

keep_environment = ~LDAP
add_environment = PATH=/usr/bin::/bin

7.3 ACL configuration
In the default configuration, the ACL section follows the main configuration. It starts with the line
begin acl

and it contains the definitions of two ACLs, called acl_check_rcpt and acl_check_data, that were
referenced in the settings of acl_smtp_rcpt and acl_smtp_data above.

The first ACL is used for every RCPT command in an incoming SMTP message. Each RCPT
command specifies one of the message’s recipients. The ACL statements are considered in order, until
the recipient address is either accepted or rejected. The RCPT command is then accepted or rejected,
according to the result of the ACL processing.

acl_check_rcpt:
This line, consisting of a name terminated by a colon, marks the start of the ACL, and names it.

accept hosts =

67 The default configuration file (7)

This ACL statement accepts the recipient if the sending host matches the list. But what does that
strange list mean? It doesn’t actually contain any host names or IP addresses. The presence of the
colon puts an empty item in the list; Exim matches this only if the incoming message did not come
from a remote host, because in that case, the remote hostname is empty. The colon is important.
Without it, the list itself is empty, and can never match anything.

What this statement is doing is to accept unconditionally all recipients in messages that are submitted
by SMTP from local processes using the standard input and output (that is, not using TCP/IP). A
number of MUAS operate in this manner.

deny domains = +local_domains
local_parts = ~[.] : A.*[@%!/|]
message = Restricted characters in address
deny domains = !+local_domains
local_parts = ~[./|1 ¢ AR IesT r AU/
message = Restricted characters in address
These statements are concerned with local parts that contain any of the characters “@”, “%”, “1”, “/”,

“I”, or dots in unusual places. Although these characters are entirely legal in local parts (in the case
of “@” and leading dots, only if correctly quoted), they do not commonly occur in Internet mail
addresses.

The first three have in the past been associated with explicitly routed addresses (percent is still
sometimes used — see the percent_hack_domains option). Addresses containing these characters are
regularly tried by spammers in an attempt to bypass relaying restrictions, and also by open relay
testing programs. Unless you really need them it is safest to reject these characters at this early stage.
This configuration is heavy-handed in rejecting these characters for all messages it accepts from
remote hosts. This is a deliberate policy of being as safe as possible.

The first rule above is stricter, and is applied to messages that are addressed to one of the local
domains handled by this host. This is implemented by the first condition, which restricts it to domains
that are listed in the local_domains domain list. The “+” character is used to indicate a reference to a
named list. In this configuration, there is just one domain in local_domains, but in general there may
be many.

The second condition on the first statement uses two regular expressions to block local parts that
begin with a dot or contain “@”, “%”, “!”, “/”, or “|”. If you have local accounts that include these
characters, you will have to modify this rule.

Empty components (two dots in a row) are not valid in RFC 2822, but Exim allows them because they
have been encountered in practice. (Consider the common convention of local parts constructed as
“first-initial.second-initial.family-name” when applied to someone like the author of Exim, who has
no second initial.) However, a local part starting with a dot or containing ‘“/../”” can cause trouble if it
is used as part of a filename (for example, for a mailing list). This is also true for local parts that
contain slashes. A pipe symbol can also be troublesome if the local part is incorporated unthinkingly
into a shell command line.

The second rule above applies to all other domains, and is less strict. This allows your own users to
send outgoing messages to sites that use slashes and vertical bars in their local parts. It blocks local
parts that begin with a dot, slash, or vertical bar, but allows these characters within the local part.
However, the sequence “/../” is barred. The use of “@”, “%”, and “!” is blocked, as before. The
motivation here is to prevent your users (or your users’ viruses) from mounting certain kinds of attack
on remote sites.

accept local_parts = postmaster
domains = +local_domains

This statement, which has two conditions, accepts an incoming address if the local part is postmaster
and the domain is one of those listed in the local_domains domain list. The “+” character is used to
indicate a reference to a named list. In this configuration, there is just one domain in local_domains,
but in general there may be many.

68 The default configuration file (7)

The presence of this statement means that mail to postmaster is never blocked by any of the subse-
quent tests. This can be helpful while sorting out problems in cases where the subsequent tests are
incorrectly denying access.

require verify = sender

This statement requires the sender address to be verified before any subsequent ACL statement can be
used. If verification fails, the incoming recipient address is refused. Verification consists of trying to
route the address, to see if a bounce message could be delivered to it. In the case of remote addresses,
basic verification checks only the domain, but callouts can be used for more verification if required.
Section E4.45. discusses the details of address verification.

accept hosts = +relay_from_hosts
control = submission

This statement accepts the address if the message is coming from one of the hosts that are defined as
being allowed to relay through this host. Recipient verification is omitted here, because in many cases
the clients are dumb MUASs that do not cope well with SMTP error responses. For the same reason,
the second line specifies “submission mode” for messages that are accepted. This is described in
detail in section @ it causes Exim to fix messages that are deficient in some way, for example,
because they lack a Date: header line. If you are actually relaying out from MTAs, you should
probably add recipient verification here, and disable submission mode.

*

accept authenticated
control = submission

This statement accepts the address if the client host has authenticated itself. Submission mode is again
specified, on the grounds that such messages are most likely to come from MUAs. The default
configuration does not define any authenticators, though it does include some nearly complete
commented-out examples described in This means that no client can in fact authenticate until you
complete the authenticator definitions.

require message = relay not permitted
domains +local_domains : +relay_to_domains

This statement rejects the address if its domain is neither a local domain nor one of the domains for
which this host is a relay.

require verify = recipient

This statement requires the recipient address to be verified; if verification fails, the address is rejected.

deny dnslists = black.list.example

message = rejected because $sender_host_address \
is in a black list at $dnslist_domain\n\
Sdnslist_text

#

warn dnslists = black.list.example

add_header = X-Warning: $sender_host_address is in \
a black list at $dnslist_domain

log_message = found in $dnslist_domain

These commented-out lines are examples of how you could configure Exim to check sending hosts
against a DNS black list. The first statement rejects messages from blacklisted hosts, whereas the
second just inserts a warning header line.

require verify = csa

This commented-out line is an example of how you could turn on client SMTP authorization (CSA)
checking. Such checks do DNS lookups for special SRV records.

accept
The final statement in the first ACL unconditionally accepts any recipient address that has success-
fully passed all the previous tests.

69 The default configuration file (7)

acl_check_data:

This line marks the start of the second ACL, and names it. Most of the contents of this ACL are
commented out:

deny malware = *
message = This message contains a virus \
($malware_name) .

These lines are examples of how to arrange for messages to be scanned for viruses when Exim has
been compiled with the content-scanning extension, and a suitable virus scanner is installed. If the
message is found to contain a virus, it is rejected with the given custom error message.

warn spam = nobody

message = X-Spam_score: $spam_score\n\

X—-Spam_score_int: $spam_score_int\n\
X-Spam_bar: $spam_bar\n\

X—-Spam_report: $spam_report

These lines are an example of how to arrange for messages to be scanned by SpamAssassin when
Exim has been compiled with the content-scanning extension, and SpamAssassin has been installed.
The SpamAssassin check is run with nobody as its user parameter, and the results are added to the
message as a series of extra header line. In this case, the message is not rejected, whatever the spam
score.

accept

This final line in the DATA ACL accepts the message unconditionally.

7.4 Router configuration
The router configuration comes next in the default configuration, introduced by the line
begin routers

Routers are the modules in Exim that make decisions about where to send messages. An address is
passed to each router, in turn, until it is either accepted, or failed. This means that the order in which
you define the routers matters. Each router is fully described in its own chapter later in this manual.
Here we give only brief overviews.

domain_literal:

driver = ipliteral
domains = !4+local_domains
transport = remote_smtp

This router is commented out because the majority of sites do not want to support domain literal
addresses (those of the form user@/[10.9.8.7]). If you uncomment this router, you also need to
uncomment the setting of allow_domain_literals in the main part of the configuration.

Which router is used next depends upon whether or not the ROUTER_SMARTHOST macro has been
defined, per

.i1fdef ROUTER_SMARTHOST
smarthost:

#...

.else

dnslookup:

#...

.endif

If ROUTER_SMARTHOST has been defined, either at the top of the file or on the command-line,
then we route all non-local mail to that smarthost; otherwise, we’ll perform DNS lookups for direct-
to-MX lookup. Any mail which is to a local domain will skip these routers because of the domains
option.

70 The default configuration file (7)

smarthost:

driver = manualroute
domains = ! +local_domains
transport = smarthost_smtp

route_data = ROUTER_SMARTHOST
ignore_target_hosts = <; 0.0.0.0 ; 127.0.0.0/8 ; ::1
no_more

This router only handles mail which is not to any local domains; this is specified by the line
domains = ! +local_domains

The domains option lists the domains to which this router applies, but the exclamation mark is a
negation sign, so the router is used only for domains that are not in the domain list called
local_domains (which was defined at the start of the configuration). The plus sign before
local_domains indicates that it is referring to a named list. Addresses in other domains are passed on
to the following routers.

The name of the router driver is manualroute because we are manually specifying how mail should be
routed onwards, instead of using DNS MX. While the name of this router instance is arbitrary, the
driver option must be one of the driver modules that is in the Exim binary.

With no pre-conditions other than domains, all mail for non-local domains will be handled by this
router, and the no_more setting will ensure that no other routers will be used for messages matching
the pre-conditions. See for more on how the pre-conditions apply. For messages which are
handled by this router, we provide a hostname to deliver to in route_data and the macro supplies the
value; the address is then queued for the smarthost_smtp transport.

dnslookup:
driver = dnslookup
domains = ! +4+local_domains
transport = remote_smtp
ignore_target_hosts = 0.0.0.0 : 127.0.0.0/8
no_more

The domains option behaves as per smarthost, above.

The name of the router driver is dnslookup, and is specified by the driver option. Do not be confused
by the fact that the name of this router instance is the same as the name of the driver. The instance
name is arbitrary, but the name set in the driver option must be one of the driver modules that is in
the Exim binary.

The dnslookup router routes addresses by looking up their domains in the DNS in order to obtain a
list of hosts to which the address is routed. If the router succeeds, the address is queued for the
remote_smitp transport, as specified by the transport option. If the router does not find the domain in
the DNS, no further routers are tried because of the no_more setting, so the address fails and is
bounced.

The ignore_target_hosts option specifies a list of IP addresses that are to be entirely ignored. This
option is present because a number of cases have been encountered where MX records in the DNS
point to host names whose IP addresses are 0.0.0.0 or are in the 127 subnet (typically 127.0.0.1).
Completely ignoring these IP addresses causes Exim to fail to route the email address, so it bounces.
Otherwise, Exim would log a routing problem, and continue to try to deliver the message periodically
until the address timed out.

system_aliases:

driver = redirect

allow_fail

allow_defer

data = ${lookup{$local_part}lsearch{/etc/aliases}}
user = exim

file_transport = address_file

pipe_transport = address_pipe

71 The default configuration file (7)

Control reaches this and subsequent routers only for addresses in the local domains. This router
checks to see whether the local part is defined as an alias in the /etc/aliases file, and if so, redirects it
according to the data that it looks up from that file. If no data is found for the local part, the value of
the data option is empty, causing the address to be passed to the next router.

/etc/aliases 1s a conventional name for the system aliases file that is often used. That is why it is
referenced by from the default configuration file. However, you can change this by setting SYSTEM_
ALIASES_FILE in Local/Makefile before building Exim.

userforward:
driver = redirect
check_local_user

local_part_suffix = +* : —-*

local_part_suffix_optional
file = $home/.forward

allow_filter
no_verify

no_expn
check_ancestor

file_transport = address_file
pipe_transport = address_pipe

reply_transport = address_reply

This is the most complicated router in the default configuration. It is another redirection router, but
this time it is looking for forwarding data set up by individual users. The check_local_user setting
specifies a check that the local part of the address is the login name of a local user. If it is not, the
router is skipped. The two commented options that follow check_local_user, namely:

local_part_suffix = +* : —-*
local_part_suffix_optional

show how you can specify the recognition of local part suffixes. If the first is uncommented, a suffix
beginning with either a plus or a minus sign, followed by any sequence of characters, is removed from
the local part and placed in the variable $local_part_suffix. The second suffix option specifies that the
presence of a suffix in the local part is optional. When a suffix is present, the check for a local login
uses the local part with the suffix removed.

When a local user account is found, the file called .forward in the user’s home directory is consulted.
If it does not exist, or is empty, the router declines. Otherwise, the contents of .forward are interpreted
as redirection data (see chapterfor more details).

Traditional .forward files contain just a list of addresses, pipes, or files. Exim supports this by default.
However, if allow_filter is set (it is commented out by default), the contents of the file are interpreted
as a set of Exim or Sieve filtering instructions, provided the file begins with “#Exim filter” or “#Sieve
filter”, respectively. User filtering is discussed in the separate document entitled Exim’s interfaces to
mail filtering.

The no_verify and no_expn options mean that this router is skipped when verifying addresses, or
when running as a consequence of an SMTP EXPN command. There are two reasons for doing this:

(1) Whether or not a local user has a .forward file is not really relevant when checking an address
for validity; it makes sense not to waste resources doing unnecessary work.

(2) More importantly, when Exim is verifying addresses or handling an EXPN command during an
SMTP session, it is running as the Exim user, not as root. The group is the Exim group, and no
additional groups are set up. It may therefore not be possible for Exim to read users’ .forward
files at this time.

The setting of check_ancestor prevents the router from generating a new address that is the same as
any previous address that was redirected. (This works round a problem concerning a bad interaction
between aliasing and forwarding — see section [22.5)).

72 The default configuration file (7)

The final three option settings specify the transports that are to be used when forwarding generates a
direct delivery to a file, or to a pipe, or sets up an auto-reply, respectively. For example, if a .forward
file contains

a.notherfRelsewhere.example, /home/spgr/archive
the delivery to /home/spgr/archive is done by running the address_file transport.

localuser:
driver = accept
check_local_user

local_part_suffix = +* : —-*

local_part_suffix_optional
transport = local_delivery

The final router sets up delivery into local mailboxes, provided that the local part is the name of a
local login, by accepting the address and assigning it to the local_delivery transport. Otherwise, we
have reached the end of the routers, so the address is bounced. The commented suffix settings fulfil
the same purpose as they do for the userforward router.

7.5 Transport configuration

Transports define mechanisms for actually delivering messages. They operate only when referenced
from routers, so the order in which they are defined does not matter. The transports section of the
configuration starts with

begin transports
Two remote transports and four local transports are defined.

remote_smtp:

driver = smtp

message_size_limit = ${if > {$max_received_linelength} {998} {1}{0}}
.ifdef _HAVE_PRDR

hosts_try_prdr = *
.endif

This transport is used for delivering messages over SMTP connections. The list of remote hosts
comes from the router. The message_size_limit usage is a hack to avoid sending on messages with
over-long lines.

The hosts_try_prdr option enables an efficiency SMTP option. It is negotiated between client and
server and not expected to cause problems but can be disabled if needed. The built-in macro _HAVE_
PRDR guards the use of the hosts_try_prdr configuration option.

The other remote transport is used when delivering to a specific smarthost with whom there must be
some kind of existing relationship, instead of the usual federated system.

smarthost_smtp:
driver = smtp
message_size_limit = ${if > {$Smax_received_linelength} {998} {1}{0}}
multi_domain
#

.ifdef _HAVE_TLS
Comment out any of these which you have to, then file a Support
request with your smarthost provider to get things fixed:
hosts_require_tls = *
tls_verify _hosts = *
As long as tls_verify_hosts is enabled, this this will have no effect,
but if you have to comment it out then this will at least log whether
you succeed or not:
tls_try_verify_hosts = *
#

73 The default configuration file (7)

The SNI name should match the name which we'll expect to verify;
many mail systems don't use SNI and this doesn't matter, but if it does,
we need to send a name which the remote site will recognize.
This _should_ be the name which the smarthost operators specified as
the hostname for sending your mail to.
tls_sni = ROUTER_SMARTHOST
#
.ifdef _HAVE_OPENSSL
tls_require_ciphers
.endif
.ifdef _HAVE_GNUTLS
tls_require_ciphers
.endif
.endif
.ifdef _HAVE_PRDR
hosts_try_prdr = *
.endif

HE o e oS

HIGH: !aNULL:@STRENGTH

SECURE192:-VERS-SSL3.0:-VERS-TLS1.0:-VERS-TLS1.1

After the same message_size_limit hack, we then specify that this Transport can handle messages to
multiple domains in one run. The assumption here is that you’re routing all non-local mail to the same
place and that place is happy to take all messages from you as quickly as possible. All other options
depend upon built-in macros; if Exim was built without TLS support then no other options are
defined. If TLS is available, then we configure "stronger than default" TLS ciphersuites and versions
using the tls_require_ciphers option, where the value to be used depends upon the library providing
TLS. Beyond that, the options adopt the stance that you should have TLS support available from your
smarthost on today’s Internet, so we turn on requiring TLS for the mail to be delivered, and requiring
that the certificate be valid, and match the expected hostname. The tls_sni option can be used by
service providers to select an appropriate certificate to present to you and here we re-use the
ROUTER_SMARTHOST macro, because that is unaffected by CNAMEs present in DNS. You want
to specify the hostname which you’ll expect to validate for, and that should not be subject to insecure
tampering via DNS results.

For the hosts_try_prdr option see the previous transport.
All other options are defaulted.

local_delivery:
driver = appendfile
file = /var/mail/$local_part_data
delivery_date_add
envelope_to_add
return_path_add
group = mail
mode = 0660

This appendfile transport is used for local delivery to user mailboxes in traditional BSD mailbox
format.

We prefer to avoid using $local_part directly to define the mailbox filename, as it is provided by a
potential bad actor. Instead we use $local_part_data, the result of looking up $local_part in the user
database (done by using check_local_user in the the router).

By default appendfile runs under the uid and gid of the local user, which requires the sticky bit to be
set on the /var/mail directory. Some systems use the alternative approach of running mail deliveries
under a particular group instead of using the sticky bit. The commented options show how this can be
done.

Exim adds three headers to the message as it delivers it: Delivery-date:, Envelope-to: and Return-
path:. This action is requested by the three similarly-named options above.

74 The default configuration file (7)

address_pipe:
driver = pipe
return_output

This transport is used for handling deliveries to pipes that are generated by redirection (aliasing or
users’ .forward files). The return_output option specifies that any output on stdout or stderr gener-
ated by the pipe is to be returned to the sender.

address_file:
driver = appendfile
delivery_date_add
envelope_to_add
return_path_add

This transport is used for handling deliveries to files that are generated by redirection. The name of
the file is not specified in this instance of appendfile, because it comes from the redirect router.

address_reply:
driver = autoreply

This transport is used for handling automatic replies generated by users’ filter files.

7.6 Default retry rule

The retry section of the configuration file contains rules which affect the way Exim retries deliveries
that cannot be completed at the first attempt. It is introduced by the line

begin retry
In the default configuration, there is just one rule, which applies to all errors:
* * F,2h,15m; G,16h,1h,1.5; F,4d,6h

This causes any temporarily failing address to be retried every 15 minutes for 2 hours, then at
intervals starting at one hour and increasing by a factor of 1.5 until 16 hours have passed, then every 6
hours up to 4 days. If an address is not delivered after 4 days of temporary failure, it is bounced. The
time is measured from first failure, not from the time the message was received.

If the retry section is removed from the configuration, or is empty (that is, if no retry rules are
defined), Exim will not retry deliveries. This turns temporary errors into permanent errors.

7.7 Rewriting configuration
The rewriting section of the configuration, introduced by
begin rewrite

contains rules for rewriting addresses in messages as they arrive. There are no rewriting rules in the
default configuration file.

7.8 Authenticators configuration
The authenticators section of the configuration, introduced by
begin authenticators

defines mechanisms for the use of the SMTP AUTH command. The default configuration file contains
two commented-out example authenticators which support plaintext username/password authenti-
cation using the standard PLAIN mechanism and the traditional but non-standard LOGIN mechanism,
with Exim acting as the server. PLAIN and LOGIN are enough to support most MUA software.

The example PLAIN authenticator looks like this:

#PLAIN:
driver = plaintext
server_set_id Sauth2

75 The default configuration file (7)

server_prompts = :
server_condition = Authentication is not yet configured
server_advertise_condition = ${if def:tls_in_cipher }

And the example LOGIN authenticator looks like this:

#LOGIN:

driver = plaintext

server_set_id = Sauthl

server_prompts = <| Username: | Password:

server_condition = Authentication is not yet configured
server_advertise_condition = ${if def:tls_in_cipher }

The server_set_id option makes Exim remember the authenticated username in $authenticated_id,
which can be used later in ACLs or routers. The server_prompts option configures the plaintext
authenticator so that it implements the details of the specific authentication mechanism, i.e. PLAIN or
LOGIN. The server_advertise_condition setting controls when Exim offers authentication to clients;
in the examples, this is only when TLS or SSL has been started, so to enable the authenticators you
also need to add support for TLS as described in section

The server_condition setting defines how to verify that the username and password are correct. In the
examples it just produces an error message. To make the authenticators work, you can use a string

expansion expression like one of the examples in chapter

Beware that the sequence of the parameters to PLAIN and LOGIN differ; the usercode and password
are in different positions. Chapter covers both.

76 The default configuration file (7)

8. Regular expressions

Exim supports the use of regular expressions in many of its options. It uses the PCRE2 regular
expression library; this provides regular expression matching that is compatible with Perl 5. The
syntax and semantics of regular expressions is discussed in online Perl manpages, in many Perl
reference books, and also in Jeffrey Friedl’s Mastering Regular Expressions, which is published by
O’Reilly (see http://www.oreilly.com/catalog/regex2/).

The documentation for the syntax and semantics of the regular expressions that are supported by
PCRE2 is included in the PCRE2 distribution, and no further description is included here. The
PCRE?2 functions are called from Exim using the default option settings (that is, with no PCRE2
options set), except that the PCRE2_CASELESS option is set when the matching is required to be
case-insensitive.

In most cases, when a regular expression is required in an Exim configuration, it has to start with a
circumflex, in order to distinguish it from plain text or an “ends with” wildcard. In this example of a
configuration setting, the second item in the colon-separated list is a regular expression.

domains = a.b.c : "\\d{3} : *.y.z

The doubling of the backslash is required because of string expansion that precedes interpretation —
see section for more discussion of this issue, and a way of avoiding the need for doubling
backslashes. The regular expression that is eventually used in this example contains just one
backslash. The circumflex is included in the regular expression, and has the normal effect of
“anchoring” it to the start of the string that is being matched.

There are, however, two cases where a circumflex is not required for the recognition of a regular
expression: these are the match condition in a string expansion, and the matches condition in an
Exim filter file. In these cases, the relevant string is always treated as a regular expression; if it does

not start with a circumflex, the expression is not anchored, and can match anywhere in the subject
string.

In all cases, if you want a regular expression to match at the end of a string, you must code the $
metacharacter to indicate this. For example:

domains = ~*\\d{3}\\.example
matches the domain /23.example, but it also matches /23.example.com. You need to use:
domains = "\\d{3}\\.example\$

if you want example to be the top-level domain. The backslash before the $ is needed because string
expansion also interprets dollar characters.

77 Regular expressions (8)

9. File and database lookups

Exim can be configured to look up data in files or databases as it processes messages. Two different
kinds of syntax are used:

(1) A string that is to be expanded may contain explicit lookup requests. These cause parts of the
string to be replaced by data that is obtained from the lookup. Lookups of this type are con-
ditional expansion items. Different results can be defined for the cases of lookup success and
failure. See chapter where string expansions are described in detail. The key for the lookup
is specified as part of the string expansion.

(2) Lists of domains, hosts, and email addresses can contain lookup requests as a way of avoiding
excessively long linear lists. In this case, the data that is returned by the lookup is often (but not
always) discarded; whether the lookup succeeds or fails is what really counts. These kinds of list
are described in chapter The key for the lookup is implicit, given by the context in which the
list is expanded.

String expansions, lists, and lookups interact with each other in such a way that there is no order in
which to describe any one of them that does not involve references to the others. Each of these three
chapters makes more sense if you have read the other two first. If you are reading this for the first
time, be aware that some of it will make a lot more sense after you have read chapters and

9.1 Examples of different lookup syntax

It is easy to confuse the two different kinds of lookup, especially as the lists that may contain the
second kind are always expanded before being processed as lists. Therefore, they may also contain
lookups of the first kind. Be careful to distinguish between the following two examples:

domains = ${lookup{S$sender_host_address}lsearch{/some/file}}
domains = lsearch;/some/file

The first uses a string expansion, the result of which must be a domain list.
The key for an expansion-style lookup must be given explicitly.

No strings have been specified for a successful or a failing lookup; the defaults in this case are the
looked-up data and an empty string, respectively. The expansion takes place before the string is
processed as a list, and the file that is searched could contain lines like this:

192.168.3.4: domainl:domain2:...
192.168.1.9: domain3:domaind:...

When the lookup succeeds, the result of the expansion is a list of domains (and possibly other types of
item that are allowed in domain lists). The result of the expansion is not tainted.

In the second example, the lookup is a single item in a domain list. It causes Exim to use a lookup to
see if the domain that is being processed can be found in the file. The file could contains lines like
this:

domainl:
domain?2:

Any data that follows the keys is not relevant when checking that the domain matches the list item.

The key for a list-style lookup is implicit, from the lookup context, if the lookup is a single-key type
(see below). For query-style lookup types the key must be given explicitly.

It is possible, though no doubt confusing, to use both kinds of lookup at once. Consider a file
containing lines like this:

192.168.5.6: lsearch;/another/file
If the value of $sender_host_address is 192.168.5.6, expansion of the first domains setting above
generates the second setting, which therefore causes a second lookup to occur.

78 File and database lookups (9)

The lookup type may optionally be followed by a comma and a comma-separated list of options. Each
option is a “name=value” pair. Whether an option is meaningful depends on the lookup type.

All lookups support the option “cache=no_rd”. If this is given then the cache that Exim manages for
lookup results is not checked before doing the lookup. The result of the lookup is still written to the
cache.

The rest of this chapter describes the different lookup types that are available. Any of them can be
used in any part of the configuration where a lookup is permitted.

9.2 Lookup types
Two different types of data lookup are implemented:

» The single-key type requires the specification of a file in which to look, and a single key to search
for. The key must be a non-empty string for the lookup to succeed. The lookup type determines
how the file is searched. The file string may not be tainted.

All single-key lookups support the option “ret=key”. If this is given and the lookup (either underly-
ing implementation or cached value) returns data, the result is replaced with a non-tainted version
of the lookup key.

» The query-style type accepts a generalized database query. No particular key value is assumed by
Exim for query-style lookups. You can use whichever Exim variables you need to construct the
database query.

If tainted data is used in the query then it should be quuted by using the ${quote_<lookup-
type>:<string>} expansion operator appropriate for the lookup.

The code for each lookup type is in a separate source file that is included in the binary of Exim only if
the corresponding compile-time option is set. The default settings in src/EDITME are:

LOOKUP_DBM=yes
LOOKUP_LSEARCH=yes

which means that only linear searching and DBM lookups are included by default. For some types of
lookup (e.g. SQL databases), you need to install appropriate libraries and header files before building
Exim.

9.3 Single-key lookup types
The following single-key lookup types are implemented:

* cdb: The given file is searched as a Constant DataBase file, using the key string without a terminat-
ing binary zero. The cdb format is designed for indexed files that are read frequently and never
updated, except by total re-creation. As such, it is particularly suitable for large files containing
aliases or other indexed data referenced by an MTA. Information about cdb and tools for building
the files can be found in several places:

https://cr.yp.to/cdb.html
https://www.corpit.ru/mjt/tinycdb.html
https://packages.debian.org/stable/utils/freecdb
https://github.com/philpennock/cdbtools (in Go)

A cdb distribution is not needed in order to build Exim with cdb support, because the code for
reading cdb files is included directly in Exim itself. However, no means of building or testing cdb
files is provided with Exim, so you need to obtain a cdb distribution in order to do this.

* dbm: Calls to DBM library functions are used to extract data from the given DBM file by looking
up the record with the given key. A terminating binary zero is included in the key that is passed to
the DBM library. See sectionfor a discussion of DBM libraries.

For all versions of Berkeley DB, Exim uses the DB_HASH style of database when building DBM
files using the exim_dbmbuild utility. However, when using Berkeley DB versions 3 or 4, it opens
existing databases for reading with the DB_UNKNOWN option. This enables it to handle any of

79 File and database lookups (9)

the types of database that the library supports, and can be useful for accessing DBM files created
by other applications. (For earlier DB versions, DB_HASH is always used.)

dbmjz: This is the same as dbm, except that the lookup key is interpreted as an Exim list; the
elements of the list are joined together with ASCII NUL characters to form the lookup key. An
example usage would be to authenticate incoming SMTP calls using the passwords from Cyrus
SASL’s /etc/sasldb? file with the gsasl authenticator or Exim’s own cram_md5 authenticator.

dbmnz: This is the same as dbm, except that a terminating binary zero is not included in the key
that is passed to the DBM library. You may need this if you want to look up data in files that are
created by or shared with some other application that does not use terminating zeros. For example,
you need to use dbmnz rather than dbm if you want to authenticate incoming SMTP calls using the
passwords from Courier’s /etc/userdbshadow.dat file. Exim’s utility program for creating DBM
files (exim_dbmbuild) includes the zeros by default, but has an option to omit them (see section

(4.9).

dsearch: The given file must be an absolute directory path; this is searched for an entry whose
name is the key by calling the Istat() function. The key may not contain any forward slash charac-
ters. If Istat() succeeds then so does the lookup. The result is regarded as untainted.

Options for the lookup can be given by appending them after the word "dsearch”, separated by a
comma. Options, if present, are a comma-separated list having each element starting with a tag
name and an equals.

Two options are supported, for the return value and for filtering match candidates. The "ret" option
requests an alternate result value of the entire path for the entry. Example:

${lookup {passwd} dsearch,ret=full {/etc}}

The default result is just the requested entry. The "filter" option requests that only directory entries
of a given type are matched. The match value is one of "file", "dir" or "subdir" (the latter not

matching "." or ".."). Example:
${lookup {passwd} dsearch,filter=file {/etc}}
The default matching is for any entry type, including directories and symlinks.

An example of how this lookup can be used to support virtual domains is given in section

iplsearch: The given file is a text file containing keys and data. A key is terminated by a colon or
white space or the end of the line. The keys in the file must be IP addresses, or IP addresses with
CIDR masks. Keys that involve IPv6 addresses must be enclosed in quotes to prevent the first
internal colon being interpreted as a key terminator. For example:

1.2.3.4: data for 1.2.3.4
192.168.0.0/16: data for 192.168.0.0/16
"abcd: :cdab": data for abcd::cdab
"abcd:abcd:: /32" data for abcd:abecd::/32

The key for an iplsearch lookup must be an IP address (without a mask). The file is searched
linearly, using the CIDR masks where present, until a matching key is found. The first key that
matches is used; there is no attempt to find a “best” match. Apart from the way the keys are
matched, the processing for iplsearch is the same as for Isearch.

Warning 1: Unlike most other single-key lookup types, a file of data for iplsearch can not be
turned into a DBM or cdb file, because those lookup types support only literal keys.

Warning 2: In a host list, you must always use net-iplsearch so that the implicit key is the host’s IP
address rather than its name (see section{10.13)

Warning 3: Do not use an IPv4-mapped IPv6 address for a key; use the IPv4, in dotted-quad form.
(Exim converts IPv4-mapped IPv6 addresses to this notation before executing the lookup.)

One option is supported, "ret=full", to request the return of the entire line rather than omitting the
key portion. Note however that the key portion will have been de-quoted.

80 File and database lookups (9)

» json: The given file is a text file with a JSON structure. An element of the structure is extracted,
defined by the search key. The key is a list of subelement selectors (colon-separated by default but
changeable in the usual way) which are applied in turn to select smaller and smaller portions of the
JSON structure. If a selector is numeric, it must apply to a JSON array; the (zero-based) nunbered
array element is selected. Otherwise it must apply to a JSON object; the named element is selected.
The final resulting element can be a simple JSON type or a JSON object or array; for the latter two
a string-representation of the JSON is returned. For elements of type string, the returned value is
de-quoted.

* [mdb: The given file is an LMDB database. LMDB is a memory-mapped key-value store, with API
modeled loosely on that of BerkeleyDB. See https://symas.com/products/lightning-memory-
mapped-database/ for the feature set and operation modes.

Exim provides read-only access via the LMDB C library. The library can be obtained from
https://github.com/LMDB/Imdb or your operating system package repository. To enable LMDB
support in Exim set LOOKUP_LMDB=yes in Local/Makefile.

You will need to separately create the LMDB database file, possibly using the “mdb_load” utility.

* [Isearch: The given file is a text file that is searched linearly for a line beginning with the search key,
terminated by a colon or white space or the end of the line. The search is case-insensitive; that is,
upper and lower case letters are treated as the same. The first occurrence of the key that is found in
the file is used.

White space between the key and the colon is permitted. The remainder of the line, with leading
and trailing white space removed, is the data. This can be continued onto subsequent lines by
starting them with any amount of white space, but only a single space character is included in the
data at such a junction. If the data begins with a colon, the key must be terminated by a colon, for
example:

baduser: :fail:

Empty lines and lines beginning with # are ignored, even if they occur in the middle of an item.
This is the traditional textual format of alias files. Note that the keys in an Isearch file are literal
strings. There is no wildcarding of any kind.

In most Isearch files, keys are not required to contain colons or # characters, or white space.
However, if you need this feature, it is available. If a key begins with a doublequote character, it is
terminated only by a matching quote (or end of line), and the normal escaping rules apply to its
contents (see section @ An optional colon is permitted after quoted keys (exactly as for
unquoted keys). There is no special handling of quotes for the data part of an Isearch line.

* nis: The given file is the name of a NIS map, and a NIS lookup is done with the given key, without
a terminating binary zero. There is a variant called nisO which does include the terminating binary
zero in the key. This is reportedly needed for Sun-style alias files. Exim does not recognize NIS
aliases; the full map names must be used.

* wildlsearch or nwildlsearch: These search a file linearly, like Isearch, but instead of being
interpreted as a literal string, each key in the file may be wildcarded. The difference between these
two lookup types is that for wildlsearch, each key in the file is string-expanded before being used,
whereas for nwildlsearch, no expansion takes place.

Like [search, the testing is done case-insensitively. However, keys in the file that are regular
expressions can be made case-sensitive by the use of (-i) within the pattern. The following forms
of wildcard are recognized:

(1) The string may begin with an asterisk to mean “ends with”. For example:

*.a.b.c data for anything.a.b.c
*fish data for anythingfish

(2) The string may begin with a circumflex to indicate a regular expression. For example, for
wildlsearch:

A\N\d+\.a\.b\N data for <digits>.a.b

81 File and database lookups (9)

Note the use of \N to disable expansion of the contents of the regular expression. If you are
using nwildlsearch, where the keys are not string-expanded, the equivalent entry is:

“\d+\.a\.b data for <digits>.a.b

The case-insensitive flag is set at the start of compiling the regular expression, but it can be
turned off by using (—1i) at an appropriate point. For example, to make the entire pattern
case-sensitive:

~(?-i)\d+\.a\.b data for <digits>.a.b

If the regular expression contains white space or colon characters, you must either quote it
(see Isearch above), or represent these characters in other ways. For example, \ s can be used
for white space and \x3A for a colon. This may be easier than quoting, because if you quote,
you have to escape all the backslashes inside the quotes.

Note: It is not possible to capture substrings in a regular expression match for later use,
because the results of all lookups are cached. If a lookup is repeated, the result is taken from
the cache, and no actual pattern matching takes place. The values of all the numeric variables
are unset after a (n)wildlsearch match.

(3) Although I cannot see it being of much use, the general matching function that is used to
implement (n)wildlsearch means that the string may begin with a lookup name terminated by
a semicolon, and followed by lookup data. For example:

cdb; /some/file data for keys that match the file
The data that is obtained from the nested lookup is discarded.

Keys that do not match any of these patterns are interpreted literally. The continuation rules for the
data are the same as for Isearch, and keys may be followed by optional colons.

Warning: Unlike most other single-key lookup types, a file of data for (n)wildlsearch can not be
turned into a DBM or cdb file, because those lookup types support only literal keys.

spf: If Exim is built with SPF support, manual lookups can be done (as opposed to the standard
ACL condition method). For details see section [58.4

9.4 Query-style lookup types

The supported query-style lookup types are listed below. Further details about many of them are given
in later sections.

dnsdb: This does a DNS search for one or more records whose domain names are given in the
supplied query. The resulting data is the contents of the records. See section

ibase: This does a lookup in an InterBase database.

ldap: This does an LDAP lookup using a query in the form of a URL, and returns attributes from
a single entry. There is a variant called ldapm that permits values from multiple entries to be
returned. A third variant called /dapdn returns the Distinguished Name of a single entry instead of
any attribute values. See section

mysql: The format of the query is an SQL statement that is passed to a MySQL database. See
section

nisplus: This does a_NIS+ lookup using a query that can specify the name of the field to be
returned. See section ‘

oracle: The format of the query is an SQL statement that is passed to an Oracle database. See
section

passwd is a query-style lookup with queries that are just user names. The lookup calls getpwnam()
to interrogate the system password data, and on success, the result string is the same as you would
get from an Isearch lookup on a traditional /etc/passwd file, though with * for the password value.
For example:

82 File and database lookups (9)

*:42:42:King Rat:/home/kr:/bin/bash

* pgsql: The format of the query is an SQL statement that is passed to a PostgreSQL database. See
section9.21

* redis: The format of the query is either a simple get or simple set, passed to a Redis database. See
section

» sqlite: The format of the query is an SQL statement that is passed to an SQLite database. See
section

* ftestdb: This is a lookup type that is used for testing Exim. It is not likely to be useful in normal
operation.

* whoson: Whoson (http://whoson.sourceforge.net) is a protocol that allows a server to check
whether a particular (dynamically allocated) IP address is currently allocated to a known (trusted)
user and, optionally, to obtain the identity of the said user. For SMTP servers, Whoson was popular
at one time for “POP before SMTP” authentication, but that approach has been superseded by
SMTP authentication. In Exim, Whoson can be used to implement “POP before SMTP” checking
using ACL statements such as

require condition = \
${lookup whoson {$sender_host_address}{yes}{no}}

The query consists of a single IP address. The value returned is the name of the authenticated user,
which is stored in the variable $value. However, in this example, the data in $value is not used; the
result of the lookup is one of the fixed strings “yes” or “no”.

9.5 Temporary errors in lookups

Lookup functions can return temporary error codes if the lookup cannot be completed. For example,
an SQL or LDAP database might be unavailable. For this reason, it is not advisable to use a lookup
that might do this for critical options such as a list of local domains.

When a lookup cannot be completed in a router or transport, delivery of the message (to the relevant
address) is deferred, as for any other temporary error. In other circumstances Exim may assume the
lookup has failed, or may give up altogether.

9.6 Default values in single-key lookups

In this context, a “default value” is a value specified by the administrator that is to be used if a lookup
fails.

Note: This section applies only to single-key lookups. For query-style lookups, the facilities of the
query language must be used. An attempt to specify a default for a query-style lookup provokes an
erTor.

If “*” is added to a single-key lookup type (for example, Isearch*) and the initial lookup fails, the key
“*” is looked up in the file to provide a default value. See also the section on partial matching below.

Alternatively, if “*@” is added to a single-key lookup type (for example dbm*@) then, if the initial
lookup fails and the key contains an @ character, a second lookup is done with everything before the
last @ replaced by *. This makes it possible to provide per-domain defaults in alias files that include
the domains in the keys. If the second lookup fails (or doesn’t take place because there is no @ in the
key), “*” is looked up. For example, a redirect router might contain:

data = ${lookup{S$local_part@Sdomain}lsearch*@{/etc/mix—aliases}}

Suppose the address that is being processed is jane @eyre.example. Exim looks up these keys, in this
order:

jane@eyre.example

*@eyre.example
*

83 File and database lookups (9)

The data is taken from whichever key it finds first. Note: In an Isearch file, this does not mean the first
of these keys in the file. A complete scan is done for each key, and only if it is not found at all does
Exim move on to try the next key.

9.7 Partial matching in single-key lookups

The normal operation of a single-key lookup is to search the file for an exact match with the given
key. However, in a number of situations where domains are being looked up, it is useful to be able to
do partial matching. In this case, information in the file that has a key starting with “*.” is matched by
any domain that ends with the components that follow the full stop. For example, if a key in a DBM
file is

*.dates.fict.example

then when partial matching is enabled this is matched by (amongst others) 2001.dates.fict.example
and 1984.dates.fict.example. It is also matched by dates.fict.example, if that does not appear as a
separate key in the file.

Note: Partial matching is not available for query-style lookups. It is also not available for any lookup
items in address lists (see section|10.20).

Partial matching is implemented by doing a series of separate lookups using keys constructed by
modifying the original subject key. This means that it can be used with any of the single-key lookup
types, provided that partial matching keys beginning with a special prefix (default “*.”) are included
in the data file. Keys in the file that do not begin with the prefix are matched only by unmodified
subject keys when partial matching is in use.

Partial matching is requested by adding the string “partial-" to the front of the name of a single-key
lookup type, for example, partial-dbm. When this is done, the subject key is first looked up unmodi-
fied; if that fails, “*.” is added at the start of the subject key, and it is looked up again. If that fails,
further lookups are tried with dot-separated components removed from the start of the subject key,
one-by-one, and “*.” added on the front of what remains.

A minimum number of two non-* components are required. This can be adjusted by including a
number before the hyphen in the search type. For example, partial3-lsearch specifies a minimum of
three non-* components in the modified keys. Omitting the number is equivalent to “partial2-". If the
subject key is 2250.dates.fict.example then the following keys are looked up when the minimum
number of non-* components is two:

2250.dates.fict.example
*.2250.dates.fict.example
*.dates.fict.example
*.fict.example

As soon as one key in the sequence is successfully looked up, the lookup finishes.

The use of “*.” as the partial matching prefix is a default that can be changed. The motivation for this
feature is to allow Exim to operate with file formats that are used by other MTAs. A different prefix
can be supplied in parentheses instead of the hyphen after “partial”. For example:

domains = partial(.)lsearch;/some/file

In this example, if the domain is a.b.c, the sequence of lookups is a.b.c, .a.b.c, and .b.c (the
default minimum of 2 non-wild components is unchanged). The prefix may consist of any punctuation
characters other than a closing parenthesis. It may be empty, for example:

domains = partiall()cdb;/some/file
For this example, if the domain is a.b.c, the sequence of lookupsisa.b.c,b.c, and c.

If “partial0” is specified, what happens at the end (when the lookup with just one non-wild com-
ponent has failed, and the original key is shortened right down to the null string) depends on the
prefix:

* If the prefix has zero length, the whole lookup fails.

84 File and database lookups (9)

» If the prefix has length 1, a lookup for just the prefix is done. For example, the final lookup for
“partial0(.)” is for . alone.

* Otherwise, if the prefix ends in a dot, the dot is removed, and the remainder is looked up. With the
default prefix, therefore, the final lookup is for “*” on its own.

* Otherwise, the whole prefix is looked up.

If the search type ends in “*” or “*@” (see section above), the search for an ultimate default that
this implies happens after all partial lookups have failed. If “partial0” is specified, adding “*” to the
search type has no effect with the default prefix, because the “*” key is already included in the
sequence of partial lookups. However, there might be a use for lookup types such as
“partialO(.)Isearch*”.

The use of “*” in lookup partial matching differs from its use as a wildcard in domain lists and the
like. Partial matching works only in terms of dot-separated components; a key such as
*fict.example in a database file is useless, because the asterisk in a partial matching subject key
is always followed by a dot.

9.8 Lookup caching

Exim caches all lookup results in order to avoid needless repetition of lookups. However, because
(apart from the daemon) Exim operates as a collection of independent, short-lived processes, this
caching applies only within a single Exim process. There is no inter-process lookup caching facility.

If an option “cache=no_rd” is used on the lookup then the cache is only written to, cached data is not
used for the operation and a real lookup is done.

For single-key lookups, Exim keeps the relevant files open in case there is another lookup that needs
them. In some types of configuration this can lead to many files being kept open for messages with
many recipients. To avoid hitting the operating system limit on the number of simultaneously open
files, Exim closes the least recently used file when it needs to open more files than its own internal
limit, which can be changed via the lookup_open_max option.

The single-key lookup files are closed and the lookup caches are flushed at strategic points during
delivery — for example, after all routing is complete.

9.9 Quoting lookup data

When data from an incoming message is included in a query-style lookup, there is the possibility of
special characters in the data messing up the syntax of the query. For example, a NIS+ query that
contains

[name=$local_part]

will be broken if the local part happens to contain a closing square bracket. For NIS+, data can be
enclosed in double quotes like this:

[name="S$local_part"]

but this still leaves the problem of a double quote in the data. The rule for NIS+ is that double quotes
must be doubled. Other lookup types have different rules, and to cope with the differing requirements,
an expansion operator of the following form is provided:

$S{quote_<lookup-type>:<string>}
For example, the safest way to write the NIS+ query is
[name="${quote_nisplus:S$local_part}"]

See chapter |11] for full coverage of string expansions. The quote operator can be used for all lookup
types, but has no effect for single-key lookups, since no quoting is ever needed in their key strings.

85 File and database lookups (9)

9.10 More about dnsdb

The dnsdb lookup type uses the DNS as its database. A simple query consists of a record type and a
domain name, separated by an equals sign. For example, an expansion string could contain:

S${lookup dnsdb{mx=a.b.example} {Svaluel}fail}

If the lookup succeeds, the result is placed in $value, which in this case is used on its own as the
result. If the lookup does not succeed, the fail keyword causes a forced expansion failure — see
section |1 1.4| for an explanation of what this means.

The supported DNS record types are A, CNAME, MX, NS, PTR, SOA, SPF, SRV, TLSA and TXT,
and, when Exim is compiled with IPv6 support, AAAA. If no type is given, TXT is assumed.

For any record type, if multiple records are found, the data is returned as a concatenation, with
newline as the default separator. The order, of course, depends on the DNS resolver. You can specify
a different separator character between multiple records by putting a right angle-bracket followed
immediately by the new separator at the start of the query. For example:

S${lookup dnsdb{>: a=hostl.example}}

It is permitted to specify a space as the separator character. Further white space is ignored. For lookup
types that return multiple fields per record, an alternate field separator can be specified using a comma
after the main separator character, followed immediately by the field separator.

When the type is PTR, the data can be an IP address, written as normal; inversion and the addition of
in-addr.arpa or ip6.arpa happens automatically. For example:

${lookup dnsdb{ptr=192.168.4.5}{$value}fail}

If the data for a PTR record is not a syntactically valid IP address, it is not altered and nothing is
added.

For an MX lookup, both the preference value and the host name are returned for each record,
separated by a space. For an SRV lookup, the priority, weight, port, and host name are returned for
each record, separated by spaces. The field separator can be modified as above.

For TXT records with multiple items of data, only the first item is returned, unless a field separator is
specified. To concatenate items without a separator, use a semicolon instead. For SPF records the
default behaviour is to concatenate multiple items without using a separator.

${lookup dnsdb{>\n,: txt=a.b.example}}
${lookup dnsdb{>\n; txt=a.b.example}}
${lookup dnsdb{spf=example.org}}

It is permitted to specify a space as the separator character. Further white space is ignored.

For an SOA lookup, while no result is obtained the lookup is redone with successively more leading
components dropped from the given domain. Only the primary-nameserver field is returned unless a
field separator is specified.

S${lookup dnsdb{>:,; soa=a.b.example.com}}

9.11 Dnsdb lookup modifiers

Modifiers for dnsdb lookups are given by optional keywords, each followed by a comma, that may
appear before the record type.

The dnsdb lookup fails only if all the DNS lookups fail. If there is a temporary DNS error for any
of them, the behaviour is controlled by a defer-option modifier. The possible keywords are
“defer_strict”, “defer_never”, and “defer_lax”. With “strict” behaviour, any temporary DNS error
causes the whole lookup to defer. With “never” behaviour, a temporary DNS error is ignored, and the
behaviour is as if the DNS lookup failed to find anything. With “lax” behaviour, all the queries are
attempted, but a temporary DNS error causes the whole lookup to defer only if none of the other
lookups succeed. The default is “lax”, so the following lookups are equivalent:

86 File and database lookups (9)

${lookup dnsdb{defer_lax,a=one.host.com:two.host.com}}
${lookup dnsdb{a=one.host.com:two.host.com}}

Thus, in the default case, as long as at least one of the DNS lookups yields some data, the lookup
succeeds.

Use of DNSSEC is controlled by a dnssec modifier. The possible keywords are “dnssec_strict”,
“dnssec_lax”, and “dnssec_never”. With “strict” or “lax” DNSSEC information is requested with the
lookup. With “strict” a response from the DNS resolver that is not labelled as authenticated data is
treated as equivalent to a temporary DNS error. The default is “lax”.

See also the $lookup_dnssec_authenticated variable.

Timeout for the dnsdb lookup can be controlled by a retrans modifier. The form is “retrans_VAL”
where VAL is an Exim time specification (e.g. “5s”). The default value is set by the main configur-
ation option dns_retrans.

Retries for the dnsdb lookup can be controlled by a retry modifier. The form if “retry_VAL” where
VAL is an integer. The default count is set by the main configuration option dns_retry.

Dnsdb lookup results are cached within a single process (and its children). The cache entry lifetime is
limited to the smallest time-to-live (TTL) value of the set of returned DNS records.

9.12 Pseudo dnsdb record types

By default, both the preference value and the host name are returned for each MX record, separated
by a space. If you want only host names, you can use the pseudo-type MXH:

${lookup dnsdb{mxh=a.b.example}}
In this case, the preference values are omitted, and just the host names are returned.

Another pseudo-type is ZNS (for “zone NS”). It performs a lookup for NS records on the given
domain, but if none are found, it removes the first component of the domain name, and tries again.
This process continues until NS records are found or there are no more components left (or there is a
DNS error). In other words, it may return the name servers for a top-level domain, but it never returns
the root name servers. If there are no NS records for the top-level domain, the lookup fails. Consider
these examples:

${lookup dnsdb{zns=xxx.quercite.com}}
${lookup dnsdb{zns=xxx.edu}}

Assuming that in each case there are no NS records for the full domain name, the first returns the
name servers for quercite.com, and the second returns the name servers for edu.

You should be careful about how you use this lookup because, unless the top-level domain does not
exist, the lookup always returns some host names. The sort of use to which this might be put is for
seeing if the name servers for a given domain are on a blacklist. You can probably assume that the
name servers for the high-level domains such as com or co.uk are not going to be on such a list.

A third pseudo-type is CSA (Client SMTP Authorization). This looks up SRV records according to
the CSA rules, which are described in section ‘ Although dnsdb supports SRV lookups directly,
this is not sufficient because of the extra parent domain search behaviour of CSA. The result of a
successful lookup such as:

${lookup dnsdb {csa=S$sender_helo_name}}

has two space-separated fields: an authorization code and a target host name. The authorization code
can be “Y” for yes, “N” for no, “X” for explicit authorization required but absent, or “?” for
unknown.

The pseudo-type A+ performs an AAAA and then an A lookup. All results are returned; defer
processing (see below) is handled separately for each lookup. Example:

${lookup dnsdb {>; a+=$sender_helo_name}}

87 File and database lookups (9)

9.13 Multiple dnsdb lookups

In the previous sections, dnsdb lookups for a single domain are described. However, you can specify a
list of domains or IP addresses in a single dnsdb lookup. The list is specified in the normal Exim way,
with colon as the default separator, but with the ability to change this. For example:

${lookup dnsdb{one.domain.com:two.domain.com}}
${lookup dnsdb{a=one.host.com:two.host.com}}
${lookup dnsdb{ptr = <; 1.2.3.4 ; 4.5.6.8}}

In order to retain backwards compatibility, there is one special case: if the lookup type is PTR and no
change of separator is specified, Exim looks to see if the rest of the string is precisely one IPv6
address. In this case, it does not treat it as a list.

The data from each lookup is concatenated, with newline separators by default, in the same way that
multiple DNS records for a single item are handled. A different separator can be specified, as
described above.

9.14 More about LDAP

The original LDAP implementation came from the University of Michigan; this has become “Open
LDAP”, and there are now two different releases. Another implementation comes from Netscape, and
Solaris 7 and subsequent releases contain inbuilt LDAP support. Unfortunately, though these are all
compatible at the lookup function level, their error handling is different. For this reason it is necessary
to set a compile-time variable when building Exim with LDAP, to indicate which LDAP library is in
use. One of the following should appear in your Local/Makefile:

ILDAP_LIB_TYPE=UMICHIGAN
LDAP_LIB_TYPE=OPENLDAP1
LDAP_LIB_TYPE=OPENLDAP2
ILDAP_LIB_TYPE=NETSCAPE
ILDAP_LIB TYPE=SOLARIS

If LDAP_LIB_TYPE is not set, Exim assumes OPENLDAP1, which has the same interface as the
University of Michigan version.

There are three LDAP lookup types in Exim. These behave slightly differently in the way they handle
the results of a query:

* ldap requires the result to contain just one entry; if there are more, it gives an error.

* ldapdn also requires the result to contain just one entry, but it is the Distinguished Name that is
returned rather than any attribute values.

* ldapm permits the result to contain more than one entry; the attributes from all of them are
returned.

For ldap and ldapm, if a query finds only entries with no attributes, Exim behaves as if the entry did
not exist, and the lookup fails. The format of the data returned by a successful lookup is described in
the next section. First we explain how LDAP queries are coded.

9.15 Format of LDAP queries

An LDAP query takes the form of a URL as defined in RFC 2255. For example, in the configuration
of a redirect router one might have this setting:

data = ${lookup ldap \
{1dap:///cn=$local_part,o=University%$200f%20Cambridge, \
c=UK?mailbox?base?}}

The URL may begin with 1dap or 1daps if your LDAP library supports secure (encrypted) LDAP
connections. The second of these ensures that an encrypted TLS connection is used.

With sufficiently modern LDAP libraries, Exim supports forcing TLS over regular LDAP connec-
tions, rather than the SSL-on-connect 1daps. See the ldap_start_tls option.

88 File and database lookups (9)

Starting with Exim 4.83, the initialization of LDAP with TLS is more tightly controlled. Every part of
the TLS configuration can be configured by settings in exim.conf. Depending on the version of the
client libraries installed on your system, some of the initialization may have required setting options
in /etc/ldap.conf or ~/.Idaprc to get TLS working with self-signed certificates. This revealed a nuance
where the current UID that exim was running as could affect which config files it read. With Exim
4.83, these methods become optional, only taking effect if not specifically set in exim.conf.

9.16 LDAP quoting

Two levels of quoting are required in LDAP queries, the first for LDAP itself and the second because
the LDAP query is represented as a URL. Furthermore, within an LDAP query, two different kinds of
quoting are required. For this reason, there are two different LDAP-specific quoting operators.

The quote_ldap operator is designed for use on strings that are part of filter specifications.
Conceptually, it first does the following conversions on the string:

* => \2A
(=> \28
) => \29

\ => \5C

in accordance with RFC 2254. The resulting string is then quoted according to the rules for URLs,
that is, all non-alphanumeric characters except

bt -0 () * 4
are converted to their hex values, preceded by a percent sign. For example:
S{quote_ldap: a(bc)*, a<yz>; }
yields
%20a%5C28bc%5C29%5C2A%2C%20a%3Cyz%$3E%3B%20
Removing the URL quoting, this is (with a leading and a trailing space):
a\28bc\29\2A, a<yz>;

The quote_ldap_dn operator is designed for use on strings that are part of base DN specifications in
queries. Conceptually, it first converts the string by inserting a backslash in front of any of the
following characters:

, FTN <>

It also inserts a backslash before any leading spaces or # characters, and before any trailing spaces.
(These rules are in RFC 2253.) The resulting string is then quoted according to the rules for URLs.
For example:

S{quote_ldap_dn: a(bc)*, a<yz>; }
yields

$5C%20a (bc) *$5C%2C%20a%5C%3Cyz%5C%3E%$5C%3B%5C%20
Removing the URL quoting, this is (with a trailing space):

\ a(bc)*\, al\<yz\>\;\

There are some further comments about quoting in the section on LDAP authentication below.

9.17 LDAP connections

The connection to an LDAP server may either be over TCP/IP, or, when OpenLLDAP is in use, via a
Unix domain socket. The example given above does not specify an LDAP server. A server that is
reached by TCP/IP can be specified in a query by starting it with

ldap://<hostname>:<port>/...

89 File and database lookups (9)

If the port (and preceding colon) are omitted, the standard LDAP port (389) is used. When no server
is specified in a query, a list of default servers is taken from the ldap_default_servers configuration
option. This supplies a colon-separated list of servers which are tried in turn until one successfully
handles a query, or there is a serious error. Successful handling either returns the requested data, or
indicates that it does not exist. Serious errors are syntactical, or multiple values when only a single
value is expected. Errors which cause the next server to be tried are connection failures, bind failures,
and timeouts.

For each server name in the list, a port number can be given. The standard way of specifying a host
and port is to use a colon separator (RFC 1738). Because ldap_default_servers is a colon-separated
list, such colons have to be doubled. For example

ldap_default_servers = ldapl.example.com::145:1dap2.example.com

If l1dap_default_servers is unset, a URL with no server name is passed to the LDAP library with no
server name, and the library’s default (normally the local host) is used.

If you are using the OpenLDAP library, you can connect to an LDAP server using a Unix domain
socket instead of a TCP/IP connection. This is specified by using 1dapi instead of 1dap in LDAP
queries. What follows here applies only to OpenLDAP. If Exim is compiled with a different LDAP
library, this feature is not available.

For this type of connection, instead of a host name for the server, a pathname for the socket is
required, and the port number is not relevant. The pathname can be specified either as an item in
ldap_default_servers, or inline in the query. In the former case, you can have settings such as

ldap_default_servers = /tmp/ldap.sock : backup.ldap.your.domain

When the pathname is given in the query, you have to escape the slashes as %$2F to fit in with the
LDAP URL syntax. For example:

${lookup ldap {ldapi://%2Ftmp%2Fldap.sock/o=...

When Exim processes an LDAP lookup and finds that the “hostname” is really a pathname, it uses the
Unix domain socket code, even if the query actually specifies 1dap or ldaps. In particular, no
encryption is used for a socket connection. This behaviour means that you can use a setting of ldap_
default_servers such as in the example above with traditional 1dap or 1daps queries, and it will
work. First, Exim tries a connection via the Unix domain socket; if that fails, it tries a TCP/IP
connection to the backup host.

If an explicit 1dapi type is given in a query when a host name is specified, an error is diagnosed.
However, if there are more items in ldap_default_servers, they are tried. In other words:

» Using a pathname with 1dap or 1daps forces the use of the Unix domain interface.
* Using 1dapi with a host name causes an error.

Using 1dapi with no host or path in the query, and no setting of ldap_default_servers, does
whatever the library does by default.

9.18 LDAP authentication and control information

The LDAP URL syntax provides no way of passing authentication and other control information to
the server. To make this possible, the URL in an LDAP query may be preceded by any number of
<name>=<value> settings, separated by spaces. If a value contains spaces it must be enclosed in
double quotes, and when double quotes are used, backslash is interpreted in the usual way inside
them. The following names are recognized:

90 File and database lookups (9)

s EREFERENCE
the
dereferencing
parameter
s’ETTIME
a

timeout

for

a

network
operation
s¢fSER

the

DN,

for
authenticating
the

LDAP

bind

sBASS

the
password,
likewise
sREFERRALS
the
referrals
parameter
sS&ERVERS
alternate
server

list

for

this

query

only

SSIZE

the

limit

for

the

number

of

entries
returned
sdiIME

the
maximum
waiting
time

for

a

query

The value of the DEREFERENCE parameter must be one of the words “never”, “searching”,
“finding”, or “always”. The value of the REFERRALS parameter must be “follow” (the default) or
“nofollow”. The latter stops the LDAP library from trying to follow referrals issued by the LDAP
server.

91 File and database lookups (9)

The name CONNECT is an obsolete name for NETTIME, retained for backwards compatibility. This
timeout (specified as a number of seconds) is enforced from the client end for operations that can
be carried out over a network. Specifically, it applies to network connections and calls to the
ldap_result() function. If the value is greater than zero, it is used if LDAP_OPT_NETWORK_
TIMEOUT is defined in the LDAP headers (OpenLDAP), or if LDAP_X_OPT_CONNECT_
TIMEOUT is defined in the LDAP headers (Netscape SDK 4.1). A value of zero forces an explicit
setting of “no timeout” for Netscape SDK; for OpenLDAP no action is taken.

The TIME parameter (also a number of seconds) is passed to the server to set a server-side limit on
the time taken to complete a search.

The SERVERS parameter allows you to specify an alternate list of ldap servers to use for an individ-
ual lookup. The global ldap_default_servers option provides a default list of ldap servers, and a
single lookup can specify a single Idap server to use. But when you need to do a lookup with a list of
servers that is different than the default list (maybe different order, maybe a completely different set
of servers), the SERVERS parameter allows you to specify this alternate list (colon-separated).

Here is an example of an LDAP query in an Exim lookup that uses some of these values. This is a
single line, folded to fit on the page:

${lookup ldap
{user="cn=manager, o=University of Cambridge, c=UK" pass=secret
ldap:///o=University%200f%$20Cambridge, c=UK?sn?sub? (cn=foo) }
{$valuel}fail}

The encoding of spaces as $20 is a URL thing which should not be done for any of the auxiliary data.
Exim configuration settings that include lookups which contain password information should be
preceded by “hide” to prevent non-admin users from using the -bP option to see their values.

The auxiliary data items may be given in any order. The default is no connection timeout (the system
timeout is used), no user or password, no limit on the number of entries returned, and no time limit on
queries.

When a DN is quoted in the USER= setting for LDAP authentication, Exim removes any URL
quoting that it may contain before passing it LDAP. Apparently some libraries do this for themselves,
but some do not. Removing the URL quoting has two advantages:

* It makes it possible to use the same quote_ldap_dn expansion for USER= DNs as with DNs inside
actual queries.

It permits spaces inside USER= DNss.

For example, a setting such as
USER=cn=${quote_ldap_dn:$1}

should work even if $/ contains spaces.

Expanded data for the PASS= value should be quoted using the quote expansion operator, rather than
the LDAP quote operators. The only reason this field needs quoting is to ensure that it conforms to the
Exim syntax, which does not allow unquoted spaces. For example:

PASS=${quote:$3}

The LDAP authentication mechanism can be used to check passwords as part of SMTP authenti-
cation. See the ldapauth expansion string condition in chapter

9.19 Format of data returned by LDAP

The ldapdn lookup type returns the Distinguished Name from a single entry as a sequence of values,
for example

cn=manager, o=University of Cambridge, c=UK

The Idap lookup type generates an error if more than one entry matches the search filter, whereas
ldapm permits this case, and inserts a newline in the result between the data from different entries. It

92 File and database lookups (9)

is possible for multiple values to be returned for both ldap and Idapm, but in the former case you
know that whatever values are returned all came from a single entry in the directory.

In the common case where you specify a single attribute in your LDAP query, the result is not quoted,
and does not contain the attribute name. If the attribute has multiple values, they are separated by
commas. Any comma that is part of an attribute’s value is doubled.

If you specify multiple attributes, the result contains space-separated, quoted strings, each preceded
by the attribute name and an equals sign. Within the quotes, the quote character, backslash, and
newline are escaped with backslashes, and commas are used to separate multiple values for the
attribute. Any commas in attribute values are doubled (permitting treatment of the values as a comma-
separated list). Apart from the escaping, the string within quotes takes the same form as the output
when a single attribute is requested. Specifying no attributes is the same as specifying all of an entry’s
attributes.

Here are some examples of the output format. The first line of each pair is an LDAP query, and the
second is the data that is returned. The attribute called attrl has two values, one of them with an
embedded comma, whereas attr2 has only one value. Both attributes are derived from attr (they have
SUP attr in their schema definitions).

ldap:///o=base?attrl?sub? (uid=fred)
valuel.l,valuel,, 2

ldap:///o=base?attr2?sub? (uid=fred)
value two

ldap:///o=base?attr?sub? (uid=fred)
valuel.l,valuel,, 2,value two

ldap:///o=base?attrl,attr2?sub? (uid=fred)
attrl="valuel.l,valuel,,2" attr2="value two"

ldap:///o=base??sub? (uid=fred)
objectClass="top" attrl="valuel.l,valuel,,2" attr2="value two"

You can make use of Exim’s -be option to run expansion tests and thereby check the results of LDAP
lookups. The extract operator in string expansions can be used to pick out individual fields from data
that consists of key=value pairs. The listextract operator should be used to pick out individual values
of attributes, even when only a single value is expected. The doubling of embedded commas allows
you to use the returned data as a comma separated list (using the "<," syntax for changing the input
list separator).

9.20 More about NIS+

NIS+ queries consist of a NIS+ indexed name followed by an optional colon and field name. If this is
given, the result of a successful query is the contents of the named field; otherwise the result consists
of a concatenation of field-name=field-value pairs, separated by spaces. Empty values and values
containing spaces are quoted. For example, the query

[name=mgl456], passwd.org_dir
might return the string

name=mgl456 passwd="" uid=999 gid=999 gcos="Martin Guerre"
home=/home/mgl456 shell=/bin/bash shadow=""

(split over two lines here to fit on the page), whereas
[name=mgl456], passwd.org_dir:gcos
would just return

Martin Guerre

93 File and database lookups (9)

with no quotes. A NIS+ lookup fails if NIS+ returns more than one table entry for the given indexed
key. The effect of the quote_nisplus expansion operator is to double any quote characters within the
text.

9.21 SQL lookups

Exim can support lookups in InterBase, MySQL, Oracle, PostgreSQL, Redis, and SQLite databases.
Queries for these databases contain SQL statements, so an example might be

$S{lookup mysqgl{select mailbox from users where id='userx'}\
{$value}fail}

If the result of the query contains more than one field, the data for each field in the row is returned,
preceded by its name, so the result of

${lookup pgsqgl{select home,name from users where id='userx'}\
{S$value}}

might be
home=/home/userx name="Mister X"

Empty values and values containing spaces are double quoted, with embedded quotes escaped by a
backslash. If the result of the query contains just one field, the value is passed back verbatim, without
a field name, for example:

Mister X

If the result of the query yields more than one row, it is all concatenated, with a newline between the
data for each row.

9.22 More about MySQL, PostgreSQL, Oracle, InterBase, and Redis

If any MySQL, PostgreSQL, Oracle, InterBase or Redis lookups are used, the mysql_servers, pgsql_
servers, oracle_servers, ibase_servers, or redis_servers option (as appropriate) must be set to a
colon-separated list of server information. (For MySQL and PostgreSQL, the global option need not
be set if all queries contain their own server information — see section [9.23]) For all but Redis each
item in the list is a slash-separated list of four items: host name, database name, user name, and
password. In the case of Oracle, the host name field is used for the “service name”, and the database
name field is not used and should be empty. For example:

hide oracle_servers = oracle.plc.example//userx/abcdwxyz

Because password data is sensitive, you should always precede the setting with “hide”, to prevent
non-admin users from obtaining the setting via the -bP option. Here is an example where two MySQL
servers are listed:

hide mysql_servers = localhost/users/root/secret:\
otherhost/users/root/othersecret

For MySQL and PostgreSQL, a host may be specified as <name>:<port> but because this is a
colon-separated list, the colon has to be doubled. For each query, these parameter groups are tried in
order until a connection is made and a query is successfully processed. The result of a query may be
that no data is found, but that is still a successful query. In other words, the list of servers provides a
backup facility, not a list of different places to look.

For Redis the global option need not be specified if all queries contain their own server information —
see section If specified, the option must be set to a colon-separated list of server information.
Each item in the list is a slash-separated list of three items: host, database number, and password.

(1) The host is required and may be either an IPv4 address and optional port number (separated by a
colon, which needs doubling due to the higher-level list), or a Unix socket pathname enclosed in
parentheses

(2) The database number is optional; if present that number is selected in the backend

94 File and database lookups (9)

(3) The password is optional; if present it is used to authenticate to the backend

The quote_mysql, quote_pgsql, and quote_oracle expansion operators convert newline, tab, carriage
return, and backspace to \n, \t, \r, and \b respectively, and the characters single-quote, double-quote,
and backslash itself are escaped with backslashes.

The quote_redis expansion operator escapes whitespace and backslash characters with a backslash.

9.23 Specifying the server in the query

For MySQL, PostgreSQL and Redis lookups (but not currently for Oracle and InterBase), it is poss-
ible to specify a list of servers with an individual query. This is done by appending a comma-
separated option to the query type:

, servers=serverl:server2:server3....
Each item in the list may take one of two forms:

(1) If it contains no slashes it is assumed to be just a host name. The appropriate global option
(mysql_servers or pgsql_servers) is searched for a host of the same name, and the remaining
parameters (database, user, password) are taken from there.

(2) If it contains any slashes, it is taken as a complete parameter set.

The list of servers is used in exactly the same way as the global list. Once a connection to a server has
happened and a query has been successfully executed, processing of the lookup ceases.

This feature is intended for use in master/slave situations where updates are occurring and you want
to update the master rather than a slave. If the master is in the list as a backup for reading, you might
have a global setting like this:

mysqgl_servers = slavel/db/name/pw:\
slave2/db/name/pw:\
master/db/name/pw

In an updating lookup, you could then write:
${lookup mysqgl, servers=master {UPDATE ...} }

That query would then be sent only to the master server. If, on the other hand, the master is not to be
used for reading, and so is not present in the global option, you can still update it by a query of this
form:

${lookup pgsqgl, servers=master/db/name/pw {UPDATE ...} }
An older syntax places the servers specification before the query, semicolon separated:
${lookup mysqgl{servers=master; UPDATE ...} }

The new version avoids potential issues with tainted arguments in the query, for explicit expansion.
Note: server specifications in list-style lookups are still problematic.

9.24 Special MySQL features

For MySQL, an empty host name or the use of “localhost” in mysql_servers causes a connection to
the server on the local host by means of a Unix domain socket. An alternate socket can be specified in
parentheses. An option group name for MySQL option files can be specified in square brackets; the
default value is “exim”. The full syntax of each item in mysql_servers is:

<hostname>::<port>(<socket name>)[<option group>|/<database>/<user>/<password>

Any of the four sub-parts of the first field can be omitted. For normal use on the local host it can be
left blank or set to just “localhost”.

No database need be supplied — but if it is absent here, it must be given in the queries.
If a MySQL query is issued that does not request any data (an insert, update, or delete command), the

result of the lookup is the number of rows affected.

95 File and database lookups (9)

Warning: This can be misleading. If an update does not actually change anything (for example,
setting a field to the value it already has), the result is zero because no rows are affected.

9.25 Special PostgreSQL features

PostgreSQL lookups can also use Unix domain socket connections to the database. This is usually
faster and costs less CPU time than a TCP/IP connection. However it can be used only if the mail
server runs on the same machine as the database server. A configuration line for PostgreSQL via Unix
domain sockets looks like this:

hide pgsgl_servers = (/tmp/.s.PGSQL.5432)/db/user/password

In other words, instead of supplying a host name, a path to the socket is given. The path name is
enclosed in parentheses so that its slashes aren’t visually confused with the delimiters for the other
server parameters.

If a PostgreSQL query is issued that does not request any data (an insert, update, or delete command),
the result of the lookup is the number of rows affected.

9.26 More about SQLite

SQLite is different to the other SQL lookups because a filename is required in addition to the SQL
query. An SQLite database is a single file, and there is no daemon as in the other SQL databases.

There are two ways of specifying the file. The first is is by using the sqlite_dbfile main option. The
second, which allows separate files for each query, is to use an option appended, comma-separated, to
the “sqlite” lookup type word. The option is the word “file”, then an equals, then the filename. The
filename in this case cannot contain whitespace or open-brace charachters.

A deprecated method is available, prefixing the query with the filename separated by white space.
This means that the query cannot use any tainted values, as that taints the entire query including the
filename - resulting in a refusal to open the file.

In all the above cases the filename must be an absolute path.
Here is a lookup expansion example:

sqglite_dbfile = /some/thing/sglitedb

${lookup sglite {select name from aliases where id='userx';}}
In a list, the syntax is similar. For example:

domainlist relay_to_domains = sqglite;\
select * from relays where ip='$sender_host_address';

The only character affected by the quote_sqlite operator is a single quote, which it doubles.

The SQLite library handles multiple simultaneous accesses to the database internally. Multiple
readers are permitted, but only one process can update at once. Attempts to access the database while
it is being updated are rejected after a timeout period, during which the SQLite library waits for the
lock to be released. In Exim, the default timeout is set to 5 seconds, but it can be changed by means of
the sqlite_lock_timeout option.

9.27 More about Redis

Redis is a non-SQL database. Commands are simple get and set. Examples:

${lookup redis{set keyname ${quote_redis:objvalue plus}}}
${lookup redis{get keyname}}

As of release 4.91, "lightweight" support for Redis Cluster is available. Requires redis_servers list to
contain all the servers in the cluster, all of which must be reachable from the running exim instance. If
the cluster has master/slave replication, the list must contain all the master and slave servers.

96 File and database lookups (9)

When the Redis Cluster returns a "MOVED" response to a query, Exim does not immediately follow
the redirection but treats the response as a DEFER, moving on to the next server in the redis_servers
list until the correct server is reached.

97 File and database lookups (9)

10. Domain, host, address, and local part lists

A number of Exim configuration options contain lists of domains, hosts, email addresses, or local
parts. For example, the hold_domains option contains a list of domains whose delivery is currently
suspended. These lists are also used as data in ACL statements (see chapter , and as arguments to
expansion conditions such as match_domain.

Each item in one of these lists is a pattern to be matched against a domain, host, email address, or
local part, respectively. In the sections below, the different types of pattern for each case are
described, but first we cover some general facilities that apply to all four kinds of list.

Note that other parts of Exim use a string list which does not support all the complexity available in
domain, host, address and local part lists.

10.1 Expansion of lists
Each list is expanded as a single string before it is used.

Exception: the router headers_remove option, where list-item splitting is done before string-
expansion.

The result of expansion must be a list, possibly containing empty items, which is split up into separate
items for matching. By default, colon is the separator character, but this can be varied if necessary.
See sections 6.20| and m for details of the list syntax; the second of these discusses the way to
specify empty list items.

If the string expansion is forced to fail, Exim behaves as if the item it is testing (domain, host,
address, or local part) is not in the list. Other expansion failures cause temporary errors.

If an item in a list is a regular expression, backslashes, dollars and possibly other special characters in
the expression must be protected against misinterpretation by the string expander. The easiest way to
do this is to use the \N expansion feature to indicate that the contents of the regular expression should
not be expanded. For example, in an ACL you might have:

deny senders = \N"\d{8}\w@R.*\.baddomain\.example$S\N : \
${lookup{Sdomain}lsearch{/badsenders/bydomain}}

The first item is a regular expression that is protected from expansion by \N, whereas the second uses
the expansion to obtain a list of unwanted senders based on the receiving domain.

10.2 Negated items in lists

Items in a list may be positive or negative. Negative items are indicated by a leading exclamation
mark, which may be followed by optional white space. A list defines a set of items (domains, etc).
When Exim processes one of these lists, it is trying to find out whether a domain, host, address, or
local part (respectively) is in the set that is defined by the list. It works like this:

The list is scanned from left to right. If a positive item is matched, the subject that is being checked is
in the set; if a negative item is matched, the subject is not in the set. If the end of the list is reached
without the subject having matched any of the patterns, it is in the set if the last item was a negative
one, but not if it was a positive one. For example, the list in

domainlist relay_to_domains = l!a.b.c : *.b.c

matches any domain ending in .b.c except for a.b.c. Domains that match neither a.b.c nor *.b.c do not
match, because the last item in the list is positive. However, if the setting were

domainlist relay_to_domains = l!a.b.c

then all domains other than a.b.c would match because the last item in the list is negative. In other
words, a list that ends with a negative item behaves as if it had an extra item : * on the end.

Another way of thinking about positive and negative items in lists is to read the connector as “or”
after a positive item and as “and” after a negative item.

98 Domain, host, and address lists (10)

10.3 File names in lists

If an item in a domain, host, address, or local part list is an absolute filename (beginning with a slash
character), each line of the file is read and processed as if it were an independent item in the list,
except that further filenames are not allowed, and no expansion of the data from the file takes place.
Empty lines in the file are ignored, and the file may also contain comment lines:

* For domain and host lists, if a # character appears anywhere in a line of the file, it and all following
characters are ignored.

» Because local parts may legitimately contain # characters, a comment in an address list or local
part list file is recognized only if # is preceded by white space or the start of the line. For example:

not#comment@x.y.z # but this is a comment

Putting a filename in a list has the same effect as inserting each line of the file as an item in the list
(blank lines and comments excepted). However, there is one important difference: the file is read each
time the list is processed, so if its contents vary over time, Exim’s behaviour changes.

If a filename is preceded by an exclamation mark, the sense of any match within the file is inverted.
For example, if

hold_domains = !/etc/nohold-domains
and the file contains the lines

la.b.c
*.b.c

then a.b.c is in the set of domains defined by hold_domains, whereas any domain matching *.b.c
is not.

10.4 An Isearch file is not an out-of-line list

As will be described in the sections that follow, lookups can be used in lists to provide indexed
methods of checking list membership. There has been some confusion about the way Isearch lookups
work in lists. Because an Isearch file contains plain text and is scanned sequentially, it is sometimes
thought that it is allowed to contain wild cards and other kinds of non-constant pattern. This is not the
case. The keys in an Isearch file are always fixed strings, just as for any other single-key lookup type.

If you want to use a file to contain wild-card patterns that form part of a list, just give the filename
on its own, without a search type, as described in the previous section. You could also use the
wildlsearch or nwildlsearch, but there is no advantage in doing this.

10.5 Results of list checking

The primary result of doing a list check is a truth value. In some contexts additional information is
stored about the list element that matched:

hosts
A hosts ACL condition will store a result in the $host_data variable.

local_parts
A local_parts router option or local_parts ACL condition will store a result in the $local_part_
data variable.

domains
A domains router option or domains ACL condition will store a result in the $domain_data
variable.

senders
A senders router option or senders ACL condition will store a result in the $sender_data variable.

recipients
A recipients ACL condition will store a result in the $recipient_data variable.

99 Domain, host, and address lists (10)

The detail of the additional information depends on the type of match and is given below as the value
information.

10.6 Named lists

A list of domains, hosts, email addresses, or local parts can be given a name which is then used to
refer to the list elsewhere in the configuration. This is particularly convenient if the same list is
required in several different places. It also allows lists to be given meaningful names, which can
improve the readability of the configuration. For example, it is conventional to define a domain list
called local_domains for all the domains that are handled locally on a host, using a configuration line
such as

domainlist local_domains = localhost:my.dom.example

Named lists are referenced by giving their name preceded by a plus sign, so, for example, a router that
is intended to handle local domains would be configured with the line

domains = +local_domains

The first router in a configuration is often one that handles all domains except the local ones, using a
configuration with a negated item like this:

dnslookup:
driver = dnslookup
domains = ! +local_domains
transport = remote_smtp
no_more

The four kinds of named list are created by configuration lines starting with the words domainlist,
hostlist, addresslist, or localpartlist, respectively. Then there follows the name that you are defining,
followed by an equals sign and the list itself. For example:

hostlist relay_from _hosts = 192.168.23.0/24 : my.friend.example
addresslist bad _senders = cdb;/etc/badsenders

A named list may refer to other named lists:

domainlist doml = first.example : second.example
domainlist dom2 = +doml : third.example
domainlist dom3 = fourth.example : +dom2 : fifth.example

Warning: If the last item in a referenced list is a negative one, the effect may not be what you
intended, because the negation does not propagate out to the higher level. For example, consider:

domainlist doml = !a.b
domainlist dom2 +doml : *.Db

The second list specifies “either in the doml1 list or *.5”. The first list specifies just “not a.b”, so the
domain x.y matches it. That means it matches the second list as well. The effect is not the same as

domainlist dom2 = !'a.b : *.b
where x.y does not match. It’s best to avoid negation altogether in referenced lists if you can.

Some named list definitions may contain sensitive data, for example, passwords for accessing data-
bases. To stop non-admin users from using the -bP command line option to read these values, you can
precede the definition with the word “hide”. For example:

hide domainlist filter_ for_domains = ldap;PASS=secret ldap::///

Named lists may have a performance advantage. When Exim is routing an address or checking an
incoming message, it caches the result of tests on named lists. So, if you have a setting such as

domains = +local_domains

on several of your routers or in several ACL statements, the actual test is done only for the first one.
However, the caching works only if there are no expansions within the list itself or any sublists that it

100 Domain, host, and address lists (10)

references. In other words, caching happens only for lists that are known to be the same each time
they are referenced.

By default, there may be up to 16 named lists of each type. This limit can be extended by changing a
compile-time variable. The use of domain and host lists is recommended for concepts such as local
domains, relay domains, and relay hosts. The default configuration is set up like this.

10.7 Named lists compared with macros

At first sight, named lists might seem to be no different from macros in the configuration file.
However, macros are just textual substitutions. If you write

ALIST = hostl : host2
auth_advertise_hosts = !ALIST

it probably won’t do what you want, because that is exactly the same as
auth_advertise_hosts = 'hostl : host2
Notice that the second host name is not negated. However, if you use a host list, and write

hostlist alist = hostl : host2
auth_advertise_hosts = ! +alist

the negation applies to the whole list, and so that is equivalent to

auth_advertise_hosts = 'hostl : 'host2

10.8 Named list caching

While processing a message, Exim caches the result of checking a named list if it is sure that the list
is the same each time. In practice, this means that the cache operates only if the list contains no $
characters, which guarantees that it will not change when it is expanded. Sometimes, however, you
may have an expanded list that you know will be the same each time within a given message. For
example:

domainlist special_domains = \
${lookup{S$sender_host_address}cdb{/some/file}}

This provides a list of domains that depends only on the sending host’s IP address. If this domain list
is referenced a number of times (for example, in several ACL lines, or in several routers) the result of
the check is not cached by default, because Exim does not know that it is going to be the same list
each time.

By appending _cache to domainlist you can tell Exim to go ahead and cache the result anyway.
For example:

domainlist_cache special_domains = ${lookup{...

If you do this, you should be absolutely sure that caching is going to do the right thing in all cases.
When in doubt, leave it out.

10.9 Domain lists

Domain lists contain patterns that are to be matched against a mail domain. The following types of
item may appear in domain lists:

» If a pattern consists of a single @ character, it matches the local host name, as set by the primary_
hostname option (or defaulted). This makes it possible to use the same configuration file on
several different hosts that differ only in their names.

The value for a match will be the primary host name.

» If a pattern consists of the string @ [] it matches an IP address enclosed in square brackets (as in an
email address that contains a domain literal), but only if that IP address is recognized as local for
email routing purposes. The local_interfaces and extra_local_interfaces options can be used to

101 Domain, host, and address lists (10)

control which of a host’s several IP addresses are treated as local. In today’s Internet, the use of
domain literals is controversial; see the allow_domain_literals main option.

The value for a match will be the string @ [].

If a pattern consists of the string @mx_any it matches any domain that has an MX record pointing
to the local host or to any host that is listed in hosts_treat_as_local. The items @mx_primary
and @mx_secondary are similar, except that the first matches only when a primary MX target is
the local host, and the second only when no primary MX target is the local host, but a secondary
MX target is. “Primary” means an MX record with the lowest preference value — there may of
course be more than one of them.

The MX lookup that takes place when matching a pattern of this type is performed with the
resolver options for widening names turned off. Thus, for example, a single-component domain
will not be expanded by adding the resolver’s default domain. See the qualify_single and search_
parents options of the dnslookup router for a discussion of domain widening.

Sometimes you may want to ignore certain IP addresses when using one of these patterns. You can
specify this by following the pattern with /ignore=<ip list>, where <ip list> is a list of IP
addresses. These addresses are ignored when processing the pattern (compare the ignore_target_
hosts option on a router). For example:

domains = @mx_any/ignore=127.0.0.1

This example matches any domain that has an MX record pointing to one of the local host’s IP
addresses other than 127.0.0.1.

The list of IP addresses is in fact processed by the same code that processes host lists, so it may
contain CIDR-coded network specifications and it may also contain negative items.

Because the list of IP addresses is a sublist within a domain list, you have to be careful about
delimiters if there is more than one address. Like any other list, the default delimiter can be
changed. Thus, you might have:

domains = @mx_any/ignore=<;127.0.0.1;0.0.0.0 : \
an.other.domain

so that the sublist uses semicolons for delimiters. When IPv6 addresses are involved, it is easiest to
change the delimiter for the main list as well:

domains = <? @mx_any/ignore=<;127.0.0.1;::1 2 \
an.other.domain ?

The value for a match will be the list element string (starting @mx_).

If a pattern starts with an asterisk, the remaining characters of the pattern are compared with the
terminating characters of the domain. The use of “*” in domain lists differs from its use in partial
matching lookups. In a domain list, the character following the asterisk need not be a dot, whereas
partial matching works only in terms of dot-separated components. For example, a domain list item
such as *key . ex matches donkey.ex as well as cipher.key.ex.

The value for a match will be the list element string (starting with the asterisk). Additionally, $0
will be set to the matched string and $/ to the variable portion which the asterisk matched.

If a pattern starts with a circumflex character, it is treated as a regular expression, and matched
against the domain using a regular expression matching function. The circumflex is treated as part
of the regular expression. Email domains are case-independent, so this regular expression match is
by default case-independent, but you can make it case-dependent by starting it with (?-1i).
References to descriptions of the syntax of regular expressions are given in chapter

Warning: Because domain lists are expanded before being processed, you must escape any
backslash and dollar characters in the regular expression, or use the special \N sequence (see
chapter to specify that it is not to be expanded (unless you really do want to build a regular
expression by expansion, of course).

102 Domain, host, and address lists (10)

The value for a match will be the list element string (starting with the circumflex). Additionally, $0
will be set to the string matching the regular expression, and $/ (onwards) to any submatches
identified by parentheses.

» If a pattern starts with the name of a single-key lookup type followed by a semicolon (for example,
“dbm;” or “Isearch;”), the remainder of the pattern must be a filename in a suitable format for the
lookup type. For example, for “cdb;” it must be an absolute path:

domains = cdb;/etc/mail/local_domains.cdb

The appropriate type of lookup is done on the file using the domain name as the key. In most cases,
the value resulting from the lookup is not used; Exim is interested only in whether or not the key is
present in the file. However, when a lookup is used for the domains option on a router or a
domains condition in an ACL statement, the value is preserved in the $domain_data variable and
can be referred to in other router options or other statements in the same ACL. The value will be
untainted.

Note: If the data result of the lookup (as opposed to the key) is empty, then this empty value is
stored in $domain_data. The option to return the key for the lookup, as the value, may be what is
wanted.

* Any of the single-key lookup type names may be preceded by partial<n>-, where the <n> is
optional, for example,

domains = partial-dbm; /partial/domains

This causes partial matching logic to be invoked; a description of how this works is given in
section

* Any of the single-key lookup types may be followed by an asterisk. This causes a default lookup
for a key consisting of a single asterisk to be done if the original lookup fails. This is not a useful
feature when using a domain list to select particular domains (because any domain would match),
but it might have value if the result of the lookup is being used via the $domain_data expansion
variable.

» If the pattern starts with the name of a query-style lookup type followed by a semicolon (for
example, “nisplus;” or “ldap;”), the remainder of the pattern must be an appropriate query for the
lookup type, as described in chapter@ For example:

hold_domains = mysqgl;select domain from holdlist \
where domain = '${quote_mysqgl:S$domain}';

In most cases, the value resulting from the lookup is not used (so for an SQL query, for example, it
doesn’t matter what field you select). Exim is interested only in whether or not the query succeeds.
However, when a lookup is used for the domains option on a router, the value is preserved in the
8domain_data variable and can be referred to in other options. The value will be untainted.

 If the pattern starts with the name of a lookup type of either kind (single-key or query-style) it may
be followed by a comma and options, The options are lookup-type specific and consist of a

n "

comma-separated list. Each item starts with a tag and and equals "=" sign.

* If none of the above cases apply, a caseless textual comparison is made between the pattern and the
domain.

The value for a match will be the list element string. Note that this is commonly untainted
(depending on the way the list was created). Specifically, explicit text in the configuration file in
not tainted. This is a useful way of obtaining an untainted equivalent to the domain, for later
operations.

However if the list (including one-element lists) is created by expanding a variable containing
tainted data, it is tainted and so will the match value be.

Here is an example that uses several different kinds of pattern:
domainlist funny_domains = \

@ : \

103 Domain, host, and address lists (10)

lib.unseen.edu : \

* foundation.fict.example : \
AN~[1-21\d{3}\.fict\.exampleS$\N : \

partial-dbm; /opt/data/penguin/book : \
nis;domains.byname : \

nisplus; [name=$domain, status=local],domains.org_dir

There are obvious processing trade-offs among the various matching modes. Using an asterisk is
faster than a regular expression, and listing a few names explicitly probably is too. The use of a file or
database lookup is expensive, but may be the only option if hundreds of names are required. Because
the patterns are tested in order, it makes sense to put the most commonly matched patterns earlier.

10.10 Host lists

Host lists are used to control what remote hosts are allowed to do. For example, some hosts may be
allowed to use the local host as a relay, and some may be permitted to use the SMTP ETRN
command. Hosts can be identified in two different ways, by name or by IP address. In a host list,
some types of pattern are matched to a host name, and some are matched to an IP address. You need
to be particularly careful with this when single-key lookups are involved, to ensure that the right value
is being used as the key.

10.11 Special host list patterns

If a host list item is the empty string, it matches only when no remote host is involved. This is the case
when a message is being received from a local process using SMTP on the standard input, that is,
when a TCP/IP connection is not used.

The special pattern “*” in a host list matches any host or no host. Neither the IP address nor the name
is actually inspected.

10.12 Host list patterns that match by IP address

If an IPv4 host calls an IPv6 host and the call is accepted on an IPv6 socket, the incoming address
actually appears in the IPv6 host as : : £££f : <v4address>. When such an address is tested against a
host list, it is converted into a traditional IPv4 address first. (Not all operating systems accept IPv4
calls on IPv6 sockets, as there have been some security concerns.)

The following types of pattern in a host list check the remote host by inspecting its IP address:

 If the pattern is a plain domain name (not a regular expression, not starting with *, not a lookup of
any kind), Exim calls the operating system function to find the associated IP address(es). Exim
uses the newer getipnodebyname() function when available, otherwise gethostbyname(). This typi-
cally causes a forward DNS lookup of the name. The result is compared with the IP address of the
subject host.

If there is a temporary problem (such as a DNS timeout) with the host name lookup, a temporary
error occurs. For example, if the list is being used in an ACL condition, the ACL gives a “defer”
response, usually leading to a temporary SMTP_error code. If no IP address can be found for the
host name, what happens is described in section below.

* If the pattern is “@”, the primary host name is substituted and used as a domain name, as just
described.

* If the pattern is an IP address, it is matched against the IP address of the subject host. IPv4
addresses are given in the normal “dotted-quad” notation. IPv6 addresses can be given in colon-
separated format, but the colons have to be doubled so as not to be taken as item separators when
the default list separator is used. IPv6 addresses are recognized even when Exim is compiled
without IPv6 support. This means that if they appear in a host list on an IPv4-only host, Exim will
not treat them as host names. They are just addresses that can never match a client host.

104 Domain, host, and address lists (10)

» If the pattern is “@[]”, it matches the IP address of any IP interface on the local host. For example,
if the local host is an IPv4 host with one interface address 10.45.23.56, these two ACL statements
have the same effect:

accept hosts = 127.0.0.1 : 10.45.23.56
accept hosts = @[]

 If the pattern is an IP address followed by a slash and a mask length, for example
10.11.42.0/24

, it is matched against the IP address of the subject host under the given mask. This allows an entire
network of hosts to be included (or excluded) by a single item. The mask uses CIDR notation; it
specifies the number of address bits that must match, starting from the most significant end of the
address.

Note: The mask is not a count of addresses, nor is it the high number of a range of addresses. It is
the number of bits in the network portion of the address. The above example specifies a 24-bit
netmask, so it matches all 256 addresses in the 10.11.42.0 network. An item such as

192.168.23.236/31

matches just two addresses, 192.168.23.236 and 192.168.23.237. A mask value of 32 for an IPv4
address is the same as no mask at all; just a single address matches.

Here is another example which shows an IPv4 and an IPv6 network:

recipient_unqualified_hosts = 192.168.0.0/16: \
3ffe::ffff::836f::::/48

The doubling of list separator characters applies only when these items appear inline in a host list.
It is not required when indirecting via a file. For example:

recipient_unqualified_hosts = /opt/exim/unqualnets
could make use of a file containing

172.16.0.0/12
3ffe:fff£f:836f::/48

to have exactly the same effect as the previous example. When listing IPv6 addresses inline, it is
usually more convenient to use the facility for changing separator characters. This list contains the
same two networks:

recipient_unqualified_hosts = <; 172.16.0.0/12; \
3ffe:ffff:836f::/48

The separator is changed to semicolon by the leading “<;” at the start of the list.

10.13 Host list patterns for single-key lookups by host address

When a host is to be identified by a single-key lookup of its complete IP address, the pattern takes this
form:

net—<single-key-search-type>; <search-data>
For example:
hosts_lookup = net-cdb; /hosts-by-ip.db

The text form of the IP address of the subject host is used as the lookup key. IPv6 addresses are
converted to an unabbreviated form, using lower case letters, with dots as separators because colon is
the key terminator in Isearch files. [Colons can in fact be used in keys in Isearch files by quoting the
keys, but this is a facility that was added later.] The data returned by the lookup is not used.

Single-key lookups can also be performed using masked IP addresses, using patterns of this form:

net <number>—<single-key-search-type> ; <search-data>

105 Domain, host, and address lists (10)

For example:
net24-dbm; /networks.db

The IP address of the subject host is masked using <number> as the mask length. A textual string is
constructed from the masked value, followed by the mask, and this is used as the lookup key. For
example, if the host’s IP address is 192.168.34.6, the key that is looked up for the above example is
“192.168.34.0/24”.

When an IPv6 address is converted to a string, dots are normally used instead of colons, so that keys
in Isearch files need not contain colons (which terminate Isearch keys). This was implemented some
time before the ability to quote keys was made available in Isearch files. However, the more recently
implemented iplsearch files do require colons in IPv6 keys (notated using the quoting facility) so as to
distinguish them from IPv4 keys. For this reason, when the lookup type is iplsearch, IPv6 addresses
are converted using colons and not dots. In all cases except IPv4-mapped IPv6, full, unabbreviated
IPv6 addresses are always used. The latter are converted to IPv4 addresses, in dotted-quad form.

Ideally, it would be nice to tidy up this anomalous situation by changing to colons in all cases, given
that quoting is now available for Isearch. However, this would be an incompatible change that might
break some existing configurations.

Warning: Specifying net32- (for an [Pv4 address) or net128- (for an IPv6 address) is not the same as
specifying just net- without a number. In the former case the key strings include the mask value,
whereas in the latter case the IP address is used on its own.

10.14 Host list patterns that match by host name

There are several types of pattern that require Exim to know the name of the remote host. These are
either wildcard patterns or lookups by name. (If a complete hostname is given without any
wildcarding, it is used to find an IP address to match against, as described in section |10.12|above.)

If the remote host name is not already known when Exim encounters one of these patterns, it has to be
found from the IP address. Although many sites on the Internet are conscientious about maintaining
reverse DNS data for their hosts, there are also many that do not do this. Consequently, a name cannot
always be found, and this may lead to unwanted effects. Take care when configuring host lists with
wildcarded name patterns. Consider what will happen if a name cannot be found.

Because of the problems of determining host names from IP addresses, matching against host names
is not as common as matching against IP addresses.

By default, in order to find a host name, Exim first does a reverse DNS lookup; if no name is found in
the DNS, the system function (gethostbyaddr() or getipnodebyaddr() if available) is tried. The order
in which these lookups are done can be changed by setting the host_lookup_order option. For
security, once Exim has found one or more names, it looks up the IP addresses for these names and
compares them with the IP address that it started with. Only those names whose IP addresses match
are accepted. Any other names are discarded. If no names are left, Exim behaves as if the host name
cannot be found. In the most common case there is only one name and one IP address.

There are some options that control what happens if a host name cannot be found. These are
described in section |10.15|below.

As a result of aliasing, hosts may have more than one name. When processing any of the following
types of pattern, all the host’s names are checked:

» If a pattern starts with “*” the remainder of the item must match the end of the host name. For
example, * ... c matches all hosts whose names end in .b.c. This special simple form is provided
because this is a very common requirement. Other kinds of wildcarding require the use of a regular
expression.

o If the item starts with “~” it is taken to be a regular expression which is matched against the host
name. Host names are case-independent, so this regular expression match is by default case-
independent, but you can make it case-dependent by starting it with (?-1) . References to descrip-
tions of the syntax of regular expressions are given in chapter (8] For example,

106 Domain, host, and address lists (10)

~(alb)\.c\.ds

is a regular expression that matches either of the two hosts a.c.d or b.c.d. When a regular
expression is used in a host list, you must take care that backslash and dollar characters are not
misinterpreted as part of the string expansion. The simplest way to do this is to use \N to mark that
part of the string as non-expandable. For example:

sender_unqualified_hosts = \N” (a|b) \.c\.dS$\N

Warning: If you want to match a complete host name, you must include the $ terminating
metacharacter in the regular expression, as in the above example. Without it, a match at the start of
the host name is all that is required.

10.15 Behaviour when an IP address or name cannot be found

While processing a host list, Exim may need to look up an IP address from a name (see section
10.12), or it may need to look up a host name from an IP address (see section [10.14). In either case,
the behaviour when it fails to find the information it is seeking is the same.

Note: This section applies to permanent lookup failures. It does not apply to temporary DNS errors,
whose handling is described in the next section.

Exim parses a host list from left to right. If it encounters a permanent lookup failure in any item in the
host list before it has found a match, Exim treats it as a failure and the default behavior is as if the
host does not match the list. This may not always be what you want to happen. To change Exim’s
behaviour, the special items +include_unknown or +ignore_unknown may appear in the list
(at top level — they are not recognized in an indirected file).

* If any item that follows +include_unknown requires information that cannot found, Exim
behaves as if the host does match the list. For example,

host_reject_connection = +include_unknown:*.enemy.ex

rejects connections from any host whose name matches * . enemy . ex, and also any hosts whose
name it cannot find.

* If any item that follows +ignore_unknown requires information that cannot be found, Exim
ignores that item and proceeds to the rest of the list. For example:

accept hosts = +ignore_unknown : friend.example : \
192.168.4.5

accepts from any host whose name is friend.example and from 192.168.4.5, whether or not its host
name can be found. Without +ignore_unknown, if no name can be found for 192.168.4.5, it is
rejected.

Both +include_unknown and +ignore_unknown may appear in the same list. The effect of
each one lasts until the next, or until the end of the list.

10.16 Mixing wildcarded host names and addresses in host lists

This section explains the host/ip processing logic with the same concepts as the previous section, but
specifically addresses what happens when a wildcarded hostname is one of the items in the hostlist.

* If you have name lookups or wildcarded host names and IP addresses in the same host list, you
should normally put the IP addresses first. For example, in an ACL you could have:

accept hosts = 10.9.8.7 : *.friend.example

The reason you normally would order it this way lies in the left-to-right way that Exim processes
lists. It can test IP addresses without doing any DNS lookups, but when it reaches an item that
requires a host name, it fails if it cannot find a host name to compare with the pattern. If the above
list is given in the opposite order, the accept statement fails for a host whose name cannot be
found, even if its IP address is 10.9.8.7.

107 Domain, host, and address lists (10)

» If you really do want to do the name check first, and still recognize the IP address, you can rewrite
the ACL like this:

accept hosts = *.friend.example
accept hosts 10.9.8.7

If the first accept fails, Exim goes on to try the second one. See chapter for details of ACLs.
Alternatively, you can use +ignore_unknown, which was discussed in depth in the first
example in this section.

10.17 Temporary DNS errors when looking up host information

A temporary DNS lookup failure normally causes a defer action (except when dns_again_means_
nonexist converts it into a permanent error). However, host lists can include +ignore_defer and
+include_defer, analogous to +ignore_unknown and +include_unknown, as described
in the previous section. These options should be used with care, probably only in non-critical host
lists such as whitelists.

10.18 Host list patterns for single-key lookups by host name
If a pattern is of the form

<single-key-search-type>;<search-data>
for example

dbm; /host/accept/list

a single-key lookup is performed, using the host name as its key. If the lookup succeeds, the host
matches the item. The actual data that is looked up is not used.

Reminder: With this kind of pattern, you must have host names as keys in the file, not IP addresses.
If you want to do lookups based on IP addresses, you must precede the search type with “net-" (see
section . There is, however, no reason why you could not use two items in the same list, one
doing an address lookup and one doing a name lookup, both using the same file.

10.19 Host list patterns for query-style lookups
If a pattern is of the form
<query-style-search-type>;<query>

the query is obeyed, and if it succeeds, the host matches the item. The actual data that is looked up is
not used. The variables $sender_host_address and $sender_host_name can be used in the query. For
example:

hosts_lookup = pgsqgl;\
select ip from hostlist where ip='$sender_host_address'

The value of $sender_host_address for an IPv6 address contains colons. You can use the sg expansion
item to change this if you need to. If you want to use masked IP addresses in database queries, you
can use the mask expansion operator.

If the query contains a reference to $sender_host_name, Exim automatically looks up the host name if
it has not already done so. (See section|10.14|for comments on finding host names.)

Historical note: prior to release 4.30, Exim would always attempt to find a host name before running
the query, unless the search type was preceded by net—. This is no longer the case. For backwards
compatibility, net - is still recognized for query-style lookups, but its presence or absence has no
effect. (Of course, for single-key lookups, net - is important. See section|10.13})

108 Domain, host, and address lists (10)

10.20 Address lists

Address lists contain patterns that are matched against mail addresses. There is one special case to be
considered: the sender address of a bounce message is always empty. You can test for this by provid-
ing an empty item in an address list. For example, you can set up a router to process bounce messages
by using this option setting:

senders =

The presence of the colon creates an empty item. If you do not provide any data, the list is empty and
matches nothing. The empty sender can also be detected by a regular expression that matches an
empty string, and by a query-style lookup that succeeds when $sender_address is empty.

Non-empty items in an address list can be straightforward email addresses. For example:
senders = Jjbc@askone.example : hs@anacreon.example

A certain amount of wildcarding is permitted. If a pattern contains an @ character, but is not a regular
expression and does not begin with a semicolon-terminated lookup type (described below), the local
part of the subject address is compared with the local part of the pattern, which may start with an
asterisk. If the local parts match, the domain is checked in exactly the same way as for a pattern in a
domain list. For example, the domain can be wildcarded, refer to a named list, or be a lookup:

deny senders = *@*.spamming.site:\
*@+hostile_domains:\
bozo@partial-lsearch; /list/of/dodgy/sites:\
*@dbm; /bad/domains.db

If a local part that begins with an exclamation mark is required, it has to be specified using a regular
expression, because otherwise the exclamation mark is treated as a sign of negation, as is standard in
lists.

If a non-empty pattern that is not a regular expression or a lookup does not contain an @ character, it
is matched against the domain part of the subject address. The only two formats that are recognized
this way are a literal domain, or a domain pattern that starts with *. In both these cases, the effect is
the same as if *@ preceded the pattern. For example:

deny senders = enemy.domain : *.enemy.domain

The following kinds of more complicated address list pattern can match any address, including the
empty address that is characteristic of bounce message senders:

* If (after expansion) a pattern starts with “~”, a regular expression match is done against the
complete address, with the pattern as the regular expression. You must take care that backslash and
dollar characters are not misinterpreted as part of the string expansion. The simplest way to do this
is to use \N to mark that part of the string as non-expandable. For example:

deny senders = \N”.*this.*@example\.com$\N : \
\N~*\d{8}.+@spamhaus.example$\N

The \N sequences are removed by the expansion, so these items do indeed start with “*” by the
time they are being interpreted as address patterns.

* Complete addresses can be looked up by using a pattern that starts with a lookup type terminated
by a semicolon, followed by the data for the lookup. For example:

deny senders = cdb;/etc/blocked.senders : \
mysqgl; select address from blocked where \
address="'${quote_mysqgl:$sender_address}'

Both query-style and single-key lookup types can be used. For a single-key lookup type, Exim uses
the complete address as the key. However, empty keys are not supported for single-key lookups, so
a match against the empty address always fails. This restriction does not apply to query-style
lookups.

109 Domain, host, and address lists (10)

Partial matching for single-key lookups (section cannot be used, and is ignored if specified,
with an entry being written to the panic log. However, you can configure lookup defaults, as
described in section but this is useful only for the “*@” type of default. For example, with this
lookup:

accept senders = lsearch*Q@;/some/file
the file could contains lines like this:

userl@domainl.example
*@domain2.example

and for the sender address nimrod @ jaeger.example, the sequence of keys that are tried is:

nimrod@jaeger.example

*@jaeger.example
*

Warning 1: Do not include a line keyed by “*” in the file, because that would mean that every
address matches, thus rendering the test useless.

Warning 2: Do not confuse these two kinds of item:

deny recipients = dbm*@Q;/some/file
deny recipients = *Q@dbm; /some/file

The first does a whole address lookup, with defaulting, as just described, because it starts with a
lookup type. The second matches the local part and domain independently, as described in a bullet
point below.

The following kinds of address list pattern can match only non-empty addresses. If the subject
address is empty, a match against any of these pattern types always fails.

 If a pattern starts with “@@” followed by a single-key lookup item (for example,
@Q@lsearch; /some/file), the address that is being checked is split into a local part and a
domain. The domain is looked up in the file. If it is not found, there is no match. If it is found, the
data that is looked up from the file is treated as a colon-separated list of local part patterns, each of
which is matched against the subject local part in turn.

The lookup may be a partial one, and/or one involving a search for a default keyed by “*” (see
section . The local part patterns that are looked up can be regular expressions or begin with
“*”_or even be further lookups. They may also be independently negated. For example, with

deny senders = Q@dbm; /etc/reject-by-domain
the data from which the DBM file is built could contain lines like
baddomain.com: !postmaster : *
to reject all senders except postmaster from that domain.

If a local part that actually begins with an exclamation mark is required, it has to be specified using
a regular expression. In Isearch files, an entry may be split over several lines by indenting the
second and subsequent lines, but the separating colon must still be included at line breaks. White
space surrounding the colons is ignored. For example:

aol.com: spammerl : spammer2 : ~[0-9]+$
spammer3 : spammer4

As in all colon-separated lists in Exim, a colon can be included in an item by doubling.

If the last item in the list starts with a right angle-bracket, the remainder of the item is taken as a
new key to look up in order to obtain a continuation list of local parts. The new key can be any
sequence of characters. Thus one might have entries like

aol.com: spammerl : spammer 2 : >*
Xyz.com: spammer3 : >*
* ~\d{8}$

110 Domain, host, and address lists (10)

in a file that was searched with @ @dbm?*, to specify a match for 8-digit local parts for all
domains, in addition to the specific local parts listed for each domain. Of course, using this feature
costs another lookup each time a chain is followed, but the effort needed to maintain the data is
reduced.

It is possible to construct loops using this facility, and in order to catch them, the chains may be no
more than fifty items long.

* The @@<lookup> style of item can also be used with a query-style lookup, but in this case, the
chaining facility is not available. The lookup can only return a single list of local parts.

Warning: There is an important difference between the address list items in these two examples:

senders = +my_list
senders = *@+my_list

In the first one, my_1list is a named address list, whereas in the second example it is a named
domain list.

10.21 Case of letters in address lists

Domains in email addresses are always handled caselessly, but for local parts case may be significant
on some systems (see caseful_local_part for how Exim deals with this when routing addresses).
However, RFC 2505 (Anti-Spam Recommendations for SMTP MTAs) suggests that matching of
addresses to blocking lists should be done in a case-independent manner. Since most address lists in
Exim are used for this kind of control, Exim attempts to do this by default.

The domain portion of an address is always lowercased before matching it to an address list. The local
part is lowercased by default, and any string comparisons that take place are done caselessly. This
means that the data in the address list itself, in files included as plain filenames, and in any file that is
looked up using the “@ @ mechanism, can be in any case. However, the keys in files that are looked
up by a search type other than Isearch (which works caselessly) must be in lower case, because these
lookups are not case-independent.

To allow for the possibility of caseful address list matching, if an item in an address list is the string
“+caseful”, the original case of the local part is restored for any comparisons that follow, and string
comparisons are no longer case-independent. This does not affect the domain, which remains in lower
case. However, although independent matches on the domain alone are still performed caselessly,
regular expressions that match against an entire address become case-sensitive after “+caseful” has
been seen.

10.22 Local part lists
These behave in the same way as domain and host lists, with the following changes:

Case-sensitivity in local part lists is handled in the same way as for address lists, as just described.
The “+caseful” item can be used if required. In a setting of the local_parts option in a router with
caseful_local_part set false, the subject is lowercased and the matching is initially case-insensitive.
In this case, “+caseful” will restore case-sensitive matching in the local part list, but not elsewhere in
the router. If caseful_local_part is set true in a router, matching in the local_parts option is case-
sensitive from the start.

If a local part list is indirected to a file (see section , comments are handled in the same way as
address lists — they are recognized only if the # is preceded by white space or the start of the line.
Otherwise, local part lists are matched in the same way as domain lists, except that the special items
that refer to the local host (@, @[], @mx_any, @mx_primary, and @mx_secondary) are not
recognized. Refer to section for details of the other available item types.

111 Domain, host, and address lists (10)

11. String expansions

Many strings in Exim’s runtime configuration are expanded before use. Some of them are expanded
every time they are used; others are expanded only once.

When a string is being expanded it is copied verbatim from left to right except when a dollar or
backslash character is encountered. A dollar specifies the start of a portion of the string that is
interpreted and replaced as described below in section onwards. Backslash is used as an escape
character, as described in the following section.

Whether a string is expanded depends upon the context. Usually this is solely dependent upon the
option for which a value is sought; in this documentation, options for which string expansion is
performed are marked with 1 after the data type. ACL rules always expand strings. A couple of
expansion conditions do not expand some of the brace-delimited branches, for security reasons, and
expansion of data deriving from the sender (“tainted data”) is not permitted (including acessing a file
using a tainted name).

Common ways of obtaining untainted equivalents of variables with tainted values come down to using
the tainted value as a lookup key in a trusted database. This database could be the filesystem structure,
or the password file, or accessed via a DBMS. Specific methods are indexed under “de-tainting”.

11.1 Literal text in expanded strings

An uninterpreted dollar can be included in an expanded string by putting a backslash in front of it. A
backslash can be used to prevent any special character being treated specially in an expansion,
including backslash itself. If the string appears in quotes in the configuration file, two backslashes are
required because the quotes themselves cause interpretation of backslashes when the string is read in
(see section .

A portion of the string can specified as non-expandable by placing it between two occurrences of \N.
This is particularly useful for protecting regular expressions, which often contain backslashes and
dollar signs. For example:

deny senders = \N”\d{8}[a-z]@some\.site\.example$\N

On encountering the first \N, the expander copies subsequent characters without interpretation until it
reaches the next \N or the end of the string.

11.2 Character escape sequences in expanded strings

A backslash followed by one of the letters “n”, “r”, or “t” in an expanded string is recognized as an
escape sequence for the character newline, carriage return, or tab, respectively. A backslash followed
by up to three octal digits is recognized as an octal encoding for a single character, and a backslash

[]

followed by “x” and up to two hexadecimal digits is a hexadecimal encoding.

These escape sequences are also recognized in quoted strings when they are read in. Their interpret-
ation in expansions as well is useful for unquoted strings, and for other cases such as looked-up
strings that are then expanded.

11.3 Testing string expansions

Many expansions can be tested by calling Exim with the -be option. This takes the command argu-
ments, or lines from the standard input if there are no arguments, runs them through the string
expansion code, and writes the results to the standard output. Variables based on configuration values
are set up, but since no message is being processed, variables such as $local_part have no value.
Nevertheless the -be option can be useful for checking out file and database lookups, and the use of
expansion operators such as sg, substr and nhash.

Exim gives up its root privilege when it is called with the -be option, and instead runs under the uid
and gid it was called with, to prevent users from using -be for reading files to which they do not have
access.

112 String expansions (11)

If you want to test expansions that include variables whose values are taken from a message, there are
two other options that can be used. The -bem option is like -be except that it is followed by a
filename. The file is read as a message before doing the test expansions. For example:

exim -bem /tmp/test.message 'S$Sh_subject:'

The -Mset option is used in conjunction with -be and is followed by an Exim message identifier. For
example:

exim -be -Mset 1GrA8W-0004WS-LQ 'Srecipients'

This loads the message from Exim’s spool before doing the test expansions, and is therefore restricted
to admin users.

11.4 Forced expansion failure

A number of expansions that are described in the following section have alternative “true” and “false”
substrings, enclosed in brace characters (which are sometimes called “curly brackets”). Which of the
two strings is used depends on some condition that is evaluated as part of the expansion. If, instead of
a “false” substring, the word “fail” is used (not in braces), the entire string expansion fails in a way
that can be detected by the code that requested the expansion. This is called “forced expansion
failure”, and its consequences depend on the circumstances. In some cases it is no different from any
other expansion failure, but in others a different action may be taken. Such variations are mentioned
in the documentation of the option that is being expanded.

11.5 Expansion items

The following items are recognized in expanded strings. White space may be used between sub-items
that are keywords or substrings enclosed in braces inside an outer set of braces, to improve read-
ability. Warning: Within braces, white space is significant.

$<variable name> or ${<variable name>}
Substitute the contents of the named variable, for example:

$local_part
${domain}

The second form can be used to separate the name from subsequent alphanumeric characters. This
form (using braces) is available only for variables; it does not apply to message headers. The
names of the variables are given in section below. If the name of a non-existent variable is
given, the expansion fails.

${<op>:<string>}
The string is first itself expanded, and then the operation specified by <op> is applied to it. For
example:

${lc:$local_part}

The string starts with the first character after the colon, which may be leading white space. A list
of operators is given in section @ below. The operator notation is used for simple expansion
items that have just one argument, because it reduces the number of braces and therefore makes
the string easier to understand.

$bheader_<header name>: or $bh_<header name>:
This item inserts “basic” header lines. It is described with the header expansion item below.

${acl{<name>}{<arg>}...}
The name and zero to nine argument strings are first expanded separately. The expanded argu-
ments are assigned to the variables $acl_argl to $acl_arg9 in order. Any unused are made empty.
The variable $acl_narg is set to the number of arguments. The named ACL (see chapter is
called and may use the variables; if another acl expansion is used the values are restored after it
returns. If the ACL sets a value using a "message =" modifier and returns accept or deny, the value
becomes the result of the expansion. If no message is set and the ACL returns accept or deny the

113 String expansions (11)

expansion result is an empty string. If the ACL returns defer the result is a forced-fail. Otherwise
the expansion fails.

${authresults{<authserv-id>}}
This item returns a string suitable for insertion as an Authentication-Results: header line. The
given <authserv-id> is included in the result; typically this will be a domain name identifying the
system performing the authentications. Methods that might be present in the result include:

none
iprev
auth
spf
dkim
Example use (as an ACL modifier):
add_header = :at_start:${authresults {$primary_hostname}}
This is safe even if no authentication results are available.

${certextract{<field> }{<certificate> }{<string2>Y{<string3>}}
The <certificate> must be a variable of type certificate. The field name is expanded and used to
retrieve the relevant field from the certificate. Supported fields are:

version

serial_number

subject RFC4514 DN
issuer RFC4514 DN
notbefore time
notafter time
sig_algorithm

signature

subj_altname tagged list
ocsp_uri list
crl_uri list

If the field is found, <string2> is expanded, and replaces the whole item; otherwise <string3> is
used. During the expansion of <string2> the variable $value contains the value that has been
extracted. Afterwards, it is restored to any previous value it might have had.

If {<string3>} is omitted, the item is replaced by an empty string if the key is not found. If
{<string2>} is also omitted, the value that was extracted is used.

Some field names take optional modifiers, appended and separated by commas.

The field selectors marked as "RFC4514" above output a Distinguished Name string which is not
quite parseable by Exim as a comma-separated tagged list (the exceptions being elements contain-
ing commas). RDN elements of a single type may be selected by a modifier of the type label; if so
the expansion result is a list (newline-separated by default). The separator may be changed by
another modifier of a right angle-bracket followed immediately by the new separator. Recognised
RDN type labels include "CN", "O", "OU" and "DC".

The field selectors marked as "time" above take an optional modifier of "int" for which the result
is the number of seconds since epoch. Otherwise the result is a human-readable string in the
timezone selected by the main "timezone" option.

The field selectors marked as "list" above return a list, newline-separated by default, (embedded
separator characters in elements are doubled). The separator may be changed by a modifier of a
right angle-bracket followed immediately by the new separator.

The field selectors marked as "tagged" above prefix each list element with a type string and an
equals sign. Elements of only one type may be selected by a modifier which is one of "dns", "uri"
or "mail"; if so the element tags are omitted.

If not otherwise noted field values are presented in human-readable form.

114 String expansions (11)

${dlfunc{<file> {<function>}{<arg>H{<arg>}...}
This expansion dynamically loads and then calls a locally-written C function. This functionality is
available only if Exim is compiled with

EXPAND_DLFUNC=yes

set in Local/Makefile. Once loaded, Exim remembers the dynamically loaded object so that it
doesn’t reload the same object file in the same Exim process (but of course Exim does start new
processes frequently).

There may be from zero to eight arguments to the function.

When compiling a local function that is to be called in this way, first DLFUNC_IMPL should be
defined, and second local_scan.h should be included. The Exim variables and functions that are
defined by that API are also available for dynamically loaded functions. The function itself must
have the following type:

int dlfunction (uschar **yield, int argc, uschar *argvl[])

Where uschar is a typedef for unsigned char in local_scan.h. The function should return
one of the following values:

OK: Success. The string that is placed in the variable yield is put into the expanded string that is
being built.

FAIL: A non-forced expansion failure occurs, with the error message taken from yield, if it is set.

FAIL_FORCED: A forced expansion failure occurs, with the error message taken from yield if it is
set.

ERROR: Same as FAIL, except that a panic log entry is written.

When compiling a function that is to be used in this way with gcc, you need to add -shared to the
gcc command. Also, in the Exim build-time configuration, you must add -export-dynamic to
EXTRALIBS.

${env{<key>H<stringI1>}{<string2>}}
The key is first expanded separately, and leading and trailing white space removed. This is then
searched for as a name in the environment. If a variable is found then its value is placed in $value
and <stringl> is expanded, otherwise <string2> is expanded.

Instead of {<string2>} the word “fail” (not in curly brackets) can appear, for example:
S{env{USER} {$value} fail }

This forces an expansion failure (see section 11.4); {<stringI>} must be present for “fail” to be
recognized.

If {<string2>} is omitted an empty string is substituted on search failure. If {<stringl>} is omitted
the search result is substituted on search success.

The environment is adjusted by the keep_environment and add_environment main section
options.

${extract{<key>H{<string 1> H{<string2>{<string3>}}
The key and <stringl> are first expanded separately. Leading and trailing white space is removed
from the key (but not from any of the strings). The key must not be empty and must not consist
entirely of digits. The expanded <string /> must be of the form:

<keyl> = <valuel> <key2> = <value2> ...

where the equals signs and spaces (but not both) are optional. If any of the values contain white
space, they must be enclosed in double quotes, and any values that are enclosed in double quotes
are subject to escape processing as described in section @ The expanded <stringl> is searched
for the value that corresponds to the key. The search is case-insensitive. If the key is found,
<string2> is expanded, and replaces the whole item; otherwise <string3> is used. During the
expansion of <string2> the variable $value contains the value that has been extracted. Afterwards,
it is restored to any previous value it might have had.

115 String expansions (11)

If {<string3>} is omitted, the item is replaced by an empty string if the key is not found. If
{<string2>} is also omitted, the value that was extracted is used. Thus, for example, these two
expansions are identical, and yield “2001”’:

S{extract{gid}{uid=1984 gid=2001}}
S{extract{gid}{uid=1984 gid=2001}{S$value}}

Instead of {<string3>} the word “fail” (not in curly brackets) can appear, for example:
S{extract{Z}{A=... B=...}{Svalue} fail }

This forces an expansion failure (see section 11.4); {<string2>} must be present for “fail” to be
recognized.

${extract json{<key>H{<stringI>}{<string2>}{<string3>}}

${extract jsons{<key>H{<stringI>}{<string2>}{<string3>}}
The key and <stringl> are first expanded separately. Leading and trailing white space is removed
from the key (but not from any of the strings). The key must not be empty and must not consist
entirely of digits. The expanded <stringI> must be of the form:

{ <"keyl"™ : <valuel>, <"key2'> , <value2> ... }

The braces, commas and colons, and the quoting of the member name are required; the spaces are
optional. Matching of the key against the member names is done case-sensitively. For the “json”
variant, if a returned value is a JSON string, it retains its leading and trailing quotes. For the
“jsons” variant, which is intended for use with JSON strings, the leading and trailing quotes are
removed from the returned value.

The results of matching are handled as above.

${extract{<number>}{<separators>}{<string 1> }{<string2>{<string3>}}
The <number> argument must consist entirely of decimal digits, apart from leading and trailing
white space, which is ignored. This is what distinguishes this form of extract from the previous
kind. It behaves in the same way, except that, instead of extracting a named field, it extracts from
<stringI> the field whose number is given as the first argument. You can use $value in <string2>
or fail instead of <string3> as before.

The fields in the string are separated by any one of the characters in the separator string. These
may include space or tab characters. The first field is numbered one. If the number is negative, the
fields are counted from the end of the string, with the rightmost one numbered -1. If the number
given is zero, the entire string is returned. If the modulus of the number is greater than the number
of fields in the string, the result is the expansion of <string3>, or the empty string if <string3> is
not provided. For example:

S{extract{2}{:}{x:42:99:& Mailer::/bin/bash}}
yields “42”, and
S{extract{-4}{:}{x:42:99:& Mailer::/bin/bash}}

yields “99”. Two successive separators mean that the field between them is empty (for example,
the fifth field above).

${extract json {<number>}}{<string1>}{<string2>{<string3>}}

${extract jsons{<number>}}{<string 1> <string2>}{<string3>}}
The <number> argument must consist entirely of decimal digits, apart from leading and trailing
white space, which is ignored.

Field selection and result handling is as above; there is no choice of field separator. For the “json”
variant, if a returned value is a JSON string, it retains its leading and trailing quotes. For the
“jsons” variant, which is intended for use with JSON strings, the leading and trailing quotes are
removed from the returned value.

${filter{<string>}{<condition>}}
After expansion, <string> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way 6.21i). For each item in this list, its value is place in $item, and then

116 String expansions (11)

the condition is evaluated. If the condition is true, $item is added to the output as an item in a new
list; if the condition is false, the item is discarded. The separator used for the output list is the same
as the one used for the input, but a separator setting is not included in the output. For example:

S{filter{a:b:c}{!eg{Sitem}{b}}}

yields a: c. At the end of the expansion, the value of $item is restored to what it was before. See
also the map and reduce expansion items.

${hash{<stringI>H<string2>}{<string3>}}
This is a textual hashing function, and was the first to be implemented in early versions of Exim.
In current releases, there are other hashing functions (numeric, MD5, and SHA-1), which are
described below.

The first two strings, after expansion, must be numbers. Call them <m> and <n>. If you are using
fixed values for these numbers, that is, if <string/> and <string2> do not change when they are
expanded, you can use the simpler operator notation that avoids some of the braces:

${hash_<n>_<m>:<string>}

The second number is optional (in both notations). If <n> is greater than or equal to the length of
the string, the expansion item returns the string. Otherwise it computes a new string of length <n>
by applying a hashing function to the string. The new string consists of characters taken from the
first <m> characters of the string

abcdefghijklmnopgrstuvwxyzABCDEFGHI JKLMNOPQWRSTUVIWXYZ0123456789
If <m> is not present the value 26 is used, so that only lower case letters appear. For example:

Shash{3}{monty}} yields jmg
Shash{5} {monty}} yields monty
Shash{4}{62}{monty python}} yields fbWx

$header_<header name>: or $h_<header name>:
$bheader_<header name>: or $bh_<header name>:
$lheader_<header name>: or $lh_<header name>:
$rheader_<header name>: or $rh_<header name>:
Substitute the contents of the named message header line, for example

Sheader_reply-to:

The newline that terminates a header line is not included in the expansion, but internal newlines
(caused by splitting the header line over several physical lines) may be present.

The difference between the four pairs of expansions is in the way the data in the header line is
interpreted.

b}

* rheader gives the original “raw” content of the header line, with no processing at all, and
without the removal of leading and trailing white space.

* lheader gives a colon-separated list, one element per header when there are multiple headers
with a given name. Any embedded colon characters within an element are doubled, so normal
Exim list-processing facilities can be used. The terminating newline of each element is
removed; in other respects the content is “raw”.

* bheader removes leading and trailing white space, and then decodes base64 or quoted-printable
MIME “words” within the header text, but does no character set translation. If decoding of what
looks superficially like a MIME “word” fails, the raw string is returned. If decoding produces a
binary zero character, it is replaced by a question mark — this is what Exim does for binary zeros
that are actually received in header lines.

* header tries to translate the string as decoded by bheader to a standard character set. This is an
attempt to produce the same string as would be displayed on a user’s MUA. If translation fails,
the bheader string is returned. Translation is attempted only on operating systems that support
the iconv() function. This is indicated by the compile-time macro HAVE_ICONYV in a system
Makefile or in Local/Makefile.

117 String expansions (11)

In a filter file, the target character set for header can be specified by a command of the following
form:

headers charset "UTF-8"

This command affects all references to $/_ (or $header_) expansions in subsequently obeyed filter
commands. In the absence of this command, the target character set in a filter is taken from the
setting of the headers_charset option in the runtime configuration. The value of this option
defaults to the value of HEADERS_CHARSET in Local/Makefile. The ultimate default is ISO-
8859-1.

Header names follow the syntax of RFC 2822, which states that they may contain any printing
characters except space and colon. Consequently, curly brackets do not terminate header names,
and should not be used to enclose them as if they were variables. Attempting to do so causes a
syntax error.

Only header lines that are common to all copies of a message are visible to this mechanism. These
are the original header lines that are received with the message, and any that are added by an ACL
statement or by a system filter. Header lines that are added to a particular copy of a message by a
router or transport are not accessible.

For incoming SMTP messages, no header lines are visible in ACLs that are obeyed before the data
phase completes, because the header structure is not set up until the message is received. They are
visible in DKIM, PRDR and DATA ACLs. Header lines that are added in a RCPT ACL (for
example) are saved until the message’s incoming header lines are available, at which point they are
added. When any of the above ACLs are running, however, header lines added by earlier ACLs are
visible.

Upper case and lower case letters are synonymous in header names. If the following character is
white space, the terminating colon may be omitted, but this is not recommended, because you may
then forget it when it is needed. When white space terminates the header name, this white space is
included in the expanded string. If the message does not contain the given header, the expansion
item is replaced by an empty string. (See the def condition in sectionml for a means of testing
for the existence of a header.)

If there is more than one header with the same name, they are all concatenated to form the
substitution string, up to a maximum length of 64K. Unless rheader is being used, leading and
trailing white space is removed from each header before concatenation, and a completely empty
header is ignored. A newline character is then inserted between non-empty headers, but there is no
newline at the very end. For the header and bheader expansion, for those headers that contain
lists of addresses, a comma is also inserted at the junctions between headers. This does not happen
for the rheader expansion.

When the headers are from an incoming message, the result of expanding any of these variables is
tainted.

${hmac{<hashname>}{<secret>{<string>}}
This function uses cryptographic hashing (either MD5 or SHA-1) to convert a shared secret and
some text into a message authentication code, as specified in RFC 2104. This differs from
${md5:secret_text...} or ${shal:secret_text...} in that the hmac step adds a
signature to the cryptographic hash, allowing for authentication that is not possible with MD35 or
SHA-1 alone. The hash name must expand to either md5 or shal at present. For example:

S{hmac{md5} {somesecret} {$primary_hostname S$tod_log}}
For the hostname mail.example.com and time 2002-10-17 11:30:59, this produces:
dd97e3ba5d1a61b5006108£8c8252953

As an example of how this might be used, you might put in the main part of an Exim
configuration:

SPAMSCAN_SECRET=cohgheelei2thahw

In a router or a transport you could then have:

118 String expansions (11)

headers_add = \
X-Spam—-Scanned: ${primary_hostname} ${message_exim_id} \
S{hmac{md5} {SPAMSCAN_SECRET}\
{${primary_hostname}, ${message_exim_id}, $h_message-id:}}

Then given a message, you can check where it was scanned by looking at the X-Spam-Scanned:
header line. If you know the secret, you can check that this header line is authentic by recomputing
the authentication code from the host name, message ID and the Message-id: header line. This can
be done using Exim’s -be option, or by other means, for example, by using the hmac_md5_hex()
function in Perl.

${if <condition> {<string1>}{<string2>}}
If <condition> is true, <stringl> is expanded and replaces the whole item; otherwise <string2> is
used. The available conditions are described in section 11 .7| below. For example:

${if eq {$local_part}{postmaster} {yes}{no} }

The second string need not be present; if it is not and the condition is not true, the item is replaced
with nothing. Alternatively, the word “fail” may be present instead of the second string (without
any curly brackets). In this case, the expansion is forced to fail if the condition is not true (see
section |1 1.4

If both strings are omitted, the result is the string true if the condition is true, and the empty
string if the condition is false. This makes it less cumbersome to write custom ACL and router
conditions. For example, instead of

condition S{if >{Sacl_m4}{3}{true}{false}}

you can use
condition = ${if >{$acl_m4}{3}}

${imapfolder{<foldername>}}
This item converts a (possibly multilevel, or with non-ASCII characters) folder specification to a
Maildir name for filesystem use. For information on internationalisation support see

${length{<string I>}{<string2>}}
The length item is used to extract the initial portion of a string. Both strings are expanded, and the
first one must yield a number, <n>, say. If you are using a fixed value for the number, that is, if
<stringI> does not change when expanded, you can use the simpler operator notation that avoids
some of the braces:

${length_<n>:<string>}

The result of this item is either the first <n> bytes or the whole of <string2>, whichever is the
shorter. Do not confuse length with strlen, which gives the length of a string. All measurement is
done in bytes and is not UTF-8 aware.

${listextract{ <number> }{<string 1> H{<string2>}{<string3>}}
The <number> argument must consist entirely of decimal digits, apart from an optional leading
minus, and leading and trailing white space (which is ignored).

After expansion, <stringl> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way (|6.21‘ .

The first field of the list is numbered one. If the number is negative, the fields are counted from the
end of the list, with the rightmost one numbered -1. The numbered element of the list is extracted
and placed in $value, then <string2> is expanded as the result.

If the modulus of the number is zero or greater than the number of fields in the string, the result is
the expansion of <string3>.

For example:
S{listextract{2}{x:42:99}}
yields “42”, and

119 String expansions (11)

S{listextract{-3}{<, x,42,99,& Mailer,, /bin/bash}{result: $value}}
yields “result: 42”.

If {<string3>} is omitted, an empty string is used for string3. If {<string2>} is also omitted, the
value that was extracted is used. You can use fail instead of {<string3>} as in a string extract.

${listquote{<separator>}{<string>}}
This item doubles any occurrence of the separator character in the given string. An empty string is
replaced with a single space. This converts the string into a safe form for use as a list element, in a
list using the given separator.

${lookup {<key>} <search type> {<file>} {<string1>} {<string2>}}
${lookup <search type> {<query>} {<stringl>} {<string2>}}
The two forms of lookup item specify data lookups in files and databases, as discussed in chapter
The first form is used for single-key lookups, and the second is used for query-style lookups.
The <key>, <file>, and <query> strings are expanded before use.

If there is any white space in a lookup item which is part of a filter command, a retry or rewrite
rule, a routing rule for the manualroute router, or any other place where white space is significant,
the lookup item must be enclosed in double quotes. The use of data lookups in users’ filter files
may be locked out by the system administrator.

If the lookup succeeds, <stringl> is expanded and replaces the entire item. During its expansion,
the variable $value contains the data returned by the lookup. Afterwards it reverts to the value it
had previously (at the outer level it is empty). If the lookup fails, <string2> is expanded and
replaces the entire item. If {<string2>} is omitted, the replacement is the empty string on failure.
If <string2> is provided, it can itself be a nested lookup, thus providing a mechanism for looking
up a default value when the original lookup fails.

If a nested lookup is used as part of <stringl>, $value contains the data for the outer lookup while
the parameters of the second lookup are expanded, and also while <string2> of the second lookup
is expanded, should the second lookup fail. Instead of {<string2>} the word “fail” can appear, and
in this case, if the lookup fails, the entire expansion is forced to fail (see section . If both
{<stringl>} and {<string2>} are omitted, the result is the looked up value in the case of a
successful lookup, and nothing in the case of failure.

For single-key lookups, the string “partial” is permitted to precede the search type in order to do
partial matching, and * or *@ may follow a search type to request default lookups if the key does
not match (see sections [9.6/and for details).

If a partial search is used, the variables $/ and $2 contain the wild and non-wild parts of the key
during the expansion of the replacement text. They return to their previous values at the end of the
lookup item.

This example looks up the postmaster alias in the conventional alias file:
${lookup {postmaster} lsearch {/etc/aliases} {S$Svalue}}

This example uses NIS+ to look up the full name of the user corresponding to the local part of an
address, forcing the expansion to fail if it is not found:

${lookup nisplus {[name=$local_part],passwd.org_dir:gcos} \
{$value}fail}

${map{<srringI>}{<string2>}}
After expansion, <stringl> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way @ . For each item in this list, its value is place in $item, and then
<string2> is expanded and added to the output as an item in a new list. The separator used for the
output list is the same as the one used for the input, but a separator setting is not included in the
output. For example:

${map{a:b:c}{[Sitem]}} S${map{<- x-y-z}{ (Sitem)}}

expands to [a]: [b]:[c] (x)-(y)—(z). At the end of the expansion, the value of $item is
restored to what it was before. See also the filter and reduce expansion items.

120 String expansions (11)

${nhash{<srring I>}{<string2>}{<string3>}}
The three strings are expanded; the first two must yield numbers. Call them <n> and <m>. If you
are using fixed values for these numbers, that is, if <stringl> and <string2> do not change when
they are expanded, you can use the simpler operator notation that avoids some of the braces:

${nhash_<n>_<m>:<string>}

The second number is optional (in both notations). If there is only one number, the result is a
number in the range 0—<n>-1. Otherwise, the string is processed by a div/mod hash function that
returns two numbers, separated by a slash, in the ranges 0 to <n>-1 and 0 to <m>-1, respectively.
For example,

S{nhash{8} {64} {supercalifragilisticexpialidocious}}
returns the string “6/33”.

${perl{<subroutine>}{<arg>H<arg>}...}
This item is available only if Exim has been built to include an embedded Perl interpreter. The
subroutine name and the arguments are first separately expanded, and then the Perl subroutine is
called with those arguments. No additional arguments need be given; the maximum number per-
mitted, including the name of the subroutine, is nine.

The return value of the subroutine is inserted into the expanded string, unless the return value is
undef. In that case, the entire expansion is forced to fail, in the same way as an explicit “fail” on a
lookup item does (see section ‘ . Whatever you return is evaluated in a scalar context, thus the
return value is a scalar. For example, if you return a Perl vector, the return value is the size of the
vector, not its contents.

If the subroutine exits by calling Perl’s die function, the expansion fails with the error message
that was passed to die. More details of the embedded Perl facility are given in chapter

The redirect router has an option called forbid_filter_perl which locks out the use of this expan-
sion item in filter files.

${prvs{<address>}{<secret>}{{<keynumber>}}
The first argument is a complete email address and the second is secret keystring. The third
argument, specifying a key number, is optional. If absent, it defaults to 0. The result of the
expansion is a prvs-signed email address, to be typically used with the return_path option on an
smtp transport as part of a bounce address tag validation (BATV) scheme. For more discussion and
an example, see section

${prvscheck{<address>}{<secret>}{<string>}}
This expansion item is the complement of the prvs item. It is used for checking prvs-signed
addresses. If the expansion of the first argument does not yield a syntactically valid prvs-signed
address, the whole item expands to the empty string. When the first argument does expand to a
syntactically valid prvs-signed address, the second argument is expanded, with the prvs-decoded
version of the address and the key number extracted from the address in the variables $prvscheck_
address and $prvscheck_keynum, respectively.

These two variables can be used in the expansion of the second argument to retrieve the secret.
The validity of the prvs-signed address is then checked against the secret. The result is stored in
the variable $prvscheck_result, which is empty for failure or “1” for success.

The third argument is optional; if it is missing, it defaults to an empty string. This argument is now
expanded. If the result is an empty string, the result of the expansion is the decoded version of the
address. This is the case whether or not the signature was valid. Otherwise, the result of the
expansion is the expansion of the third argument.

All three variables can be used in the expansion of the third argument. However, once the expan-
sion is complete, only $prvscheck_result remains set. For more discussion and an example, see
section

${readfile{<file name>}{<eol string>}}
The filename and end-of-line (eol) string are first expanded separately. The file is then read, and its
contents replace the entire item. All newline characters in the file are replaced by the end-of-line

121 String expansions (11)

string if it is present. Otherwise, newlines are left in the string. String expansion is not applied to
the contents of the file. If you want this, you must wrap the item in an expand operator. If the file
cannot be read, the string expansion fails.

The redirect router has an option called forbid_filter_readfile which locks out the use of this
expansion item in filter files.

${readsocket{<name>}{<request>}{<options>}{<eol string>}{<fail string>}}
This item inserts data from a Unix domain or TCP socket into the expanded string. The minimal
way of using it uses just two arguments, as in these examples:

${readsocket{/socket/name} {request string}}
S${readsocket{inet:some.host:1234}{request string}}

For a Unix domain socket, the first substring must be the path to the socket. For an Internet socket,
the first substring must contain inet : followed by a host name or IP address, followed by a colon
and a port, which can be a number or the name of a TCP port in /etc/services. An IP address may
optionally be enclosed in square brackets. This is best for [Pv6 addresses. For example:

S{readsocket{inet:[::1]:1234}{request string}}

Only a single host name may be given, but if looking it up yields more than one IP address, they
are each tried in turn until a connection is made. For both kinds of socket, Exim makes a connec-
tion, writes the request string (unless it is an empty string; no terminating NUL is ever sent) and
reads from the socket until an end-of-file is read. A timeout of 5 seconds is applied. Additional,
optional arguments extend what can be done. Firstly, you can vary the timeout. For example:

${readsocket{/socket/name} {request string}{3s}}

The third argument is a list of options, of which the first element is the timeout and must be
present if any options are given. Further elements are options of form name=value. Example:

${readsocket{/socket/name} {request string}{3s:shutdown=no}}
The following option names are recognised:

» cache Defines if the result data can be cached for use by a later identical request in the same
process. Values are “yes” or “no” (the default). If not, all cached results for this connection
specification will be invalidated.

* shutdown Defines whether or not a write-shutdown is done on the connection after sending the
request. Values are “yes” (the default) or “no” (preferred, eg. by some webservers).

* tls Controls the use of TLS on the connection. Values are “yes” or “no” (the default). If it is
enabled, a shutdown as described above is never done.

A fourth argument allows you to change any newlines that are in the data that is read, in the same
way as for readfile (see above). This example turns them into spaces:

S{readsocket{inet:127.0.0.1:3294}{request string}{3s}{ }}

As with all expansions, the substrings are expanded before the processing happens. Errors in these
sub-expansions cause the expansion to fail. In addition, the following errors can occur:

* Failure to create a socket file descriptor;
* Failure to connect the socket;

* Failure to write the request string;

* Timeout on reading from the socket.

By default, any of these errors causes the expansion to fail. However, if you supply a fifth sub-
string, it is expanded and used when any of the above errors occurs. For example:

${readsocket{/socket/name}{request string}{3s}{\n}\
{socket failure}}

122 String expansions (11)

You can test for the existence of a Unix domain socket by wrapping this expansion in ${if
exists, but there is a race condition between that test and the actual opening of the socket, so it
is safer to use the fifth argument if you want to be absolutely sure of avoiding an expansion error
for a non-existent Unix domain socket, or a failure to connect to an Internet socket.

The redirect router has an option called forbid_filter_readsocket which locks out the use of this
expansion item in filter files.

${reduce{<stringl>}{<string2>}{<string3>}}

This operation reduces a list to a single, scalar string. After expansion, <stringl> is interpreted as a
list, colon-separated by default, but the separator can be changed in the usual way . Then
<string2> is expanded and assigned to the $value variable. After this, each item in the <stringl>
list is assigned to $item, in turn, and <string3> is expanded for each of them. The result of that
expansion is assigned to $value before the next iteration. When the end of the list is reached, the
final value of $value is added to the expansion output. The reduce expansion item can be used in a
number of ways. For example, to add up a list of numbers:

S{reduce {<, 1,2,3}{0}{S${eval:Svalue+Sitem}}}
The result of that expansion would be 6. The maximum of a list of numbers can be found:
S{reduce {3:0:9:4:6}{0}{S{if >{Sitem}{Svalue}{Sitem}{Svalue}}}}

At the end of a reduce expansion, the values of $irem and $value are restored to what they were
before. See also the filter and map expansion items.

$rheader_<header name>: or $rh_<header name>:
This item inserts “raw” header lines. It is described with the header expansion item in section
above.

${run <options> {<command arg list>}{<string1>}{<string2>}}
This item runs an external command, as a subprocess.

One option is supported after the word run, comma-separated.

If the option preexpand is not used, the command string is split into individual arguments by
spaces and then each argument is expanded. Then the command is run in a separate process, but
under the same uid and gid. As in other command executions from Exim, a shell is not used by
default. If the command requires a shell, you must explicitly code it. The command name may not
be tainted, but the remaining arguments can be.

Note: if tainted arguments are used, they are supplied by a potential attacker; a careful assessment
for security vulnerabilities should be done.

If the option preexpand is used,

the command and its arguments are first expanded as one string. The result is split apart into
individual arguments by spaces, and then the command is run as above. Since the arguments are
split by spaces, when there is a variable expansion which has an empty result, it will cause the
situation that the argument will simply be omitted when the program is actually executed by Exim.
If the script/program requires a specific number of arguments and the expanded variable could
possibly result in this empty expansion, the variable must be quoted. This is more difficult if the
expanded variable itself could result in a string containing quotes, because it would interfere with
the quotes around the command arguments. A possible guard against this is to wrap the variable in
the sg operator to change any quote marks to some other character.

Neither the command nor any argument may be tainted.

The standard input for the command exists, but is empty. The standard output and standard error
are set to the same file descriptor. If the command succeeds (gives a zero return code) <stringl> is
expanded and replaces the entire item; during this expansion, the standard output/error from the
command is in the variable $value. If the command fails, <string2>, if present, is expanded and
used. Once again, during the expansion, the standard output/error from the command is in the
variable $value.

123 String expansions (11)

If <string2> is absent, the result is empty. Alternatively, <string2> can be the word “fail” (not in
braces) to force expansion failure if the command does not succeed. If both strings are omitted, the
result is contents of the standard output/error on success, and nothing on failure.

The standard output/error of the command is put in the variable $value. In this ACL example, the
output of a command is logged for the admin to troubleshoot:

warn condition = ${run{/usr/bin/id}{yes}{no}}
log_message = Output of id: $value

If the command requires shell idioms, such as the > redirect operator, the shell must be invoked
directly, such as with:

${run{/bin/bash -c "/usr/bin/id >/tmp/id"}{yes}{yes}}

The return code from the command is put in the variable $runrc, and this remains set afterwards,
so in a filter file you can do things like this:

if "S${run{x y z}{}}$runrc" is 1 then
elif Srunrc is 2 then

endif
If execution of the command fails (for example, the command does not exist), the return code is
127 — the same code that shells use for non-existent commands.

Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those preconditions whose order of testing is documented. Therefore, you
cannot reliably expect to set $runrc by the expansion of one option, and use it in another.

The redirect router has an option called forbid_filter_run which locks out the use of this expan-
sion item in filter files.

${sg{<subject>}{<regex>}{<replacement>}}
This item works like Perl’s substitution operator (s) with the global (/g) option; hence its name.
However, unlike the Perl equivalent, Exim does not modify the subject string; instead it returns the
modified string for insertion into the overall expansion. The item takes three arguments: the
subject string, a regular expression, and a substitution string. For example:

S{sg{abcdefabcdef} {abc} {xyz}}

yields “xyzdefxyzdef”. Because all three arguments are expanded before use, if any $, } or \
characters are required in the regular expression or in the substitution string, they have to be
escaped. For example:

S{sg{abcdef}{"(...) (...)\S}{\S$2\$1}}
yields “defabc”, and
S{sg{1l=A 4=D 3=C}{\N(\d+)=\N}{RK\S$1=}}

yields “K1=A K4=D K3=C". Note the use of \N to protect the contents of the regular expression
from string expansion.

The regular expression is compiled in 8-bit mode, working against bytes rather than any Unicode-
aware character handling.

${sort{<string>}{<comparator>}{<extractor>}}
After expansion, <string> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way @ . The <comparator> argument is interpreted as the operator of a
two-argument expansion condition. The numeric operators plus ge, gt, le, It (and ~i variants) are
supported. The comparison should return true when applied to two values if the first value should
sort before the second value. The <extractor> expansion is applied repeatedly to elements of the
list, the element being placed in $item, to give values for comparison.

The item result is a sorted list, with the original list separator, of the list elements (in full) of the
original.

124 String expansions (11)

Examples:

S{sort{3:2:1:4}{<}{S$item}}
sorts a list of numbers, and

S{sort {${lookup dnsdb{>:,,mx=example.com}}} {<} {S${listextract{l}{<,S$item}
will sort an MX lookup into priority order.

${srs_encode {<secrer>{{<return path>}{<original domain>}}
SRS encoding. See SECT for details.

${substr{<start> {<len>}{<subject>}}
The three strings are expanded; the first two must yield numbers. Call them <n> and <m>. If you
are using fixed values for these numbers, that is, if <start> and <len> do not change when they are
expanded, you can use the simpler operator notation that avoids some of the braces:

$S{substr_<n>_<m>:<subject>}

The second number is optional (in both notations). If it is absent in the simpler format, the
preceding underscore must also be omitted.

The substr item can be used to extract more general substrings than length. The first number, <n>,
is a starting offset, and <m> is the length required. For example

S{substr{3}{2}{S$local_part}}

If the starting offset is greater than the string length the result is the null string; if the length plus
starting offset is greater than the string length, the result is the right-hand part of the string, starting
from the given offset. The first byte (character) in the string has offset zero.

The substr expansion item can take negative offset values to count from the right-hand end of its
operand. The last byte (character) is offset -1, the second-last is offset -2, and so on. Thus, for
example,

S{substr{-5}{2}{1234567}}

yields “34”. If the absolute value of a negative offset is greater than the length of the string, the
substring starts at the beginning of the string, and the length is reduced by the amount of over-
shoot. Thus, for example,

S{substr{-5}{2}{12}}
yields an empty string, but

S{substr{-3}{2}{12}}
yields “1”.

When the second number is omitted from substr, the remainder of the string is taken if the offset
is positive. If it is negative, all bytes (characters) in the string preceding the offset point are taken.
For example, an offset of -1 and no length, as in these semantically identical examples:

S{substr_-1l:abcde}
S{substr{-1}{abcde}}

yields all but the last character of the string, that is, “abcd”.
All measurement is done in bytes and is not UTF-8 aware.

${tr{<subject>}{<characters>}{<replacements>}}
This item does single-character (in bytes) translation on its subject string. The second argument is
a list of characters to be translated in the subject string. Each matching character is replaced by the
corresponding character from the replacement list. For example

S{tr{abcdea}{ac}{13}}

125 String expansions (11)

yields 1b3del. If there are duplicates in the second character string, the last occurrence is used. If
the third string is shorter than the second, its last character is replicated. However, if it is empty, no
translation takes place.

All character handling is done in bytes and is not UTF-8 aware.

11.6 Expansion operators

For expansion items that perform transformations on a single argument string, the “operator” notation
is used because it is simpler and uses fewer braces. The substring is first expanded before the
operation is applied to it. The following operations can be performed:

${address:<srring>}
The string is interpreted as an RFC 2822 address, as it might appear in a header line, and the
effective address is extracted from it. If the string does not parse successfully, the result is empty.

The parsing correctly handles SMTPUTFS8 Unicode in the string.

${addresses:<string>}
The string (after expansion) is interpreted as a list of addresses in RFC 2822 format, such as can be
found in a 7o: or Cc: header line. The operative address (local-part@domain) is extracted from
each item, and the result of the expansion is a colon-separated list, with appropriate doubling of
colons should any happen to be present in the email addresses. Syntactically invalid RFC2822
address items are omitted from the output.

It is possible to specify a character other than colon for the output separator by starting the string
with > followed by the new separator character. For example:

S${addresses:>& Chief <ceo@up.stairs>, sec@base.ment (dogsbody)}

expands to ceo@up.stairsé&sec@base.ment. The string is expanded first, so if the
expanded string starts with >, it may change the output separator unintentionally. This can be
avoided by setting the output separator explicitly:

S{addresses:>:Sh_from:}

Compare the address (singular) expansion item, which extracts the working address from a single
RFC2822 address. See the filter, map, and reduce items for ways of processing lists.

To clarify "list of addresses in RFC 2822 format" mentioned above, Exim follows a strict interpret-
ation of header line formatting. Exim parses the bare, unquoted portion of an email address and if
it finds a comma, treats it as an email address separator. For the example header line:

From: =?is0-8859-2?Q7?Last=2C_First?= <user@example.com>

The first example below demonstrates that Q-encoded email addresses are parsed properly if it is
given the raw header (in this example, $rheader_from:). It does not see the comma because
it’s still encoded as "=2C". The second example below is passed the contents of
$Sheader_from:, meaning it gets de-mimed. Exim sees the decoded "," so it treats it as two
email addresses. The third example shows that the presence of a comma is skipped when it is
quoted. The fourth example shows SMTPUTF8 handling.

exim -be '${addresses:From: \

=71s0-8859-27?Q?Last=2C_First?= <user@example.com>}"
user@example.com

exim -be '${addresses:From: Last, First <user@example.com>}"
Last:user@example.com

exim -be '${addresses:From: "Last, First" <user@example.com>}'
user@example.com

exim -be '${addresses:umun <mmmux@example.jp>}'
nonnn@example. jp

${base32:<digits>}
The string must consist entirely of decimal digits. The number is converted to base 32 and output
as a (empty, for zero) string of characters. Only lowercase letters are used.

126 String expansions (11)

${base32d:<base-32 digits>}
The string must consist entirely of base-32 digits. The number is converted to decimal and output
as a string.

${base62:<digits>}
The string must consist entirely of decimal digits. The number is converted to base 62 and output
as a string of six characters, including leading zeros. In the few operating environments where
Exim uses base 36 instead of base 62 for its message identifiers (because those systems do not
have case-sensitive filenames), base 36 is used by this operator, despite its name. Note: Just to be
absolutely clear: this is not base64 encoding.

${base62d:<base-62 digits>}
The string must consist entirely of base-62 digits, or, in operating environments where Exim uses
base 36 instead of base 62 for its message identifiers, base-36 digits. The number is converted to
decimal and output as a string.

${base64:<srring>}
This operator converts a string into one that is base64 encoded.

If the string is a single variable of type certificate, returns the base64 encoding of the DER form of
the certificate.

${base64d:<string>}
This operator converts a base64-encoded string into the un-coded form.

${domain:<string>}
The string is interpreted as an RFC 2822 address and the domain is extracted from it. If the string
does not parse successfully, the result is empty.

${escape:<string>}
If the string contains any non-printing characters, they are converted to escape sequences starting
with a backslash. Whether characters with the most significant bit set (so-called “8-bit characters™)
count as printing or not is controlled by the print_topbitchars option.

${escape8bit:<string>}
If the string contains any characters with the most significant bit set, they are converted to escape
sequences starting with a backslash. Backslashes and DEL characters are also converted.

${eval:<string>} and ${evall0:<string>}
These items supports simple arithmetic and bitwise logical operations in expansion strings. The
string (after expansion) must be a conventional arithmetic expression, but it is limited to basic
arithmetic operators, bitwise logical operators, and parentheses. All operations are carried out
using integer arithmetic. The operator priorities are as follows (the same as in the C programming
language):

highest: not (~), negate (-)
multiply (*), divide (/), remainder (%)
plus (+), minus (-)
shift-left (<<), shift-right (>>)
and (&)
xor (M)
lowest: or (|)

Binary operators with the same priority are evaluated from left to right. White space is permitted
before or after operators.

For eval, numbers may be decimal, octal (starting with “0”) or hexadecimal (starting with “0x”).
For evall0, all numbers are taken as decimal, even if they start with a leading zero; hexadecimal
numbers are not permitted. This can be useful when processing numbers extracted from dates or
times, which often do have leading zeros.

A number may be followed by “K”, “M” or “G” to multiply it by 1024, 1024*1024 or
1024*1024*%1024, respectively. Negative numbers are supported. The result of the computation is a
decimal representation of the answer (without “K”, “M” or “G”). For example:

127 String expansions (11)

S{eval:1+1} yields 2

S{eval:1+2*3} yields 7
S{eval: (1+2) *3} yields 9
S{eval:2+42%5} yields 4
${eval:0xc&5} yields 4
${eval:0xc|5} yields 13
${eval:0xc"5} yields 9
S{eval:0xc>>1} yields 6
S{eval:0xc<<1} yields 24
S{eval:~255&0x1234} yields 4608

${eval:-(~255&0x1234)} yields-4608
As a more realistic example, in an ACL you might have

deny condition =
${if and {
{>{$rcpt_count}{10}}
{
<
{Srecipients_count}
{${eval:Srcpt_count/2}}

P Al

}
}{yes}{no}}
message = Too many bad recipients

The condition is true if there have been more than 10 RCPT commands and fewer than half of
them have resulted in a valid recipient.

${expand:<string>}
The expand operator causes a string to be expanded for a second time. For example,

S{expand:${lookup{Sdomain}tdbm{/some/file} {Svalue}}}

first looks up a string in a file while expanding the operand for expand, and then re-expands what
it has found.

${from_utf8:<srring>}
The world is slowly moving towards Unicode, although there are no standards for email yet.
However, other applications (including some databases) are starting to store data in Unicode, using
UTF-8 encoding. This operator converts from a UTF-8 string to an ISO-8859-1 string. UTF-8 code
values greater than 255 are converted to underscores. The input must be a valid UTF-8 string. If it
is not, the result is an undefined sequence of bytes.

Unicode code points with values less than 256 are compatible with ASCII and ISO-8859-1 (also
known as Latin-1). For example, character 169 is the copyright symbol in both cases, though the
way it is encoded is different. In UTF-8, more than one byte is needed for characters with code
values greater than 127, whereas ISO-8859-1 is a single-byte encoding (but thereby limited to 256
characters). This makes translation from UTF-8 to ISO-8859-1 straightforward.

${hash_<n>_<m>:<string>}
The hash operator is a simpler interface to the hashing function that can be used when the two
parameters are fixed numbers (as opposed to strings that change when expanded). The effect is the
same as

S{hash{<n>}{<m>} {<string>}}

See the description of the general hash item above for details. The abbreviation h can be used
when hash is used as an operator.

${hex2b64:<hexstring>}
This operator converts a hex string into one that is base64 encoded. This can be useful for
processing the output of the various hashing functions.

128 String expansions (11)

${hexquote:<string>}
This operator converts non-printable characters in a string into a hex escape form. Byte values
between 33 (!) and 126 (~) inclusive are left as is, and other byte values are converted to \ xNN, for
example, a byte value 127 is converted to \x7£.

${ipv6denorm:<srring>}
This expands an IPv6 address to a full eight-element colon-separated set of hex digits including
leading zeroes. A trailing ipv4-style dotted-decimal set is converted to hex. Pure IPv4 addresses
are converted to [Pv4-mapped IPv6.

${ipvénorm:<string>}
This converts an IPv6 address to canonical form. Leading zeroes of groups are omitted, and the
longest set of zero-valued groups is replaced with a double colon. A trailing ipv4-style dotted-
decimal set is converted to hex. Pure IPv4 addresses are converted to IPv4-mapped IPv6.

${lc:<string>}
This forces the letters in the string into lower-case, for example:

${lc:$1local_part}
Case is defined per the system C locale.

${length_<number>:<string>}
The length operator is a simpler interface to the length function that can be used when the
parameter is a fixed number (as opposed to a string that changes when expanded). The effect is the
same as

${length{<number>}{<string>}}

See the description of the general length item above for details. Note that length is not the same as
strlen. The abbreviation 1 can be used when length is used as an operator. All measurement is
done in bytes and is not UTF-8 aware.

${listcount:<string>}
The string is interpreted as a list and the number of items is returned.

${listnamed:<name>} and ${listnamed_<type>:<name>}
The name is interpreted as a named list and the content of the list is returned, expanding any
referenced lists, re-quoting as needed for colon-separation. If the optional type is given it must be
one of "a", "d", "h" or "I" and selects address-, domain-, host- or localpart- lists to search among
respectively. Otherwise all types are searched in an undefined order and the first matching list is
returned. Note: Neither string-expansion of lists referenced by named-list syntax elements, nor
expansion of lookup elements, is done by the listnamed operator.

${local_part:<string>}
The string is interpreted as an RFC 2822 address and the local part is extracted from it. If the
string does not parse successfully, the result is empty. The parsing correctly handles SMTPUTFS8
Unicode in the string.

${mask:<IP address>/<bit count>}

${mask_n:<IP address>/<bit count>}
If the form of the string to be operated on is not an IP address followed by a slash and an integer
(that is, a network address in CIDR notation), the expansion fails. Otherwise, this operator con-
verts the IP address to binary, masks off the least significant bits according to the bit count, and
converts the result back to text, with mask appended. For example,

${mask:10.111.131.206/28}
returns the string “10.111.131.192/28”.
Since this operation is expected to be mostly used for looking up masked addresses in files, the
normal
result for an IPv6 address uses dots to separate components instead of colons, because colon

terminates a key string in Isearch files. So, for example,

129 String expansions (11)

${mask:3ffe:ffff:836£:0a00:000a:0800:200a:c031/99}
returns the string
3ffe.fff£.836£.0a00.000a.0800.2000.0000/99

If the optional form mask_n is used, IPv6 address result are instead returned in normailsed form,
using colons and with zero-compression.

Letters in IPv6 addresses are always output in lower case.

${md5:<string>}
The mdS operator computes the MDS5 hash value of the string, and returns it as a 32-digit hexa-
decimal number, in which any letters are in lower case.

If the string is a single variable of type certificate, returns the MD5 hash fingerprint of the
certificate.

${nhash_<n>_<m>:<string>}
The nhash operator is a simpler interface to the numeric hashing function that can be used when
the two parameters are fixed numbers (as opposed to strings that change when expanded). The
effect is the same as

${nhash{<n>}{<m>}{<string>}}
See the description of the general nhash item above for details.

${quote:<string>}
The quote operator puts its argument into double quotes if it is an empty string or contains
anything other than letters, digits, underscores, dots, and hyphens. Any occurrences of double
quotes and backslashes are escaped with a backslash. Newlines and carriage returns are converted
to \n and \ r, respectively For example,

${quote:ab"*"cd}
becomes
1] ab\ 1] *\ "Cd"

The place where this is useful is when the argument is a substitution from a variable or a message
header.

${quote_local_part:<string>}
This operator is like quote, except that it quotes the string only if required to do so by the rules of
RFC 2822 for quoting local parts. For example, a plus sign would not cause quoting (but it would
for quote). If you are creating a new email address from the contents of $local_part (or any other
unknown data), you should always use this operator.

This quoting determination is not SMTPUTFS8-aware, thus quoting non-ASCII data will likely use
the quoting form. Thus ${quote_local_part:xnx} will always become "arxt”,

${quote_<lookup-type>:<string>}
This operator applies lookup-specific quoting rules to the string. Each query-style lookup type has
its own quoting rules which are described with the lookups in chapter |9} For example,

${quote_ldap:two * two}
returns
two%20%5C2A%20two

For single-key lookup types, no quoting is ever necessary and this operator yields an unchanged
string.

${randint:<n>}
This operator returns a somewhat random number which is less than the supplied number and is at
least 0. The quality of this randomness depends on how Exim was built; the values are not suitable
for keying material. If Exim is linked against OpenSSL then RAND_pseudo_bytes() is used. If
Exim is linked against GnuTLS then gnutls_rnd(GNUTLS_RND_NONCE) is used, for versions

130 String expansions (11)

of GnuTLS with that function. Otherwise, the implementation may be arc4random(), random()
seeded by srandomdev() or srandom(), or a custom implementation even weaker than randomy().

${reverse_ip:<ipaddr>}
This operator reverses an IP address; for IPv4 addresses, the result is in dotted-quad decimal form,
while for IPv6 addresses the result is in dotted-nibble hexadecimal form. In both cases, this is the
"natural" form for DNS. For example,

S{reverse_1ip:192.0.2.4}
S{reverse_ip:2001:0db8:c42:9:1:abcd:192.0.2.127}

returns

4.2.0.192
£.7.2.0.0.0.0.¢c.d.¢c.b.a.1.0.0.0.9.0.0.0.2.4.¢c.0.8.b.d.0.1.0.0.2

${rfc2047:<string>}
This operator encodes text according to the rules of RFC 2047. This is an encoding that is used in
header lines to encode non-ASCII characters. It is assumed that the input string is in the encoding
specified by the headers_charset option, which gets its default at build time. If the string contains
only characters in the range 33—126, and no instances of the characters

7= () <>@Q, ; «+\N" . 01_

it is not modified. Otherwise, the result is the RFC 2047 encoding of the string, using as many
“encoded words” as necessary to encode all the characters.

${rfc2047d:<string>}
This operator decodes strings that are encoded as per RFC 2047. Binary zero bytes are replaced
by question marks. Characters are converted into the character set defined by headers_charset.
Overlong RFC 2047 “words” are not recognized unless check_rfc2047_length is set false.

Note: If you use $header_xxx: (or $h_xxx:) to access a header line, RFC 2047 decoding is done
automatically. You do not need to use this operator as well.

${rxquote:<string>}
The rxquote operator inserts a backslash before any non-alphanumeric characters in its argument.
This is useful when substituting the values of variables or headers inside regular expressions.

${shal:<srring>}
The shal operator computes the SHA-1 hash value of the string, and returns it as a 40-digit
hexadecimal number, in which any letters are in upper case.

If the string is a single variable of type certificate, returns the SHA-1 hash fingerprint of the
certificate.

${sha256:<string>}

${sha2:<srring>}

${sha2_<n>:<string>}
The sha256 operator computes the SHA-256 hash value of the string and returns it as a 64-digit
hexadecimal number, in which any letters are in upper case.

If the string is a single variable of type certificate, returns the SHA-256 hash fingerprint of the
certificate.

The operator can also be spelled sha2 and does the same as sha256 (except for certificates, which
are not supported). Finally, if an underbar and a number is appended it specifies the output length,
selecting a member of the SHA-2 family of hash functions. Values of 256, 384 and 512 are
accepted, with 256 being the default.

${sha3:<srring>}

${sha3_<n>:<string>}
The sha3 operator computes the SHA3-256 hash value of the string and returns it as a 64-digit
hexadecimal number, in which any letters are in upper case.

131 String expansions (11)

If a number is appended, separated by an underbar, it specifies the output length. Values of 224,
256, 384 and 512 are accepted; with 256 being the default.

The sha3 expansion item is only supported if Exim has been compiled with GnuTLS 3.5.0 or later,
or OpenSSL 1.1.1 or later. The macro "_CRYPTO_HASH_SHA3" will be defined if it is
supported.

${stat:<string>}

The string, after expansion, must be a file path. A call to the stat() function is made for this path. If
stat() fails, an error occurs and the expansion fails. If it succeeds, the data from the stat replaces
the item, as a series of <name>=<value> pairs, where the values are all numerical, except for the
value of “smode”. The names are: “mode” (giving the mode as a 4-digit octal number), “smode”
(giving the mode in symbolic format as a 10-character string, as for the /s command), “inode”,
“device”, “links”, “uid”, “gid”, “size”, “atime”, “mtime”, and “ctime”. You can extract individual
fields using the extract expansion item.

The use of the stat expansion in users’ filter files can be locked out by the system administrator.
Warning: The file size may be incorrect on 32-bit systems for files larger than 2GB.

${str2b64:<string>}
Now deprecated, a synonym for the base64 expansion operator.

${strlen:<string>}
The item is replaced by the length of the expanded string, expressed as a decimal number. Note:
Do not confuse strlen with length. All measurement is done in bytes and is not UTF-8 aware.

${substr_<start>_<length>:<string>}
The substr operator is a simpler interface to the substr function that can be used when the two
parameters are fixed numbers (as opposed to strings that change when expanded). The effect is the
same as

${substr{<start>}{<length>}{<string>}}

See the description of the general substr item above for details. The abbreviation s can be used
when substr is used as an operator. All measurement is done in bytes and is not UTF-8 aware.

${time_eval:<string>}
This item converts an Exim time interval such as 2d4h5m into a number of seconds.

${time_interval:<string>}
The argument (after sub-expansion) must be a sequence of decimal digits that represents an inter-
val of time as a number of seconds. It is converted into a number of larger units and output in
Exim’s normal time format, for example, lw3d4h2m6s.

${uc:<string>}
This forces the letters in the string into upper-case. Case is defined per the system C locale.

${utf8clean:<srring>}
This replaces any invalid utf-8 sequence in the string by the character ?. In versions of Exim
before 4.92, this did not correctly do so for a truncated final codepoint’s encoding, and the charac-
ter would be silently dropped. If you must handle detection of this scenario across both sets of
Exim behavior, the complexity will depend upon the task. For instance, to detect if the first
character is multibyte and a 1-byte extraction can be successfully used as a path component (as is
common for dividing up delivery folders), you might use:

condition = ${if inlist{${utf8clean:S${length_l:$local_part}}}{:?}{yes}{no}}
(which will false-positive if the first character of the local part is a literal question mark).

${utf8_domain_to_alabel:<string>}

${utf8_domain_from_alabel:<string>}

${utf8_localpart_to_alabel:<string>}

${utf8_localpart_from_alabel:<string>}
These convert EAI mail name components between UTF-8 and a-label forms. For information on
internationalisation support see

132 String expansions (11)

11.7 Expansion conditions
The following conditions are available for testing by the ${if construct while expanding strings:

!<condition>
Preceding any condition with an exclamation mark negates the result of the condition.

<symbolic operator> {<string 1>} <string2>}
There are a number of symbolic operators for doing numeric comparisons. They are:

egqual
egual
gbeater
gbeater
or
equal
less
less

or
equal

For example:
S{if >{Smessage_size}{10M}

Note that the general negation operator provides for inequality testing. The two strings must take
the form of optionally signed decimal integers, optionally followed by one of the letters “K”, “M”
or “G” (in either upper or lower case), signifying multiplication by 1024, 1024*1024 or
1024#1024*1024, respectively. As a special case, the numerical value of an empty string is taken
as zero.

In all cases, a relative comparator OP is testing if <stringl> OP <string2>; the above example is
checking if $message_size is larger than 10M, not if 10M is larger than $message_size.

acl {{<name>}{<argi>H<arg2>}...}

The name and zero to nine argument strings are first expanded separately. The expanded argu-
ments are assigned to the variables $acl_argl to $acl_arg9 in order. Any unused are made empty.
The variable $acl_narg is set to the number of arguments. The named ACL (see chapter is
called and may use the variables; if another acl expansion is used the values are restored after it
returns. If the ACL sets a value using a "message =" modifier the variable $value becomes the
result of the expansion, otherwise it is empty. If the ACL returns accept the condition is true; if
deny, false. If the ACL returns defer the result is a forced-fail.

bool {<string>}
This condition turns a string holding a true or false representation into a boolean state. It parses
“true”, “false”, “yes” and “no” (case-insensitively); also integer numbers map to true if non-zero,
false if zero. An empty string is treated as false. Leading and trailing whitespace is ignored; thus a
string consisting only of whitespace is false. All other string values will result in expansion failure.

When combined with ACL variables, this expansion condition will let you make decisions in one
place and act on those decisions in another place. For example:

S{if bool{Sacl_m privileged_sender}

bool_lax {<string>}
Like bool, this condition turns a string into a boolean state. But where bool accepts a strict set of
strings, bool_lax uses the same loose definition that the Router condition option uses. The empty

string and the values “false”, “no” and “0” map to false, all others map to true. Leading and
trailing whitespace is ignored.

Note that where “bool{00}” is false, “bool_lax{00}” is true.

133 String expansions (11)

crypteq {<stringI>}{<string2>}
This condition is included in the Exim binary if it is built to support any authentication mechan-
isms (see chapter . Otherwise, it is necessary to define SUPPORT_CRYPTEQ in
Local/Makefile to get crypteq included in the binary.

The crypteq condition has two arguments. The first is encrypted and compared against the second,
which is already encrypted. The second string may be in the LDAP form for storing encrypted
strings, which starts with the encryption type in curly brackets, followed by the data. If the second
string does not begin with “{” it is assumed to be encrypted with crypt() or crypti6() (see below),
since such strings cannot begin with “{”. Typically this will be a field from a password file. An
example of an encrypted string in LDAP form is:

{md5}CY¥9%rzUYhO3PK3k6DJie09g==

If such a string appears directly in an expansion, the curly brackets have to be quoted, because they
are part of the expansion syntax. For example:

${if crypteq {test}{\{md5\}CY9rzUYh03PK3k6DJie09g==}{yes}{no}}
The following encryption types (whose names are matched case-independently) are supported:

¢ {md5} computes the MDS5 digest of the first string, and expresses this as printable characters to
compare with the remainder of the second string. If the length of the comparison string is 24,
Exim assumes that it is base64 encoded (as in the above example). If the length is 32, Exim
assumes that it is a hexadecimal encoding of the MD5 digest. If the length not 24 or 32, the
comparison fails.

¢ {shal} computes the SHA-1 digest of the first string, and expresses this as printable characters
to compare with the remainder of the second string. If the length of the comparison string is 28,
Exim assumes that it is base64 encoded. If the length is 40, Exim assumes that it is a hexadeci-
mal encoding of the SHA-1 digest. If the length is not 28 or 40, the comparison fails.

e {crypt} calls the crypt() function, which traditionally used to use only the first eight characters
of the password. However, in modern operating systems this is no longer true, and in many
cases the entire password is used, whatever its length.

e {cryptl6} calls the crypti6() function, which was originally created to use up to 16 characters
of the password in some operating systems. Again, in modern operating systems, more charac-
ters may be used.

Exim has its own version of crypt16(), which is just a double call to crypt(). For operating systems
that have their own version, setting HAVE_CRYPT16 in Local/Makefile when building Exim
causes it to use the operating system version instead of its own. This option is set by default in the
OS-dependent Makefile for those operating systems that are known to support cryptl6().

Some years after Exim’s cryptl6() was implemented, a user discovered that it was not using the
same algorithm as some operating systems’ versions. It turns out that as well as crypt16() there is a
function called bigcrypt() in some operating systems. This may or may not use the same algorithm,
and both of them may be different to Exim’s built-in crypt16().

However, since there is now a move away from the traditional crypt() functions towards using
SHAT and other algorithms, tidying up this area of Exim is seen as very low priority.

If you do not put a encryption type (in curly brackets) in a crypteq comparison, the default is
usually either {crypt} or {cryptl6}, as determined by the setting of DEFAULT_CRYPT in
Local/Makefile. The default default is {crypt }. Whatever the default, you can always use either
function by specifying it explicitly in curly brackets.

def:<variable name>
The def condition must be followed by the name of one of the expansion variables defined in
section (11 .9I The condition is true if the variable does not contain the empty string. For example:

S{if def:sender_ident {from $sender_ident}}

Note that the variable name is given without a leading $ character. If the variable does not exist,
the expansion fails.

134 String expansions (11)

def:header_<header name>: or def:h_<header name>:
This condition is true if a message is being processed and the named header exists in the message.
For example,

${if def:header_reply-to:{$h_reply-to:}{S$h_from:}}

Note: No $ appears before header_ or h_ in the condition, and the header name must be termin-
ated by a colon if white space does not follow.

eq {<stringI>}{<string2>}

eqi {<stringl>}{<string2>}
The two substrings are first expanded. The condition is true if the two resulting strings are identi-
cal. For eq the comparison includes the case of letters, whereas for eqi the comparison is case-
independent, where case is defined per the system C locale.

exists {<file name>}
The substring is first expanded and then interpreted as an absolute path. The condition is true if the
named file (or directory) exists. The existence test is done by calling the stat() function. The use of
the exists test in users’ filter files may be locked out by the system administrator.

Note: Testing a path using this condition is not a sufficient way of de-tainting it. Consider using a
dsearch lookup.

first_delivery
This condition, which has no data, is true during a message’s first delivery attempt. It is false
during any subsequent delivery attempts.

forall{<a list>}{<a condition>}

forany{<a list>}{<a condition>}
These conditions iterate over a list. The first argument is expanded to form the list. By default, the
list separator is a colon, but it can be changed by the normal method . The second argument
is interpreted as a condition that is to be applied to each item in the list in turn. During the
interpretation of the condition, the current list item is placed in a variable called $item.

» For forany, interpretation stops if the condition is true for any item, and the result of the whole
condition is true. If the condition is false for all items in the list, the overall condition is false.

 For forall, interpretation stops if the condition is false for any item, and the result of the whole
condition is false. If the condition is true for all items in the list, the overall condition is true.

Note that negation of forany means that the condition must be false for all items for the overall
condition to succeed, and negation of forall means that the condition must be false for at least one
item. In this example, the list separator is changed to a comma:

${if forany{<, Srecipients}{match{$item}{”user3@}}{yes}{no}}

The value of $item is saved and restored while forany or forall is being processed, to enable these
expansion items to be nested.

To scan a named list, expand it with the listnamed operator.

forall_json{<a JSON array>}{<a condition>}

forany_json{<a JSON array>}{<a condition>}

forall_jsons{<a JSON array>}{<a condition>}

forany_jsons{<a JSON array>}{<a condition>}
As for the above, except that the first argument must, after expansion, be a JSON array. The array
separator is not changeable. For the “jsons” variants the elements are expected to be JSON strings
and have their quotes removed before the evaluation of the condition.

ge {<stringI>H<string2>}

gei {<stringI>H{<string2>}
The two substrings are first expanded. The condition is true if the first string is lexically greater
than or equal to the second string. For ge the comparison includes the case of letters, whereas for
gei the comparison is case-independent. Case and collation order are defined per the system C
locale.

135 String expansions (11)

gt {<stringI>H{<string2>}

gti {<stringI>H{<string2>}
The two substrings are first expanded. The condition is true if the first string is lexically greater
than the second string. For gt the comparison includes the case of letters, whereas for gti the
comparison is case-independent. Case and collation order are defined per the system C locale.

inbound_srs {<local part>{<secret>}
SRS decode. See SECT |58.5|for details.

inlist {<stringl>}{<string2>}

inlisti {<string I>}{<string2>}
Both strings are expanded; the second string is treated as a list of simple strings; if the first string is
a member of the second, then the condition is true. For the case-independent inlisti condition, case
is defined per the system C locale.

These are simpler to use versions of the more powerful forany condition. Examples, and the
forany equivalents:

S{if inlist{needle}{foo:needle:bar}}

${if forany{foo:needle:bar}{eg{$Sitem}{needle}}}
S{if inlisti{Needle} {fOo:NeeDLE:bAr}}

${if forany{fOo:NeeDLE:bAr}{eqgi{$item}{Needle}}}

The variable $value will be set for a successful match and can be used in the success clause of an
if expansion item using the condition. It will have the same taint status as the list; expansions such
as

${if inlist {Sh_mycode:} {0 : 1 : 42} {$value}}
can be used for de-tainting. Any previous $value is restored after the if.

isip {<string>}

isip4 {<string>}

isip6 {<string>}
The substring is first expanded, and then tested to see if it has the form of an IP address. Both IPv4
and IPv6 addresses are valid for isip, whereas isip4 and isip6 test specifically for IPv4 or IPv6
addresses.

For an IPv4 address, the test is for four dot-separated components, each of which consists of from
one to three digits. For an IPv6 address, up to eight colon-separated components are permitted,
each containing from one to four hexadecimal digits. There may be fewer than eight components if
an empty component (adjacent colons) is present. Only one empty component is permitted.

Note: The checks used to be just on the form of the address; actual numerical values were not
considered. Thus, for example, 999.999.999.999 passed the IPv4 check. This is no longer the case.

The main use of these tests is to distinguish between IP addresses and host names, or between
IPv4 and IPv6 addresses. For example, you could use

${if isip4{S$sender_host_address}...
to test which IP version an incoming SMTP connection is using.

Idapauth {<ldap query>}

This condition supports user authentication using LDAP. See section for details of how to use
LDAP in lookups and the syntax of queries. For this use, the query must contain a user name and
password. The query itself is not used, and can be empty. The condition is true if the password is
not empty, and the user name and password are accepted by the LDAP server. An empty password
is rejected without calling LDAP because LDAP binds with an empty password are considered
anonymous regardless of the username, and will succeed in most configurations. See chapter
for details of SMTP authentication, and chapterfor an example of how this can be used.

136 String expansions (11)

le {<stringI>H{<string2>}

lei {<stringI>H{<string2>}
The two substrings are first expanded. The condition is true if the first string is lexically less than
or equal to the second string. For le the comparison includes the case of letters, whereas for lei the
comparison is case-independent. Case and collation order are defined per the system C locale.

It {<string 1> }{<string2>}

Iti {<string 1>} <string2>}
The two substrings are first expanded. The condition is true if the first string is lexically less than
the second string. For It the comparison includes the case of letters, whereas for Iti the comparison
is case-independent. Case and collation order are defined per the system C locale.

match {<stringI>H{<string2>}
The two substrings are first expanded. The second is then treated as a regular expression and
applied to the first. Because of the pre-expansion, if the regular expression contains dollar, or
backslash characters, they must be escaped. Care must also be taken if the regular expression
contains braces (curly brackets). A closing brace must be escaped so that it is not taken as a
premature termination of <string2>. The easiest approach is to use the \N feature to disable
expansion of the regular expression. For example,

${if match {S$Slocal_part} {\N*\d{3}\N}
If the whole expansion string is in double quotes, further escaping of backslashes is also required.

The condition is true if the regular expression match succeeds. The regular expression is not
required to begin with a circumflex metacharacter, but if there is no circumflex, the expression is
not anchored, and it may match anywhere in the subject, not just at the start. If you want the
pattern to match at the end of the subject, you must include the $ metacharacter at an appropriate
point. All character handling is done in bytes and is not UTF-8 aware, but we might change this in
a future Exim release.

At the start of an if expansion the values of the numeric variable substitutions $/ etc. are remem-
bered. Obeying a match condition that succeeds causes them to be reset to the substrings of that
condition and they will have these values during the expansion of the success string. At the end of
the if expansion, the previous values are restored. After testing a combination of conditions using
or, the subsequent values of the numeric variables are those of the condition that succeeded.

match_address {<string1>}{<string2>}
See match_local_part.

match_domain {<stringl>H{<string2>}
See match_local_part.

match_ip {<stringI>H{<string2>}
This condition matches an IP address to a list of IP address patterns. It must be followed by two
argument strings. The first (after expansion) must be an IP address or an empty string. The second
(not expanded) is a restricted host list that can match only an IP address, not a host name. For
example:

S{if match_ip{$sender_host_address}{1.2.3.4:5.6.7.8}{...}{...}}
The specific types of host list item that are permitted in the list are:
* An IP address, optionally with a CIDR mask.
* A single asterisk, which matches any IP address.

* An empty item, which matches only if the IP address is empty. This could be useful for testing
for a locally submitted message or one from specific hosts in a single test such as

${if match_ip{$sender_host_address}{:4.3.2.1:...}{...}{...}}
where the first item in the list is the empty string.

* The item @[] matches any of the local host’s interface addresses.

137 String expansions (11)

» Single-key lookups are assumed to be like “net-" style lookups in host lists, even if net— is not
specified. There is never any attempt to turn the IP address into a host name. The most common
type of linear search for match_ip is likely to be iplsearch, in which the file can contain CIDR
masks. For example:

${if match_ip{S$sender_host_address}{iplsearch;/some/file}...

It is of course possible to use other kinds of lookup, and in such a case, you do need to specify
the net - prefix if you want to specify a specific address mask, for example:

${if match_ip{S$sender_host_address}{net24-dbm; /some/file}...

However, unless you are combining a match_ip condition with others, it is just as easy to use
the fact that a lookup is itself a condition, and write:

${lookup{${mask:S$sender_host_address/24}}dbm{/a/file}...

Note that <string2> is not itself subject to string expansion, unless Exim was built with the
EXPAND_LISTMATCH_RHS option.

Consult section for further details of these patterns.

match_local_part {<string1>H{<string2>}
This condition, together with match_address and match_domain, make it possible to test
domain, address, and local part lists within expansions. Each condition requires two arguments: an
item and a list to match. A trivial example is:

${if match_domain{a.b.c}{x.y.z:a.b.c:p.qg.r}{yes}{no}}

In each case, the second argument may contain any of the allowable items for a list of the
appropriate type. Also, because the second argument is a standard form of list, it is possible to
refer to a named list. Thus, you can use conditions like this:

S{if match_domain{$domain} {+local_domains}{...

For address lists, the matching starts off caselessly, but the +caseful item can be used, as in all
address lists, to cause subsequent items to have their local parts matched casefully. Domains are
always matched caselessly.

The variable $value will be set for a successful match and can be used in the success clause of an
if expansion item using the condition. It will have the same taint status as the list; expansions such
as

${if match_local_part {$local_part} {alice : bill : charlotte : dgve} {$val

can be used for de-tainting. Any previous $value is restored after the if.

Note that <string2> is not itself subject to string expansion, unless Exim was built with the
EXPAND_LISTMATCH_RHS option.

Note: Host lists are not supported in this way. This is because hosts have two identities: a name
and an IP address, and it is not clear how to specify cleanly how such a test would work. However,
IP addresses can be matched using match_ip.

pam {<stringI>:<string2>:...}
Pluggable Authentication Modules (https://mirrors.edge.kernel.org/pub/linux/libs/pam/) are a
facility that is available in Solaris and in some GNU/Linux distributions. The Exim support, which
is intended for use in conjunction with the SMTP AUTH command, is available only if Exim is
compiled with

SUPPORT_PAM=yes

in Local/Makefile. You probably need to add -lpam to EXTRALIBS, and in some releases of
GNU/Linux -1dl is also needed.

The argument string is first expanded, and the result must be a colon-separated list of strings.
Leading and trailing white space is ignored. The PAM module is initialized with the service name
“exim” and the user name taken from the first item in the colon-separated data string (<stringl>).

138 String expansions (11)

The remaining items in the data string are passed over in response to requests from the authenti-
cation function. In the simple case there will only be one request, for a password, so the data
consists of just two strings.

There can be problems if any of the strings are permitted to contain colon characters. In the usual
way, these have to be doubled to avoid being taken as separators. The listquote expansion item can
be used for this. For example, the configuration of a LOGIN authenticator might contain this
setting:

server_condition = ${if pam{S$Sauthl:S${listquote{:}{Sauth2}}}}

In some operating systems, PAM authentication can be done only from a process running as root.
Since Exim is running as the Exim user when receiving messages, this means that PAM cannot be
used directly in those systems.

pwcheck {<stringI>:<string2>}
This condition supports user authentication using the Cyrus pwcheck daemon. This is one way of
making it possible for passwords to be checked by a process that is not running as root. Note: The
use of pwcheck is now deprecated. Its replacement is saslauthd (see below).

The pwcheck support is not included in Exim by default. You need to specify the location of the
pwcheck daemon’s socket in Local/Makefile before building Exim. For example:

CYRUS_PWCHECK_SOCKET=/var/pwcheck/pwcheck

You do not need to install the full Cyrus software suite in order to use the pwcheck daemon. You
can compile and install just the daemon alone from the Cyrus SASL library. Ensure that exim is the
only user that has access to the /var/pwcheck directory.

The pwcheck condition takes one argument, which must be the user name and password, separ-
ated by a colon. For example, in a LOGIN authenticator configuration, you might have this:

server_condition = ${if pwcheck{$authl:S$auth2}}
Again, for a PLAIN authenticator configuration, this would be:

server_condition = ${if pwcheck{$auth2:$auth3}}

queue_running
This condition, which has no data, is true during delivery attempts that are initiated by queue
runner processes, and false otherwise.

radius {<authentication string>}
Radius authentication (RFC 2865) is supported in a similar way to PAM. You must set RADIUS _
CONFIG_FILE in Local/Makefile to specify the location of the Radius client configuration file in
order to build Exim with Radius support.

With just that one setting, Exim expects to be linked with the radiusclient library, using the
original APL. If you are using release 0.4.0 or later of this library, you need to set

RADIUS_LIB_TYPE=RADIUSCLIENTNEW

in Local/Makefile when building Exim. You can also link Exim with the libradius library that
comes with FreeBSD. To do this, set

RADIUS_LIB_TYPE=RADLIB

in Local/Makefile, in addition to setting RADIUS_CONFIGURE_FILE. You may also have to
supply a suitable setting in EXTRALIBS so that the Radius library can be found when Exim is
linked.

The string specified by RADIUS_CONFIG_FILE is expanded and passed to the Radius client
library, which calls the Radius server. The condition is true if the authentication is successful. For
example:

server_condition = ${if radius{<arguments>}}

139 String expansions (11)

saslauthd {{<user>H{<password>H{<service>{{<realm>}}
This condition supports user authentication using the Cyrus saslauthd daemon. This replaces the
older pwcheck daemon, which is now deprecated. Using this daemon is one way of making it
possible for passwords to be checked by a process that is not running as root.

The saslauthd support is not included in Exim by default. You need to specify the location of the
saslauthd daemon’s socket in Local/Makefile before building Exim. For example:

CYRUS_SASLAUTHD_SOCKET=/var/state/saslauthd/mux

You do not need to install the full Cyrus software suite in order to use the saslauthd daemon. You
can compile and install just the daemon alone from the Cyrus SASL library.

Up to four arguments can be supplied to the saslauthd condition, but only two are mandatory. For
example:

server_condition = ${if saslauthd{{$authl}{$auth2}}}

The service and the realm are optional (which is why the arguments are enclosed in their own set
of braces). For details of the meaning of the service and realm, and how to run the daemon, consult
the Cyrus documentation.

11.8 Combining expansion conditions

Several conditions can be tested at once by combining them using the and and or combination
conditions. Note that and and or are complete conditions on their own, and precede their lists of
sub-conditions. Each sub-condition must be enclosed in braces within the overall braces that contain
the list. No repetition of if is used.

or {{<condI>H{<cond2>}...}
The sub-conditions are evaluated from left to right. The condition is true if any one of the sub-
conditions is true. For example,

${if or {{eg{$local_part}{spqgr}}{eg{$domain}{testing.com}}}...

When a true sub-condition is found, the following ones are parsed but not evaluated. If there are
several “match” sub-conditions the values of the numeric variables afterwards are taken from the
first one that succeeds.

and {{<condl>H{<cond2>}...}
The sub-conditions are evaluated from left to right. The condition is true if all of the sub-
conditions are true. If there are several “match” sub-conditions, the values of the numeric variables
afterwards are taken from the last one. When a false sub-condition is found, the following ones are
parsed but not evaluated.

11.9 Expansion variables

This section contains an alphabetical list of all the expansion variables. Some of them are available
only when Exim is compiled with specific options such as support for TLS or the content scanning
extension.

Variables marked as tainted are likely to carry data supplied by a potential attacker. Variables without
such marking may also, depending on how their values are created. Such variables should not be
further expanded, used as filenames or used as command-line arguments for external commands.

30, $1, etc

When a match expansion condition succeeds, these variables contain the captured substrings
identified by the regular expression during subsequent processing of the success string of the
containing if expansion item. In the expansion condition case they do not retain their values
afterwards; in fact, their previous values are restored at the end of processing an if item. The
numerical variables may also be set externally by some other matching process which precedes the
expansion of the string. For example, the commands available in Exim filter files include an if
command with its own regular expression matching condition.

140 String expansions (11)

If the subject string was tainted then any captured substring will also be.

Sacl_argl, $acl_arg2, etc
Within an acl condition, expansion condition or expansion item any arguments are copied to these
variables, any unused variables being made empty.

Sacl_c...

Values can be placed in these variables by the set modifier in an ACL. They can be given any name
that starts with $acl_c and is at least six characters long, but the sixth character must be either a
digit or an underscore. For example: $acl_c5, $acl_c_mycount. The values of the $acl_c... vari-
ables persist throughout the lifetime of an SMTP connection. They can be used to pass information
between ACLs and between different invocations of the same ACL. When a message is received,
the values of these variables are saved with the message, and can be accessed by filters, routers,
and transports during subsequent delivery.

$acl_m...
These variables are like the $acl_c... variables, except that their values are reset after a message
has been received. Thus, if several messages are received in one SMTP connection, $acl_m...
values are not passed on from one message to the next, as $acl c... values are. The $acl_m...
variables are also reset by MAIL, RSET, EHLO, HELO, and after starting a TLS session. When a
message is received, the values of these variables are saved with the message, and can be accessed
by filters, routers, and transports during subsequent delivery.

Sacl_narg
Within an acl condition, expansion condition or expansion item this variable has the number of
arguments.

Sacl_verify_message
After an address verification has failed, this variable contains the failure message. It retains its
value for use in subsequent modifiers of the verb. The message can be preserved by coding like
this:

warn !verify = sender
set acl_m0 = S$Sacl_verify_message

You can use $acl_verify_message during the expansion of the message or log_message modifiers,
to include information about the verification failure. Note: The variable is cleared at the end of
processing the ACL verb.

Saddress_data
This variable is set by means of the address_data option in routers. The value then remains with
the address while it is processed by subsequent routers and eventually a transport. If the transport
is handling multiple addresses, the value from the first address is used. See chapter for more
details. Note: The contents of $address_data are visible in user filter files.

If $address_data is set when the routers are called from an ACL to verify a recipient address, the
final value is still in the variable for subsequent conditions and modifiers of the ACL statement. If
routing the address caused it to be redirected to just one address, the child address is also routed as
part of the verification, and in this case the final value of $address_data is from the child’s routing.

If Saddress_data is set when the routers are called from an ACL to verify a sender address, the
final value is also preserved, but this time in $sender_address_data, to distinguish it from data
from a recipient address.

In both cases (recipient and sender verification), the value does not persist after the end of the
current ACL statement. If you want to preserve these values for longer, you can save them in ACL
variables.

$address._file
When, as a result of aliasing, forwarding, or filtering, a message is directed to a specific file, this
variable holds the name of the file when the transport is running. At other times, the variable is
empty. For example, using the default configuration, if user r2d2 has a .forward file containing

/home/r2d2/savemail

141 String expansions (11)

then when the address_file transport is running, $address_file contains the text string
/home/r2d2/savemail. For Sieve filters, the value may be “inbox” or a relative folder name.
It is then up to the transport configuration to generate an appropriate absolute path to the relevant
file.

Saddress_pipe
When, as a result of aliasing or forwarding, a message is directed to a pipe, this variable holds the
pipe command when the transport is running.

Sauthl — $auth4
These variables are used in SMTP authenticators (see chapters 42). Elsewhere, they are empty.

Sauthenticated_id
When a server successfully authenticates a client it may be configured to preserve some of the
authentication information in the variable Sauthenticated_id (see chapter . For example, a
user/password authenticator configuration might preserve the user name for use in the routers.
Note that this is not the same information that is saved in $sender_host_authenticated.

When a message is submitted locally (that is, not over a TCP connection) the value of
Sauthenticated_id is normally the login name of the calling process. However, a trusted user can
override this by means of the -oMai command line option. This second case also sets up infor-
mation used by the $authresults expansion item.

Sauthenticated_fail_id
When an authentication attempt fails, the variable $authenticated_fail_id will contain the failed
authentication id. If more than one authentication id is attempted, it will contain only the last one.
The variable is available for processing in the ACL’s, generally the quit or notquit ACL. A mess-
age to a local recipient could still be accepted without requiring authentication, which means this
variable could also be visible in all of the ACL’s as well.

Sauthenticated_sender

Tainted

When acting as a server, Exim takes note of the AUTH= parameter on an incoming SMTP MAIL
command if it believes the sender is sufficiently trusted, as described in section 33.2] Unless the
data is the string “<>”, it is set as the authenticated sender of the message, and the value is
available during delivery in the $authenticated_sender variable. If the sender is not trusted, Exim
accepts the syntax of AUTH=, but ignores the data.

When a message is submitted locally (that is, not over a TCP connection), the value of
Sauthenticated_sender is an address constructed from the login name of the calling process and
Squalify_domain, except that a trusted user can override this by means of the -oMas command line
option.

Sauthentication_failed
This variable is set to “1” in an Exim server if a client issues an AUTH command that does not
succeed. Otherwise it is set to “0”. This makes it possible to distinguish between “did not try to
authenticate” ($sender_host_authenticated is empty and Sauthentication_failed is set to “0”") and
“tried to authenticate but failed” ($sender_host_authenticated is empty and Sauthentication_failed
is set to “1”). Failure includes cancellation of a authentication attempt, and any negative response
to an AUTH command, (including, for example, an attempt to use an undefined mechanism).

$av_failed
This variable is available when Exim is compiled with the content-scanning extension. It is set to
“0” by default, but will be set to “1” if any problem occurs with the virus scanner (specified by av_
scanner) during the ACL malware condition.

$body_linecount
When a message is being received or delivered, this variable contains the number of lines in the
message’s body. See also $message_linecount.

142 String expansions (11)

8body_zerocount
When a message is being received or delivered, this variable contains the number of binary zero
bytes (ASCII NULs) in the message’s body.

8bounce_recipient
This is set to the recipient address of a bounce message while Exim is creating it. It is useful if a
customized bounce message text file is in use (see chapter @b

$bounce_return_size_limit
This contains the value set in the bounce_return_size_limit option, rounded up to a multiple of
1000. It is useful when a customized error message text file is in use (see chapter.

Scaller_gid
The real group id under which the process that called Exim was running. This is not the same as
the group id of the originator of a message (see $originator_gid). If Exim re-execs itself, this
variable in the new incarnation normally contains the Exim gid.

Scaller _uid
The real user id under which the process that called Exim was running. This is not the same as the
user id of the originator of a message (see $originator_uid). If Exim re-execs itself, this variable in
the new incarnation normally contains the Exim uid.

Scallout_address
After a callout for verification, spamd or malware daemon service, the address that was connected
to.

Scompile_number
The building process for Exim keeps a count of the number of times it has been compiled. This
serves to distinguish different compilations of the same version of Exim.

$config_dir
The directory name of the main configuration file. That is, the content of $config_file with the last
component stripped. The value does not contain the trailing slash. If $config_file does not contain a
slash, $config_diris".".

$config_file

The name of the main configuration file Exim is using.

$dkim_verify_status
Results of DKIM verification. For details see section

$dkim_cur_signer
$dkim_verify_reason
$dkim_domain
$dkim_identity
$dkim_selector
$dkim_algo
$dkim_canon_body
S$dkim_canon_headers
$dkim_copiedheaders
$dkim_bodylength
$dkim_created
$dkim_expires
S$dkim_headernames
$dkim_key_testing
$dkim_key_nosubdomains
$dkim_key_srvtype
$dkim_key_granularity
$dkim_key_notes
$dkim_key_length

These variables are only available within the DKIM ACL. For details see section

143 String expansions (11)

$dkim_signers
When a message has been received this variable contains a colon-separated list of signer domains
and identities for the message. For details see section [58.3

$dmarc_domain_policy
Sdmarc_status
Sdmarc_status_text
$Sdmarc_used_domains
Results of DMARC verification. For details see section

Sdnslist_domain

Sdnslist_matched

Sdnslist_text

Sdnslist_value
When a DNS (black) list lookup succeeds, these variables are set to contain the following data
from the lookup: the list’s domain name, the key that was looked up, the contents of any associated
TXT record, and the value from the main A record. See section E4.32 for more details.

Sdomain
Tainted

When an address is being routed, or delivered on its own, this variable contains the domain.
Uppercase letters in the domain are converted into lower case for $domain.

Global address rewriting happens when a message is received, so the value of $domain during
routing and delivery is the value after rewriting. $domain is set during user filtering, but not during
system filtering, because a message may have many recipients and the system filter is called just
once.

When more than one address is being delivered at once (for example, several RCPT commands in
one SMTP delivery), $domain is set only if they all have the same domain. Transports can be
restricted to handling only one domain at a time if the value of $domain is required at transport
time — this is the default for local transports. For further details of the environment in which local
transports are run, see chapter

At the end of a delivery, if all deferred addresses have the same domain, it is set in $domain during
the expansion of delay_warning_condition.

The $domain variable is also used in some other circumstances:

* When an ACL is running for a RCPT command, $domain contains the domain of the recipient
address. The domain of the sender address is in $sender_address_domain at both MAIL time
and at RCPT time. $domain is not normally set during the running of the MAIL ACL. However,
if the sender address is verified with a callout during the MAIL ACL, the sender domain is
placed in $domain during the expansions of hosts, interface, and port in the smzp transport.

* When a rewrite item is being processed (see chapter , Sdomain contains the domain portion
of the address that is being rewritten; it can be used in the expansion of the replacement address,
for example, to rewrite domains by file lookup.

» With one important exception, whenever a domain list is being scanned, $domain contains the
subject domain. Exception: When a domain list in a sender_domains condition in an ACL is
being processed, the subject domain is in $sender_address_domain and not in $domain. Tt
works this way so that, in a RCPT ACL, the sender domain list can be dependent on the
recipient domain (which is what is in $domain at this time).

e When the smtp_etrn_command option is being expanded, $domain contains the complete
argument of the ETRN command (see section .

If the origin of the data is an incoming message, the result of expanding this variable is tainted and
may not be further expanded or used as a filename. When an untainted version is needed, one
should be obtained from looking up the value in a local (therefore trusted) database. Often
$domain_data is usable in this role.

144 String expansions (11)

$domain_data
When the domains condition on a router or an ACL matches a domain against a list, the match
value is copied to $domain_data. This is an enhancement over previous versions of Exim, when it
only applied to the data read by a lookup. For details on match values see section et. al.

If the router routes the address to a transport, the value is available in that transport. If the transport
is handling multiple addresses, the value from the first address is used.

$domain_data set in an ACL is available during the rest of the ACL statement.

$exim_gid
This variable contains the numerical value of the Exim group id.

Sexim_path
This variable contains the path to the Exim binary.

Sexim_uid
This variable contains the numerical value of the Exim user id.

Sexim_version
This variable contains the version string of the Exim build. The first character is a major version
number, currently 4. Then after a dot, the next group of digits is a minor version number. There
may be other characters following the minor version. This value may be overridden by the exim_
version main config option.

Sheader _<name>

Tainted

This is not strictly an expansion variable. It is expansion syntax for inserting the message header
line with the given name. Note that the name must be terminated by colon or white space, because
it may contain a wide variety of characters. Note also that braces must not be used. See the full
description in section above.

Sheaders_added
Within an ACL this variable contains the headers added so far by the ACL modifier add_header
(section_44.24|). The headers are a newline-separated list.

$home
When the check_local_user option is set for a router, the user’s home directory is placed in $home
when the check succeeds. In particular, this means it is set during the running of users’ filter files.
A router may also explicitly set a home directory for use by a transport; this can be overridden by
a setting on the transport itself.

When running a filter test via the -bf option, $home is set to the value of the environment variable
HOME, which is subject to the keep_environment and add_environment main config options.

$host
If a router assigns an address to a transport (any transport), and passes a list of hosts with the
address, the value of $host when the transport starts to run is the name of the first host on the list.
Note that this applies both to local and remote transports.

For the smtp transport, if there is more than one host, the value of $host changes as the transport
works its way through the list. In particular, when the smip transport is expanding its options for
encryption using TLS, or for specifying a transport filter (see chapter , $host contains the name
of the host to which it is connected.

When used in the client part of an authenticator configuration (see chapter , $host contains the
name of the server to which the client is connected.

Shost_address
This variable is set to the remote host’s IP address whenever $host is set for a remote connection.
It is also set to the IP address that is being checked when the ignore_target_hosts option is being
processed.

145 String expansions (11)

S$host_data
If a hosts condition in an ACL is satisfied by means of a lookup, the result of the lookup is made
available in the $host_data variable. This allows you, for example, to do things like this:

deny hosts = net-lsearch;/some/file
message = S$host_data

S$host_lookup_deferred
This variable normally contains “0”, as does $host_lookup_failed. When a message comes from a
remote host and there is an attempt to look up the host’s name from its IP address, and the attempt
is not successful, one of these variables is set to “1”.

* If the lookup receives a definite negative response (for example, a DNS lookup succeeded, but
no records were found), $host_lookup_failed is set to “1”.

 If there is any kind of problem during the lookup, such that Exim cannot tell whether or not the
host name is defined (for example, a timeout for a DNS lookup), $host_lookup_deferred is set
tO 6‘1”.

Looking up a host’s name from its IP address consists of more than just a single reverse lookup.
Exim checks that a forward lookup of at least one of the names it receives from a reverse lookup
yields the original IP address. If this is not the case, Exim does not accept the looked up name(s),
and $host_lookup_failed is set to “1”. Thus, being able to find a name from an IP address (for
example, the existence of a PTR record in the DNS) is not sufficient on its own for the success of a
host name lookup. If the reverse lookup succeeds, but there is a lookup problem such as a timeout
when checking the result, the name is not accepted, and $host_lookup_deferred is set to “1”. See
also $sender_host_name.

Performing these checks sets up information used by the authresults expansion item.

$host_lookup_failed
See $host_lookup_deferred.

S$host_port
This variable is set to the remote host’s TCP port whenever $host is set for an outbound
connection.

Sinitial_cwd
This variable contains the full path name of the initial working directory of the current Exim
process. This may differ from the current working directory, as Exim changes this to "/" during
early startup, and to $spool_directory later.

$inode
The only time this variable is set is while expanding the directory_file option in the appendfile
transport. The variable contains the inode number of the temporary file which is about to be
renamed. It can be used to construct a unique name for the file.

Sinterface_address
Sinterface_port
These are obsolete names for $received_ip_address and $received_port.

Sitem
This variable is used during the expansion of forall and forany conditions (see section , and
filter, map, and reduce items (see section . In other circumstances, it is empty.

$ldap_dn
This variable, which is available only when Exim is compiled with LDAP support, contains the
DN from the last entry in the most recently successful LDAP lookup.

$load_average
This variable contains the system load average, multiplied by 1000 so that it is an integer. For
example, if the load average is 0.21, the value of the variable is 210. The value is recomputed
every time the variable is referenced.

146 String expansions (11)

$local_part
Tainted

When an address is being routed, or delivered on its own, this variable contains the local part.
When a number of addresses are being delivered together (for example, multiple RCPT commands
in an SMTP session), $local_part is not set.

Global address rewriting happens when a message is received, so the value of $local_part during
routing and delivery is the value after rewriting. $local_part is set during user filtering, but not
during system filtering, because a message may have many recipients and the system filter is called
just once.

If the origin of the data is an incoming message, the result of expanding this variable is tainted and
may not be further expanded or used as a filename.

Warning: the content of this variable is usually provided by a potential attacker. Consider care-
fully the implications of using it unvalidated as a name for file access. This presents issues for
users’ .forward and filter files. For traditional full user accounts, use check_local_users and the
$local_part_data variable rather than this one. For virtual users, store a suitable pathname com-
ponent in the database which is used for account name validation, and use that retrieved value
rather than this variable. Often $local_part_data is usable in this role. If needed, use a router
address_data or set option for the retrieved data.

When a message is being delivered to a file, pipe, or autoreply transport as a result of aliasing or
forwarding, $local_part is set to the local part of the parent address, not to the filename or
command (see $address._file and $address_pipe).

When an ACL is running for a RCPT command, $local_part contains the local part of the recipi-
ent address.

When a rewrite item is being processed (see chapter , $local_part contains the local part of the
address that is being rewritten; it can be used in the expansion of the replacement address, for
example.

In all cases, all quoting is removed from the local part. For example, for both the addresses

"abc:xyz"(@test.example
abc\:xyzQ@test.example

the value of $local_part is
abc:xyz

If you use $local_part to create another address, you should always wrap it inside a quoting
operator. For example, in a redirect router you could have:

data = ${quote_local_part:S$local_part}@new.domain.example

Note: The value of $local_part is normally lower cased. If you want to process local parts in a
case-dependent manner in a router, you can set the caseful_local_part option (see chapter.

$local_part_data
When the local_parts condition on a router or ACL matches a local part list the match value is
copied to $local_part_data. This is an enhancement over previous versions of Exim, when it only
applied to the data read by a lookup. For details on match values see section et. al.

The check_local_user router option also sets this variable.

If a local part prefix or suffix has been recognized, it is not included in the value of $local_part
during routing and subsequent delivery. The values of any prefix or suffix are in $local_part_prefix
and $local_part_suffix, respectively. If the specification did not include a wildcard then the affix
variable value is not tainted.

If the affix specification included a wildcard then the portion of the affix matched by the wildcard
is in $local_part_prefix_v or $local_part_suffix_v as appropriate, and both the whole and varying
values are tainted.

147 String expansions (11)

$local_scan_data
This variable contains the text returned by the local_scan() function when a message is received.
See chapter@ for more details.

$local_user_gid
See $local_user_uid.

Slocal_user uid
This variable and $local_user_gid are set to the uid and gid after the check_local_user router
precondition succeeds. This means that their values are available for the remaining preconditions
(senders, require._files, and condition), for the address_data expansion, and for any router-
specific expansions. At all other times, the values in these variables are (uid_t) (-1) and
(gid_t) (-1), respectively.

Slocalhost_number
This contains the expanded value of the localhost_number option. The expansion happens after
the main options have been read.

$log_inodes
The number of free inodes in the disk partition where Exim’s log files are being written. The value
is recalculated whenever the variable is referenced. If the relevant file system does not have the
concept of inodes, the value of is -1. See also the check_log_inodes option.

$log_space
The amount of free space (as a number of kilobytes) in the disk partition where Exim’s log files
are being written. The value is recalculated whenever the variable is referenced. If the operating
system does not have the ability to find the amount of free space (only true for experimental
systems), the space value is -1. See also the check_log_space option.

Slookup_dnssec_authenticated
This variable is set after a DNS lookup done by a dnsdb lookup expansion, dnslookup router or
smtp transport. It will be empty if DNSSEC was not requested, “no” if the result was not labelled
as authenticated data and “yes” if it was. Results that are labelled as authoritative answer that
match the dns_trust_aa configuration variable count also as authenticated data.

Smailstore_basename
This variable is set only when doing deliveries in “mailstore” format in the appendfile transport.
During the expansion of the mailstore_prefix, mailstore_suffix, message_prefix, and message_
suffix options, it contains the basename of the files that are being written, that is, the name without
the “.tmp”, “.env”, or “.msg” suffix. At all other times, this variable is empty.

Smalware_name
This variable is available when Exim is compiled with the content-scanning extension. It is set to
the name of the virus that was found when the ACL malware condition is true (see section45.1)).

Smax_received_linelength
This variable contains the number of bytes in the longest line that was received as part of the
message, not counting the line termination character(s). It is not valid if the spool_wireformat
option is used.

$message_age
This variable is set at the start of a delivery attempt to contain the number of seconds since the
message was received. It does not change during a single delivery attempt.

$message_body
Tainted

This variable contains the initial portion of a message’s body while it is being delivered, and is
intended mainly for use in filter files. The maximum number of characters of the body that are put
into the variable is set by the message_body_visible configuration option; the default is 500.

By default, newlines are converted into spaces in $message_body, to make it easier to search for
phrases that might be split over a line break. However, this can be disabled by setting message_
body_newlines to be true. Binary zeros are always converted into spaces.

148 String expansions (11)

$message_body_end
Tainted

This variable contains the final portion of a message’s body while it is being delivered. The format
and maximum size are as for $message_body.

$message_body_size
When a message is being delivered, this variable contains the size of the body in bytes. The count
starts from the character after the blank line that separates the body from the header. Newlines are
included in the count. See also $message_size, $body_linecount, and $body_zerocount.

If the spool file is wireformat (see the spool_wireformat main option) the CRLF line-terminators
are included in the count.

$message_exim_id
When a message is being received or delivered, this variable contains the unique message id that is
generated and used by Exim to identify the message. An id is not created for a message until after
its header has been successfully received. Note: This is not the contents of the Message-ID: header
line; it is the local id that Exim assigns to the message, for example: 1BXTIK-0001yO-VA.

Smessage_headers
Tainted

This variable contains a concatenation of all the header lines when a message is being processed,
except for lines added by routers or transports. The header lines are separated by newline charac-
ters. Their contents are decoded in the same way as a header line that is inserted by bheader.

Smessage_headers_raw
Tainted

This variable is like $message_headers except that no processing of the contents of header lines is
done.

Smessage_id
This is an old name for $message_exim_id. It is now deprecated.

Smessage_linecount
This variable contains the total number of lines in the header and body of the message. Compare
$body_linecount, which is the count for the body only. During the DATA and content-scanning
ACLs, $message_linecount contains the number of lines received. Before delivery happens (that is,
before filters, routers, and transports run) the count is increased to include the Received: header
line that Exim standardly adds, and also any other header lines that are added by ACLs. The blank
line that separates the message header from the body is not counted.

As with the special case of $message_size, during the expansion of the appendfile transport’s
maildir_tag option in maildir format, the value of $message_linecount is the precise size of the
number of newlines in the file that has been written (minus one for the blank line between the
header and the body).

Here is an example of the use of this variable in a DATA ACL:

deny condition = \
S{if <{250}{S${eval:Smessage_linecount - $body_linecount}}}
message = Too many lines in message header

In the MAIL and RCPT ACLs, the value is zero because at that stage the message has not yet been
received.

This variable is not valid if the spool_wireformat option is used.

Smessage_size
When a message is being processed, this variable contains its size in bytes. In most cases, the size
includes those headers that were received with the message, but not those (such as Envelope-to:)
that are added to individual deliveries as they are written. However, there is one special case:

149 String expansions (11)

during the expansion of the maildir_tag option in the appendfile transport while doing a delivery
in maildir format, the value of $message_size is the precise size of the file that has been written.
See also $message_body_size, $body_linecount, and $body_zerocount.

While running a per message ACL (mail/rcpt/predata), $message_size contains the size supplied
on the MAIL command, or -1 if no size was given. The value may not, of course, be truthful.

Smime_anomaly_level
Smime_anomaly_text
Smime_boundary
Smime_charset
Smime_content_description
Smime_content_disposition
Smime_content_id
Smime_content_size
Smime_content_transfer_encoding
Smime_content_type
Smime_decoded._filename
Smime_filename
Smime_is_coverletter
Smime_is_multipart
Smime_is_rfc822
Smime_part_count

A number of variables whose names start with $mime are available when Exim is compiled with

the content-scanning extension. For details, see section 45.4)

$n0 — $n9
These variables are counters that can be incremented by means of the add command in filter files.

Soriginal_domain
Tainted

When a top-level address is being processed for delivery, this contains the same value as $domain.
However, if a “child” address (for example, generated by an alias, forward, or filter file) is being
processed, this variable contains the domain of the original address (lower cased). This differs
from $parent_domain only when there is more than one level of aliasing or forwarding. When
more than one address is being delivered in a single transport run, $original_domain is not set.

If a new address is created by means of a deliver command in a system filter, it is set up with an
artificial “parent” address. This has the local part system-filter and the default qualify domain.

Soriginal_local_part
Tainted

When a top-level address is being processed for delivery, this contains the same value as $local_
part, unless a prefix or suffix was removed from the local part, because Soriginal_local_part
always contains the full local part. When a “child” address (for example, generated by an alias,
forward, or filter file) is being processed, this variable contains the full local part of the original
address.

If the router that did the redirection processed the local part case-insensitively, the value in
Soriginal_local_part is in lower case. This variable differs from $parent_local_part only when
there is more than one level of aliasing or forwarding. When more than one address is being
delivered in a single transport run, $original_local_part is not set.

If a new address is created by means of a deliver command in a system filter, it is set up with an
artificial “parent” address. This has the local part system-filter and the default qualify domain.

Soriginator_gid
This variable contains the value of $caller_gid that was set when the message was received. For
messages received via the command line, this is the gid of the sending user. For messages received
by SMTP over TCP/IP, this is normally the gid of the Exim user.

150 String expansions (11)

Soriginator_uid
The value of $caller_uid that was set when the message was received. For messages received via
the command line, this is the uid of the sending user. For messages received by SMTP over
TCP/IP, this is normally the uid of the Exim user.

Sparent_domain

Tainted

This variable is similar to $original_domain (see above), except that it refers to the immediately
preceding parent address.

Sparent_local_part

Tainted

This variable is similar to $original_local_part (see above), except that it refers to the immediately
preceding parent address.

$pid
This variable contains the current process id.

$pipe_addresses
This is not an expansion variable, but is mentioned here because the string $pipe_addresses
is handled specially in the command specification for the pipe transport (chapter and in
transport filters (described under transport_filter in chapter . It cannot be used in general
expansion strings, and provokes an “unknown variable” error if encountered.

Note: This value permits data supplied by a potential attacker to be used in the command for a
pipe transport. Such configurations should be carefully assessed for security vulnerbilities.

Sprimary_hostname
This variable contains the value set by primary_hostname in the configuration file, or read by the
uname() function. If uname() returns a single-component name, Exim calls gethostbyname() (or
getipnodebyname() where available) in an attempt to acquire a fully qualified host name. See also
$smitp_active_hostname.

8proxy_external_address

$proxy_external_port

8proxy_local_address

Sproxy_local_port

8proxy_session
These variables are only available when built with Proxy Protocol or SOCKSS5 support. For details
see chapter

Sprdr_requested
This variable is set to “yes” if PRDR was requested by the client for the current message, other-
wise “no”.

$prvscheck_address

$prvscheck_keynum

$prvscheck_result
These variables are used in conjunction with the prvscheck expansion item, which is described in
sections|11.5{and 44.53

$qualify_domain
The value set for the qualify_domain option in the configuration file.

$qualify_recipient
The value set for the qualify_recipient option in the configuration file, or if not set, the value of
$qualify_domain.

$queue_name
The name of the spool queue in use; empty for the default queue.

151 String expansions (11)

$queue_size
This variable contains the number of messages queued. It is evaluated on demand, but no more
often than once every minute. If there is no daemon notifier socket open, the value will be an
empty string.

$r ...
Values can be placed in these variables by the set option of a router. They can be given any name
that starts with $r_. The values persist for the address being handled through subsequent routers
and the eventual transport.

$rept_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands received for the current message. If this variable is used in a RCPT ACL, its value includes
the current command.

Srept_defer_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands in the current message that have previously been rejected with a temporary (4xx) response.

Srept_fail_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands in the current message that have previously been rejected with a permanent (5xx) response.

$received_count
This variable contains the number of Received: header lines in the message, including the one
added by Exim (so its value is always greater than zero). It is available in the DATA ACL, the
non-SMTP ACL, and while routing and delivering.

Sreceived_for

Tainted

If there is only a single recipient address in an incoming message, this variable contains that
address when the Received: header line is being built. The value is copied after recipient rewriting
has happened, but before the local_scan() function is run.

Sreceived_ip_address

Sreceived_port
As soon as an Exim server starts processing an incoming TCP/IP connection, these variables are
set to the address and port on the local IP interface. (The remote IP address and port are in
$sender_host_address and $sender_host_port.) When testing with -bh, the port value is -1 unless
it has been set using the -oMi command line option.

As well as being useful in ACLs (including the “connect” ACL), these variable could be used, for
example, to make the filename for a TLS certificate depend on which interface and/or port is being
used for the incoming connection. The values of $received_ip_address and $received_port are
saved with any messages that are received, thus making these variables available at delivery time.
For outbound connections see $sending_ip_address.

Sreceived_protocol
When a message is being processed, this variable contains the name of the protocol by which it
was received. Most of the names used by Exim are defined by RFCs 821, 2821, and 3848. They
start with “smtp” (the client used HELO) or “esmtp” (the client used EHLO). This can be followed
by “s” for secure (encrypted) and/or “a” for authenticated. Thus, for example, if the protocol is set
to “esmtpsa”, the message was received over an encrypted SMTP connection and the client was
successfully authenticated.

Exim uses the protocol name “smtps” for the case when encryption is automatically set up on
connection without the use of STARTTLS (see tls_on_connect_ports), and the client uses HELO
to initiate the encrypted SMTP session. The name “smtps” is also used for the rare situation where
the client initially uses EHLO, sets up an encrypted connection using STARTTLS, and then uses
HELO afterwards.

152 String expansions (11)

The -oMr option provides a way of specifying a custom protocol name for messages that are
injected locally by trusted callers. This is commonly used to identify messages that are being
re-injected after some kind of scanning.

Sreceived_time
This variable contains the date and time when the current message was received, as a number of
seconds since the start of the Unix epoch.

Srecipient_data
This variable is set after an indexing lookup success in an ACL recipients condition. It contains
the data from the lookup, and the value remains set until the next recipients test. Thus, you can do
things like this:

require recipients = cdb*@;/some/file
deny some further test involving Srecipient_data

Warning: This variable is set only when a lookup is used as an indexing method in the address
list, using the semicolon syntax as in the example above. The variable is not set for a lookup that is
used as part of the string expansion that all such lists undergo before being interpreted.

Srecipient_verify_failure
In an ACL, when a recipient verification fails, this variable contains information about the failure.
It is set to one of the following words:

e “qualify”: The address was unqualified (no domain), and the message was neither local nor
came from an exempted host.

* “route”: Routing failed.

* “mail”: Routing succeeded, and a callout was attempted; rejection occurred at or before the
MAIL command (that is, on initial connection, HELO, or MAIL).

* “recipient”: The RCPT command in a callout was rejected.
* “postmaster’’: The postmaster check in a callout was rejected.

The main use of this variable is expected to be to distinguish between rejections of MAIL and
rejections of RCPT.

Srecipients
Tainted

This variable contains a list of envelope recipients for a message. A comma and a space separate
the addresses in the replacement text. However, the variable is not generally available, to prevent
exposure of Bcc recipients in unprivileged users’ filter files. You can use $recipients only in these
cases:

(1) In asystem filter file.

(2) In the ACLs associated with the DATA command and with non-SMTP messages, that is, the
ACLs defined by acl_smtp_predata, acl_smtp_data, acl_smtp_mime, acl_not_smtp_
start, acl_not_smtp, and acl_not_smtp_mime.

(3) From within a local_scan() function.

Srecipients_count
When a message is being processed, this variable contains the number of envelope recipients that
came with the message. Duplicates are not excluded from the count. While a message is being
received over SMTP, the number increases for each accepted recipient. It can be referenced in an
ACL.

Sregex_match_string
This variable is set to_contain the matching regular expression after a regex ACL condition has
matched (see section ES.S .

153 String expansions (11)

Sregexl, $regex2, etc
When a regex or mime_regex ACL condition succeeds, these variables contain the captured
substrings identified by the regular expression.

If the subject string was tainted then so will any captured substring.

Sreply_address

Tainted

When a message is being processed, this variable contains the contents of the Reply-To: header
line if one exists and it is not empty, or otherwise the contents of the From: header line. Apart from
the removal of leading white space, the value is not processed in any way. In particular, no RFC
2047 decoding or character code translation takes place.

Sreturn_path

When a message is being delivered, this variable contains the return path — the sender field that
will be sent as part of the envelope. It is not enclosed in <> characters. At the start of routing an
address, $return_path has the same value as $sender_address, but if, for example, an incoming
message to a mailing list has been expanded by a router which specifies a different address for
bounce messages, $return_path subsequently contains the new bounce address, whereas $sender_
address always contains the original sender address that was received with the message. In other
words, $sender_address contains the incoming envelope sender, and $return_path contains the
outgoing envelope sender.

Sreturn_size_limit
This is an obsolete name for $bounce_return_size_limit.

$router_name
During the running of a router this variable contains its name.

Srunrc
This variable contains the return code from a command that is run by the ${run...} expansion item.
Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those preconditions whose order of testing is documented. Therefore, you
cannot reliably expect to set $runrc by the expansion of one option, and use it in another.

$self _hostname
When an address is routed to a supposedly remote host that turns out to be the local host, what
happens is controlled by the self generic router option. One of its values causes the address to be
passed to another router. When this happens, $self hostname is set to the name of the local host
that the original router encountered. In other circumstances its contents are null.

$sender_address

Tainted

When a message is being processed, this variable contains the sender’s address that was received
in the message’s envelope. The case of letters in the address is retained, in both the local part and
the domain. For bounce messages, the value of this variable is the empty string. See also $return_
path.

$sender_address_data
If $address_data is set when the routers are called from an ACL to verify a sender address, the
final value is preserved in $sender_address_data, to distinguish it from data from a recipient
address. The value does not persist after the end of the current ACL statement. If you want to
preserve it for longer, you can save it in an ACL variable.

$sender_address_domain
Tainted

The domain portion of $sender_address.

154 String expansions (11)

$sender_address_local_part
Tainted

The local part portion of $sender_address.

$sender_data
This variable is set after a lookup success in an ACL senders condition or in a router senders
option. It contains the data from the lookup, and the value remains set until the next senders test.
Thus, you can do things like this:

require senders = cdb*@; /some/file
deny some further test involving $sender_data

Warning: This variable is set only when a lookup is used as an indexing method in the address
list, using the semicolon syntax as in the example above. The variable is not set for a lookup that is
used as part of the string expansion that all such lists undergo before being interpreted.

$sender_fullhost

When a message is received from a remote host, this variable contains the host name and IP
address in a single string. It ends with the IP address in square brackets, followed by a colon and a
port number if the logging of ports is enabled. The format of the rest of the string depends on
whether the host issued a HELO or EHLO SMTP command, and whether the host name was
verified by looking up its IP address. (Looking up the IP address can be forced by the host_lookup
option, independent of verification.) A plain host name at the start of the string is a verified host
name; if this is not present, verification either failed or was not requested. A host name in parenth-
eses is the argument of a HELO or EHLO command. This is omitted if it is identical to the verified
host name or to the host’s IP address in square brackets.

$sender_helo_dnssec
This boolean variable is true if a successful HELO verification was done using DNS information
the resolver library stated was authenticated data.

$sender_helo_name

Tainted

When a message is received from a remote host that has issued a HELO or EHLO command, the
argument of that command is placed in this variable. It is also set if HELO or EHLO is used when
a message is received using SMTP locally via the -bs or -bS options.

S$sender_host_address
When a message is received from a remote host using SMTP, this variable contains that host’s IP
address. For locally non-SMTP submitted messages, it is empty.

$sender _host_authenticated
This variable contains the name (not the public name) of the authenticator driver that successfully
authenticated the client from which the message was received. It is empty if there was no success-
ful authentication. See also $authenticated_id.

$sender_host_dnssec
If an attempt to populate $sender_host_name has been made (by reference, hosts_lookup or
otherwise) then this boolean will have been set true if, and only if, the resolver library states that
both the reverse and forward DNS were authenticated data. At all other times, this variable is false.

It is likely that you will need to coerce DNSSEC support on in the resolver library, by setting:
dns_dnssec_ok =1

In addition, on Linux with glibc 2.31 or newer the resolver library will default to stripping out a
successful validation status. This will break a previously working Exim installation. Provided that
you do trust the resolver (ie, is on localhost) you can tell glibc to pass through any successful
validation with a new option in /etc/resolv.conf:

options trust-ad

155 String expansions (11)

Exim does not perform DNSSEC validation itself, instead leaving that to a validating resolver (e.g.
unbound, or bind with suitable configuration).

If you have changed host_lookup_order so that bydns is not the first mechanism in the list, then
this variable will be false.

This requires that your system resolver library support EDNSO (and that DNSSEC flags exist in
the system headers). If the resolver silently drops all EDNSO options, then this will have no effect.
OpenBSD’s asr resolver is known to currently ignore EDNSO, documented in CAVEATS of
asr_run(3).

$sender_host_name

Tainted

When a message is received from a remote host, this variable contains the host’s name as obtained
by looking up its IP address. For messages received by other means, this variable is empty.

If the host name has not previously been looked up, a reference to $sender_host_name triggers a
lookup (for messages from remote hosts). A looked up name is accepted only if it leads back to the
original IP address via a forward lookup. If either the reverse or the forward lookup fails to find
any data, or if the forward lookup does not yield the original IP address, $sender_host_name
remains empty, and $host_lookup_failed is set to “1”.

However, if either of the lookups cannot be completed (for example, there is a DNS timeout),
Shost_lookup_deferred is set to “1”, and $host_lookup_failed remains set to “0”.

Once $host_lookup_failed is set to “1”, Exim does not try to look up the host name again if there
is a subsequent reference to $sender_host_name in the same Exim process, but it does try again if
$host_lookup_deferred is set to “1”.

Exim does not automatically look up every calling host’s name. If you want maximum efficiency,
you should arrange your configuration so that it avoids these lookups altogether. The lookup
happens only if one or more of the following are true:

* A string containing $sender_host_name is expanded.

* The calling host matches the list in host_lookup. In the default configuration, this option is set
to *, so it must be changed if lookups are to be avoided. (In the code, the default for host_
lookup is unset.)

* Exim needs the host name in order to test an item in a host list. The items that require this are
described in sections |10.14_l| and 10.18[

e The calling host matches helo_try_verify_hosts or helo_verify_hosts. In this case, the host
name is required to compare with the name quoted in any EHLO or HELO commands that the
client issues.

e The remote host issues a EHLO or HELO command that quotes one of the domains in helo_
lookup_domains. The default value of this option is

helo_lookup_domains = @ : Q[]

which causes a lookup if a remote host (incorrectly) gives the server’s name or IP address in an
EHLO or HELO command.

$sender_host_port
When a message is received from a remote host, this variable contains the port number that was
used on the remote host.

$sender_ident
When a message is received from a remote host, this variable contains the identification received
in response to an RFC 1413 request. When a message has been received locally, this variable
contains the login name of the user that called Exim.

156 String expansions (11)

$sender_rate_xxx
A number of variables whose names_begin $sender_rate_ are set as part of the ratelimit ACL
condition. Details are given in section [44.39

$sender_rcvhost
This is provided specifically for use in Received: headers. It starts with either the verified host
name (as obtained from a reverse DNS lookup) or, if there is no verified host name, the IP address
in square brackets. After that there may be text in parentheses. When the first item is a verified
host name, the first thing in the parentheses is the IP address in square brackets, followed by a
colon and a port number if port logging is enabled. When the first item is an IP address, the port is
recorded as “port=xxxx” inside the parentheses.

There may also be items of the form “helo=xxxx” if HELO or EHLO was used and its argument
was not identical to the real host name or IP address, and “ident=xxxx” if an RFC 1413 ident string
is available. If all three items are present in the parentheses, a newline and tab are inserted into the
string, to improve the formatting of the Received: header.

$sender_verify_failure
In an ACL, when a sender verification fails, this variable contains information about the failure.
The details are the same as for $recipient_verify_failure.

$sending_ip_address
This variable is set whenever an outgoing SMTP connection to another host has been set up. It
contains the IP address of the local interface that is being used. This is useful if a host that has
more than one IP address wants to take on different personalities depending on which one is being
used. For incoming connections, see $received_ip_address.

$sending_port
This variable is set whenever an outgoing SMTP connection to another host has been set up. It
contains the local port that is being used. For incoming connections, see $received_port.

$smitp_active_hostname
During an incoming SMTP session, this variable contains the value of the active host name, as
specified by the smtp_active_hostname option. The value of $smip_active_hostname is saved
with any message that is received, so its value can be consulted during routing and delivery.

S$smtp_command

Tainted

During the processing of an incoming SMTP command, this variable contains the entire command.
This makes it possible to distinguish between HELO and EHLO in the HELO ACL, and also to
distinguish between commands such as these:

MATL FROM:<>
MATL FROM: <>

For a MAIL command, extra parameters such as SIZE can be inspected. For a RCPT command,
the address in $smtp_command is the original address before any rewriting, whereas the values in
$local_part and $domain are taken from the address after SMTP-time rewriting.

Ssmtp_command_argument
Tainted

While an ACL is running to check an SMTP command, this variable contains the argument, that is,
the text that follows the command name, with leading white space removed. Following the intro-
duction of $smtp_command, this variable is somewhat redundant, but is retained for backwards
compatibility.

$smitp_command_history
A comma-separated list (with no whitespace) of the most-recent SMTP commands received, in
time-order left to right. Only a limited number of commands are remembered.

157 String expansions (11)

$smtp_count_at_connection_start

This variable is set greater than zero only in processes spawned by the Exim daemon for handling
incoming SMTP connections. The name is deliberately long, in order to emphasize what the
contents are. When the daemon accepts a new connection, it increments this variable. A copy of
the variable is passed to the child process that handles the connection, but its value is fixed, and
never changes. It is only an approximation of how many incoming connections there actually are,
because many other connections may come and go while a single connection is being processed.
When a child process terminates, the daemon decrements its copy of the variable.

$sn0 — $sn9
These variables are copies of the values of the $n0 — $n9 accumulators that were current at the end
of the system filter file. This allows a system filter file to set values that can be tested in users’
filter files. For example, a system filter could set a value indicating how likely it is that a message
is junk mail.

$spam_score
$spam_score_int
$spam_bar
$spam_report
Sspam_action
A number of variables whose names start with $spam are available when Exim is compiled with
the content-scanning extension. For details, see section@

8spf_header_comment
8spf_received
Sspf_result
8spf_result_guessed
$spf_smtp_comment
These variables are only available if Exim is built with SPF support. For details see section

$spool_directory
The name of Exim’s spool directory.

$spool_inodes
The number of free inodes in the disk partition where Exim’s spool files are being written. The
value is recalculated whenever the variable is referenced. If the relevant file system does not have
the concept of inodes, the value of is -1. See also the check_spool_inodes option.

$spool_space
The amount of free space (as a number of kilobytes) in the disk partition where Exim’s spool files
are being written. The value is recalculated whenever the variable is referenced. If the operating
system does not have the ability to find the amount of free space (only true for experimental
systems), the space value is -1. For example, to check in an ACL that there is at least 50 megabytes
free on the spool, you could write:

condition = ${if > {S$spool_space}{50000}}
See also the check_spool_space option.

$thisaddress
This variable is set only during the processing of the foranyaddress command in a filter file. Its
use is explained in the description of that command, which can be found in the separate document
entitled Exim’s interfaces to mail filtering.

$tls_in_bits
Contains an approximation of the TLS cipher’s bit-strength on the inbound connection; the mean-
ing of this depends upon the TLS implementation used. If TLS has not been negotiated, the value
will be 0. The value of this is automatically fed into the Cyrus SASL authenticator when acting as
a server, to specify the "external SSF" (a SASL term).

The deprecated $tls_bits variable refers to the inbound side except when used in the context of an
outbound SMTP delivery, when it refers to the outbound.

158 String expansions (11)

$tls_out_bits
Contains an approximation of the TLS cipher’s bit-strength on an outbound SMTP connection; the
meaning of this depends upon the TLS implementation used. If TLS has not been negotiated, the
value will be 0.

$tls_in_ourcert
This variable refers to the certificate presented to the peer of an inbound connection when the
message was received. It is only useful as the argument of a certextract expansion item, mdS,
shal or sha256 operator, or a def condition.

Note: Under versions of OpenSSL preceding 1.1.1, when a list of more than one file is used for
tls_certificate, this variable is not reliable. The macro "_TLS_BAD_MULTICERT_IN_
OURCERT" will be defined for those versions.

$tls_in_peercert
This variable refers to the certificate presented by the peer of an inbound connection when the
message was received. It is only useful as the argument of a certextract expansion item, mdS5,
shal or sha256 operator, or a def condition. If certificate verification fails it may refer to a failing
chain element which is not the leaf.

$tls_out_ourcert
This variable refers to the certificate presented to the peer of an outbound connection. It is only
useful as the argument of a certextract expansion item, md5, shal or sha256 operator, or a def
condition.

$tls_out_peercert
This variable refers to the certificate presented by the peer of an outbound connection. It is only
useful as the argument of a certextract expansion item, mdS5, shal or sha256 operator, or a def
condition. If certificate verification fails it may refer to a failing chain element which is not the
leaf.

$tls_in_certificate_verified
This variable is set to “1” if a TLS certificate was verified when the message was received, and “0”
otherwise.

The deprecated $tls_certificate_verified variable refers to the inbound side except when used in the
context of an outbound SMTP delivery, when it refers to the outbound.

$tls_out_certificate_verified
This variable is set to “1” if a TLS certificate was verified when an outbound SMTP connection
was made, and “0” otherwise.

$tls_in_cipher
When a message is received from a remote host over an encrypted SMTP connection, this variable
is set to the cipher suite that was negotiated, for example DES-CBC3-SHA. In other circum-
stances, in particular, for message received over unencrypted connections, the variable is empty.
Testing $tls_in_cipher for emptiness is one way of distinguishing between encrypted and non-
encrypted connections during ACL processing.

The deprecated $tls_cipher variable is the same as $tls_in_cipher during message reception, but in
the context of an outward SMTP delivery taking place via the smip transport becomes the same as
$tls_out_cipher.

$tls_in_cipher_std
As above, but returning the RFC standard name for the cipher suite.

$tls_out_cipher
This variable is cleared before any outgoing SMTP_connection is made, and then set to the
outgoing cipher suite if one is negotiated. See chapter for details of TLS support and chapter
for details of the smip transport.

$tls_out_cipher_std
As above, but returning the RFC standard name for the cipher suite.

159 String expansions (11)

$tls_out_dane
DANE active status. See section

$tls_in_ocsp
When a message is received from a remote client connection the result of any OCSP request from
the client is encoded in this variable:

OCSP proof was not requested (default wvalue)
No response to request

Response not verified

Verification failed

Verification succeeded

ANV \ O i @)

$tls_out_ocsp
When a message is sent to a remote host connection the result of any OCSP request made is
encoded in this variable. See $tls_in_ocsp for values.

$tls_in_peerdn
When a message is received from a remote host over an encrypted SMTP connection, and Exim is
configured to request a certificate from the client, the value of the Distinguished Name of the
certificate is made available in the $zls_in_peerdn during subsequent processing. If certificate
verification fails it may refer to a failing chain element which is not the leaf.

The deprecated $tls_peerdn variable refers to the inbound side except when used in the context of
an outbound SMTP delivery, when it refers to the outbound.

$tls_out_peerdn
When a message is being delivered to a remote host over an encrypted SMTP connection, and
Exim is configured to request a certificate from the server, the value of the Distinguished Name of
the certificate is made available in the $1ls_out_peerdn during subsequent processing. If certificate
verification fails it may refer to a failing chain element which is not the leaf.

$tls_in_resumption
$tls_out_resumption
Observability for TLS session resumption. See for details.

$tls_in_sni

Tainted

When a TLS session is being established, if the client sends the Server Name Indication extension,
the value will be placed in this variable. If the variable appears in tls_certificate then this option
and some others, described in E3.12L will be re-expanded early in the TLS session, to permit a
different certificate to be presented (and optionally a different key to be used) to the client, based
upon the value of the SNI extension.

The deprecated $1ls_sni variable refers to the inbound side except when used in the context of an
outbound SMTP delivery, when it refers to the outbound.

$tls_out_sni
During outbound SMTP deliveries, this variable reflects the value of the tls_sni option on the
transport.

$tls_out_tlsa_usage
Bitfield of TLSA record types found. See section

$tls_in_ver
When a message is received from a remote host over an encrypted SMTP connection this variable
is set to the protocol version, eg TLS1.2.

$tls_out ver
When a message is being delivered to a remote host over an encrypted SMTP connection this
variable is set to the protocol version.

160 String expansions (11)

$tod_bsdinbox
The time of day and the date, in the format required for BSD-style mailbox files, for example: Thu
Oct 17 17:14:09 1995.

$tod_epoch
The time and date as a number of seconds since the start of the Unix epoch.

$tod_epoch_l
The time and date as a number of microseconds since the start of the Unix epoch.

S$tod_full
A full version of the time and date, for example: Wed, 16 Oct 1995 09:51:40 +0100. The timezone
is always given as a numerical offset from UTC, with positive values used for timezones that are
ahead (east) of UTC, and negative values for those that are behind (west).

$tod_log
The time and date in the format used for writing Exim’s log files, for example: 1995-10-12
15:32:29, but without a timezone.

$tod_logfile
This variable contains the date in the format yyyymmdd. This is the format that is used for
datestamping log files when log_file_path contains the %D flag.

$tod_zone
This variable contains the numerical value of the local timezone, for example: -0500.

$tod_zulu
This variable contains the UTC date and time in “Zulu” format, as specified by ISO 8601, for
example: 200302211540237Z.

S$transport_name
During the running of a transport, this variable contains its name.

$value
This variable contains the result of an expansion lookup, extraction operation, or external com-
mand, as described above. It is also used during a reduce expansion.

Sverify_mode
While a router or transport is being run in verify mode or for cutthrough delivery, contains "S" for
sender-verification or "R" for recipient-verification. Otherwise, empty.

Sversion_number
The version number of Exim. Same as $exim_version, may be overridden by the exim_version
main config option.

Swarn_message_delay
This variable is set only during the creation of a message warning about a delivery delay. Details
of its use are explained in section

Swarn_message_recipients

This variable is set only during the creation of a message warning about a delivery delay. Details
of its use are explained in section

161 String expansions (11)

12. Embedded Perl

Exim can be built to include an embedded Perl interpreter. When this is done, Perl subroutines can be
called as part of the string expansion process. To make use of the Perl support, you need version 5.004
or later of Perl installed on your system. To include the embedded interpreter in the Exim binary,
include the line

EXIM PERL = perl.o

in your Local/Makefile and then build Exim in the normal way.

12.1 Setting up so Perl can be used

Access to Perl subroutines is via a global configuration option called perl_startup and an expansion
string operator ${perl ...}. If there is no perl_startup option in the Exim configuration file then no
Perl interpreter is started and there is almost no overhead for Exim (since none of the Perl library will
be paged in unless used). If there is a perl_startup option then the associated value is taken to be Perl
code which is executed in a newly created Perl interpreter.

The value of perl_startup is not expanded in the Exim sense, so you do not need backslashes before
any characters to escape special meanings. The option should usually be something like

perl_startup = do '/etc/exim.pl'

where /etc/exim.pl is Perl code which defines any subroutines you want to use from Exim. Exim can
be configured either to start up a Perl interpreter as soon as it is entered, or to wait until the first time
it is needed. Starting the interpreter at the beginning ensures that it is done while Exim still has its
setuid privilege, but can impose an unnecessary overhead if Perl is not in fact used in a particular run.
Also, note that this does not mean that Exim is necessarily running as root when Perl is called at a
later time. By default, the interpreter is started only when it is needed, but this can be changed in two
ways:

* Setting perl_at_start (a boolean option) in the configuration requests a startup when Exim is
entered.

* The command line option -ps also requests a startup when Exim is entered, overriding the setting
of perl_at_start.

There is also a command line option -pd (for delay) which suppresses the initial startup, even if perl_
at_start is set.

* To provide more security executing Perl code via the embedded Perl interpreter, the perl_
taintmode option can be set. This enables the taint mode of the Perl interpreter. You are encour-
aged to set this option to a true value. To avoid breaking existing installations, it defaults to false.

Note: This is entirely separate from Exim’s tainted-data tracking.

12.2 Calling Perl subroutines

When the configuration file includes a perl_startup option you can make use of the string expansion
item to call the Perl subroutines that are defined by the perl_startup code. The operator is used in any
of the following forms:

${perl{foo}}
S{perl{foo}{argument}}
S{perl{foo}{argumentl}{argument2} ... }

which calls the subroutine foo with the given arguments. A maximum of eight arguments may be
passed. Passing more than this results in an expansion failure with an error message of the form

Too many arguments passed to Perl subroutine "foo" (max is 8)
The return value of the Perl subroutine is evaluated in a scalar context before it is passed back to

Exim to be inserted into the expanded string. If the return value is undef, the expansion is forced to

162 Embedded Perl (12)

fail in the same way as an explicit “fail” on an if or lookup item. If the subroutine aborts by obeying
Perl’s die function, the expansion fails with the error message that was passed to die.

12.3 Calling Exim functions from Perl

Within any Perl code called from Exim, the function Exim::expand_string() is available to call back
into Exim’s string expansion function. For example, the Perl code

my $lp = Exim::expand_string('$local_part');

makes the current Exim $local_part available in the Perl variable $Ip. Note those are single quotes
and not double quotes to protect against $local_part being interpolated as a Perl variable.

If the string expansion is forced to fail by a “fail” item, the result of Exim.:expand_string() is undef.
If there is a syntax error in the expansion string, the Perl call from the original expansion string fails
with an appropriate error message, in the same way as if die were used.

Two other Exim functions are available for use from within Perl code. Exim::debug_write() writes a
string to the standard error stream if Exim’s debugging is enabled. If you want a newline at the end,
you must supply it. Exim::log_write() writes a string to Exim’s main log, adding a leading timestamp.
In this case, you should not supply a terminating newline.

12.4 Use of standard output and error by Perl

You should not write to the standard error or output streams from within your Perl code, as it is not
defined how these are set up. In versions of Exim before 4.50, it is possible for the standard output or
error to refer to the SMTP connection during message reception via the daemon. Writing to this
stream is certain to cause chaos. From Exim 4.50 onwards, the standard output and error streams are
connected to /dev/null in the daemon. The chaos is avoided, but the output is lost.

The Perl warn statement writes to the standard error stream by default. Calls to warn may be
embedded in Perl modules that you use, but over which you have no control. When Exim starts up the
Perl interpreter, it arranges for output from the warn statement to be written to the Exim main log.
You can change this by including appropriate Perl magic somewhere in your Perl code. For example,
to discard warn output completely, you need this:

$SIG{__ WARN__} = sub { };
Whenever a warn is obeyed, the anonymous subroutine is called. In this example, the code for the

subroutine is empty, so it does nothing, but you can include any Perl code that you like. The text of
the warn message is passed as the first subroutine argument.

163 Embedded Perl (12)

13. Starting the daemon and the use of network interfaces

A host that is connected to a TCP/IP network may have one or more physical hardware network
interfaces. Each of these interfaces may be configured as one or more “logical” interfaces, which are
the entities that a program actually works with. Each of these logical interfaces is associated with an
IP address. In addition, TCP/IP software supports “loopback” interfaces (127.0.0.1 in IPv4 and ::1 in
IPv6), which do not use any physical hardware. Exim requires knowledge about the host’s interfaces
for use in three different circumstances:

(1) When a listening daemon is started, Exim needs to know which interfaces and ports to listen on.

(2) When Exim is routing an address, it needs to know which IP addresses are associated with local
interfaces. This is required for the correct processing of MX lists by removing the local host and
others with the same or higher priority values. Also, Exim needs to detect cases when an address
is routed to an IP address that in fact belongs to the local host. Unless the self router option or
the allow_localhost option of the smtp transport is set (as appropriate), this is treated as an error
situation.

(3) When Exim connects to a remote host, it may need to know which interface to use for the
outgoing connection.

Exim’s default behaviour is likely to be appropriate in the vast majority of cases. If your host has only
one interface, and you want all its IP addresses to be treated in the same way, and you are using only
the standard SMTP port, you should not need to take any special action. The rest of this chapter does
not apply to you.

In a more complicated situation you may want to listen only on certain interfaces, or on different
ports, and for this reason there are a number of options that can be used to influence Exim’s behav-
iour. The rest of this chapter describes how they operate.

When a message is received over TCP/IP, the interface and port that were actually used are set in
Sreceived_ip_address and $received_port.

13.1 Starting a listening daemon

When a listening daemon is started (by means of the -bd command line option), the interfaces and
ports on which it listens are controlled by the following options:

* daemon_smtp_ports contains a list of default ports or service names. (For backward compati-
bility, this option can also be specified in the singular.)

* local_interfaces contains list of interface IP addresses on which to listen. Each item may option-
ally also specify a port.

The default list separator in both cases is a colon, but this can be changed as described in section
When IPv6 addresses are involved, it is usually best to change the separator to avoid having to double
all the colons. For example:

local interfaces = <; 127.0.0.1 ; \
192.168.23.65 ; \
::1 ;0\
3ffe:ffff:836f::fe86:a061

There are two different formats for specifying a port along with an IP address in local_interfaces:

(1) The port is added onto the address with a dot separator. For example, to listen on port 1234 on
two different IP addresses:

local_interfaces = <; 192.168.23.65.1234 ; \
3ffe:ffff:836f::fe86:a061.1234

(2) The IP address is enclosed in square brackets, and the port is added with a colon separator, for
example:

164 Starting the daemon (13)

local_interfaces = <; [192.168.23.65]:1234 ; \
[3ffe:ffff:836f::fe86:a061]:1234

When a port is not specified, the value of daemon_smtp_ports is used. The default setting contains
just one port:

daemon_smtp_ports = smtp

If more than one port is listed, each interface that does not have its own port specified listens on all of
them. Ports that are listed in daemon_smtp_ports can be identified either by name (defined in
/etc/services) or by number. However, when ports are given with individual IP addresses in local_
interfaces, only numbers (not names) can be used.

13.2 Special IP listening addresses

The addresses 0.0.0.0 and ::0 are treated specially. They are interpreted as “all IPv4 interfaces” and
“all IPv6 interfaces”, respectively. In each case, Exim tells the TCP/IP stack to “listen on all IPvx
interfaces” instead of setting up separate listening sockets for each interface. The default value of
local_interfaces is

local_interfaces = 0.0.0.0
when Exim is built without IPv6 support; otherwise it is:
local_interfaces = <; ::0 ; 0.0.0.0

Thus, by default, Exim listens on all available interfaces, on the SMTP port.

13.3 Overriding local_interfaces and daemon_smtp_ports

The -0X command line option can be used to override the values of daemon_smtp_ports and/or
local_interfaces for a particular daemon instance. Another way of doing this would be to use macros
and the -D option. However, -0X can be used by any admin user, whereas modification of the runtime
configuration by -D is allowed only when the caller is root or exim.

The value of -0X is a list of items. The default colon separator can be changed in the usual way
if required. If there are any items that do not contain dots or colons (that is, are not IP addresses), the
value of daemon_smtp_ports is replaced by the list of those items. If there are any items that do
contain dots or colons, the value of local_interfaces is replaced by those items. Thus, for example,

-oX 1225
overrides daemon_smtp_ports, but leaves local_interfaces unchanged, whereas
-0oX 192.168.34.5.1125

overrides local_interfaces, leaving